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We investigate the stability problems for a functional equation 2f(
∑n

j=1 xj)+
∑

1≤i,j≤n, i /= j f(xi−xj) =
(n + 1)

∑n
j=1 f(xj) + (n − 1)

∑n
j=1 f(−xj) by using the fixed point method.

1. Introduction

In 1940, Ulam [1] gave a wide-ranging talk before a Mathematical Colloquium at the
University of Wisconsin in which he discussed a number of important unsolved problems.
Among those was the following question concerning the stability of homomorphisms.

Let G1 be a group and let G2 be a metric group with a metric d(·, ·). Given ε > 0, does there
exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for
all x, y ∈ G1, then there is a homomorphismH : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

If the answer is affirmative, we say that the functional equation for homomorphisms
is stable. Hyers [2] was the first mathematician to present the result concerning the stability
of functional equations. He answered the question of Ulam for the case where G1 and G2 are
assumed to be Banach spaces. This result of Hyers is stated as follows.

Let f : E1 → E2 be a function between Banach spaces such that

∥
∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ δ (1.1)
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for some δ > 0 and for all x, y ∈ E1. Then the limitA(x) = limn→∞2−nf(2nx) exists for each x ∈ E1,
and A : E1 → E2 is the unique additive function such that ‖f(x) − A(x)‖ ≤ δ for every x ∈ E1.
Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then the function A is linear.

We remark that the additive functionA is directly constructed from the given function
f and this method is called the direct method. The direct method is a very powerful method
for studying the stability problems of various functional equations. Taking this famous result
into consideration, the additive Cauchy equation f(x + y) = f(x) + f(y) is said to have the
Hyers-Ulam stability on (E1, E2) if, for every function f : E1 → E2 satisfying the inequality
(1.1) for some δ ≥ 0 and for all x, y ∈ E1, there exists an additive function A : E1 → E2 such
that f −A is bounded on E1.

In 1950, Aoki [3] generalized the theorem of Hyers for additive functions, and in the
following year, Bourgin [4] extended the theorem without proof. Unfortunately, it seems that
their results failed to receive attention from mathematicians at that time. No one has made
use of these results for a long time.

In 1978, Rassias [5] actually rediscovered the result of Aoki; he proved the following
theorem of Hyers for linear functions.

Let f : E1 → E2 be a function between Banach spaces. If f satisfies the functional inequality

∥
∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ θ(‖x‖p + ∥∥y∥∥p) (1.2)

for some θ ≥ 0, p with 0 ≤ p < 1 and for all x, y ∈ E1, then there exists a unique additive function
A : E1 → E2 such that ‖f(x) −A(x)‖ ≤ (2θ/(2 − 2p))‖x‖p for each x ∈ E1. If, in addition, f(tx)
is continuous in t for each fixed x ∈ E1, then the function A is linear.

This result of Rassias attracted a number of mathematicians who began to be
stimulated to investigate the stability problems of functional equations. By regarding a
large influence of Ulam, Hyers, and Rassias on the study of stability problems of functional
equations, the stability phenomenon proved by Aoki and Rassias is called the Hyers-Ulam-
Rassias stability. For the last thirty years many results concerning the Hyers-Ulam-Rassias
stability of various functional equations have been obtained (see [6–16]). For some discussion
of possible definitions of stability for functional equations, see [17].

The following functional equation

2f

⎛

⎝
n∑

j=1

xj

⎞

⎠ +
∑

1≤i,j≤n, i /= j
f
(
xi − xj

)
= (n + 1)

n∑

j=1

f
(
xj
)
+ (n − 1)

n∑

j=1

f
(−xj

)
(1.3)

is called an n-dimensional mixed-type additive and quadratic functional equation, and each solution
of (1.3) is called a quadratic-additive function. Recently, Towanlong andNakmahachalasint [18]
solved the n-dimensional mixed-type additive and quadratic functional equation.

Let E1 and E2 be vector spaces. A function f : E1 → E2 satisfies (1.3) for all x1, x2, . . . , xn ∈
E1 if and only if there exist an additive function a : E1 → E2 and a quadratic function q : E1 → E2

such that f(x) = a(x) + q(x) for all x ∈ E1.
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Moreover, they also investigated the Hyers-Ulam-Rassias stability of (1.3) by using the
direct method (see [18]). Indeed, they tried to approximate the even and odd parts of each
solution of a perturbed inequality by the even and odd parts of an “exact” solution of (1.3),
respectively.

In Theorems 3.1 and 3.3 of this paper, we will apply the fixed point method and prove
the Hyers-Ulam-Rassias stability of the n-dimensional mixed-type additive and quadratic
functional equation. The advantage of this paper, in comparison with [18], is to approximate
each solution of a perturbed inequality by an “exact” solution of (1.3), and we obtain sharper
estimations in consequence of this advantage.

Throughout this paper, let V be a (real or complex) vector space, Y a Banach space,
and n an integer larger than 1.

2. Preliminaries

Let X be a nonempty set. A function d : X2 → [0,∞] is called a generalized metric on X if and
only if d satisfies the following:

(M1) d(x, y) = 0 if and only if x = y;

(M2) d(x, y) = d(y, x) for all x, y ∈ X;

(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We remark that the only difference between the generalized metric and the usual
metric is that the range of the former is permitted to include the infinity.

We now introduce one of the fundamental results of the fixed point theory. For the
proof, we refer to [19].

Theorem 2.1. Let (X, d) be a complete generalized metric space. Assume that Λ : X → X is a
strict contraction with the Lipschitz constant L < 1. If there exists a nonnegative integer n0 such that
d(Λn0+1x,Λn0x) <∞ for some x ∈ X, then the following statements are true.

(i) The sequence {Λnx} converges to a fixed point x∗ of Λ.

(ii) x∗ is the unique fixed point of Λ in X∗ = {y ∈ X | d(Λn0x, y) <∞}.
(iii) If y ∈ X∗, then

d
(
y, x∗) ≤ 1

1 − Ld
(
Λy, y

)
. (2.1)

In 1991, Baker applied the fixed point method to prove the Hyers-Ulam stability of
a nonlinear functional equation (see [20]). Thereafter, Radu noticed that many theorems
concerning the Hyers-Ulam stability of various functional equations follow from the fixed
point alternative (Theorem 2.1). Indeed, he applied the fixed point method to prove the
existence of a solution of the inequality (1.1) and investigated the Hyers-Ulam stability of
the additive Cauchy equation (see [21] and also [22–26]). For a somewhat different fixed
point approach to stability of functional equations, see [27, 28].
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3. Hyers-Ulam-Rassias Stability

Let V be a (real or complex) vector space and let Y be a Banach space. For a given function
f : V → Y , we use the following abbreviation:

Df(x1, x2, . . . , xn) := 2f

⎛

⎝
n∑

j=1

xj

⎞

⎠ +
∑

1≤i,j≤n, i /= j
f
(
xi − xj

) − (n + 1)
n∑

j=1

f
(
xj
) − (n − 1)

n∑

j=1

f
(−xj

)

(3.1)

for all x1, x2, . . . , xn ∈ V .
In the following theorem, we prove the stability of the functional equation (1.3) by

using the fixed point method.

Theorem 3.1. Let ϕ : (V \ {0})n → [0,∞) be a given function. Assume that a function f : V → Y
satisfies f(0) = 0 and the inequality

∥
∥Df(x1, x2, . . . , xn)

∥
∥ ≤ ϕ(x1, x2, . . . , xn) (3.2)

for all x1, x2, . . . , xn ∈ V \ {0}. If there exists a constant 0 < L < 1 such that ϕ has the property

ϕ(nx1, nx2, . . . , nxn) ≤ nLϕ(x1, x2, . . . , xn) (3.3)

for all x1, x2, . . . , xn ∈ V \ {0}, then there exists a unique function F : V → Y such that
DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \ {0} and

∥
∥f(x) − F(x)∥∥ ≤ n + 1

4n2(1 − L)ψ(x) (3.4)

for all x ∈ V \ {0}, where the function ψ : V \ {0} → Y is defined by

ψ(x) := ϕ(x, x, . . . , x) + ϕ(−x,−x, . . . ,−x) (3.5)

for all x ∈ V \ {0}. In particular, F is represented by

F(x) = lim
m→∞

(
f(nmx) − f(−nmx)

2nm
+
f(nmx) + f(−nmx)

2n2m

)

(3.6)

for all x ∈ V .

Proof. Let S be the set of all functions g : V → Y with g(0) = 0. We introduce a generalized
metric on S by

d
(
g, h
)
:= inf

{
K ∈ [0,∞] | ∥∥g(x) − h(x)∥∥ ≤ Kψ(x) ∀x ∈ V \ {0}}, (3.7)



Abstract and Applied Analysis 5

where ψ is given in (3.5). It is not difficult to show that (S, d) is a complete generalized metric
space (see [29] or [30, 31]).

Now we consider the operator J : S → S defined by

Jg(x) :=
g(nx) − g(−nx)

2n
+
g(nx) + g(−nx)

2n2
(3.8)

for all x ∈ V . We can apply induction onm to prove

Jmg(x) =
g(nmx) − g(−nmx)

2nm
+
g(nmx) + g(−nmx)

2n2m
(3.9)

for all x ∈ V andm ∈ N.
Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ K. By the

definition of d, (3.3), and (3.5), we have

∥
∥Jg(x) − Jh(x)∥∥ ≤ (n + 1)

∥
∥g(nx) − h(nx)∥∥

2n2
+
(n − 1)

∥
∥g(−nx) − h(−nx)∥∥

2n2
≤ Kψ(nx)

n

≤ KLψ(x)
(3.10)

for all x ∈ V \ {0}, which implies that

d
(
Jg, Jh

) ≤ Ld(g, h) (3.11)

for any g, h ∈ S. That is, J is a strict contraction with the Lipschitz constant L.
Moreover, by (3.2), we see that

∥
∥f(x) − Jf(x)∥∥ =

∥
∥
∥
∥
n − 1
4n2

Df(−x,−x, . . . ,−x) − n + 1
4n2

Df(x, x, . . . , x)
∥
∥
∥
∥ ≤ n + 1

4n2
ψ(x)

(3.12)

for all x ∈ V \ {0}, that is, d(f, Jf) ≤ (n + 1)/4n2 < ∞ (see the definition of d). Therefore,
according to Theorem 2.1, the sequence {Jmf} converges to the unique “fixed point” F : V →
Y of J in the set T = {g ∈ S | d(f, g) <∞} and F is represented by (3.6) for all x ∈ V . Notice
that F(0) = 0. By Theorem 2.1, we have

d
(
f, F
) ≤ 1

1 − Ld
(
f, Jf

) ≤ n + 1
4n2(1 − L) , (3.13)

which implies the validity of (3.4).
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By a somewhat tedious manipulation, it follows from (3.2), (3.3), and (3.6) that

‖DF(x1, x2, . . . , xn)‖ = lim
m→∞

∥
∥
∥
∥
Df(nmx1, nmx2, . . . , nmxn) −Df(−nmx1,−nmx2, . . . ,−nmxn)

2nm

+
Df(nmx1, nmx2, . . . , nmxn) +Df(−nmx1,−nmx2, . . . ,−nmxn)

2n2m

∥
∥
∥
∥

≤ lim
m→∞

nm + 1
2n2m

[
ϕ(nmx1, . . . , nmxn) + ϕ(−nmx1, . . . ,−nmxn)

]

= 0
(3.14)

for all x1, x2, . . . , xn ∈ V \ {0}.

We can prove the following corollary by a way similar to that presented in the proof
of the preceding theorem.

Corollary 3.2. Let ϕ : V n → [0,∞) be a given function such that ϕ(x1, x2, . . . , xn) =
ϕ(−x1,−x2, . . . ,−xn) for all x1, x2, . . . , xn ∈ V . Assume that a function f : V → Y satisfies f(0) = 0
and the inequality (3.2) for all x1, x2, . . . , xn ∈ V . If there exists a constant 0 < L < 1 such that ϕ
has the property (3.3) for all x1, x2, . . . , xn ∈ V , then there exists a unique quadratic-additive function
F : V → Y such that

∥
∥f(x) − F(x)∥∥ ≤ ϕ(x, x, . . . , x)

2n(1 − L) (3.15)

for all x ∈ V .

Proof. Notice that

∥
∥f(x) − Jf(x)∥∥ =

∥
∥
∥
∥
n − 1
4n2

Df(−x,−x, . . . ,−x) − n + 1
4n2

Df(x, x, . . . , x)
∥
∥
∥
∥ ≤ ϕ(x, x, . . . , x)

2n
(3.16)

for all x ∈ V (see the proof of Theorem 3.1). By a similar method used in the proof of
Theorem 3.1, we can show that there exists a unique quadratic-additive function F : V → Y
satisfying (3.15).

In the following theorem, we prove the Hyers-Ulam-Rassias stability of (1.3) under
the condition (3.17) instead of (3.3).

Theorem 3.3. Given ϕ : (V \ {0})n → [0,∞), assume that a function f : V → Y satisfies the
condition f(0) = 0 and the inequality (3.2) for all x1, x2, . . . , xn ∈ V \ {0}. If there exists a constant
0 < L < 1 such that

Lϕ(nx1, nx2, . . . , nxn) ≥ n2ϕ(x1, x2, . . . , xn) (3.17)
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for all x1, x2, . . . , xn ∈ V \ {0}, then there exists a unique function F : V → Y such that
DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \ {0} and

∥
∥f(x) − F(x)∥∥ ≤ L

2n2(1 − L)ψ(x) (3.18)

for all x ∈ V \ {0}, where ψ is defined by (3.5). In particular, F is represented by

F(x) = lim
m→∞

(
nm

2

(

f

(
x

nm

)

− f
(

− x

nm

))

+
n2m

2

(

f

(
x

nm

)

+ f
(

− x

nm

)))

(3.19)

for all x ∈ V .

Proof. Let S and d be defined as in the proof of Theorem 3.1. Then (S, d) is a complete
generalized metric space. We now consider the operator J : S → S defined by

Jg(x) :=
n

2

(

g

(
x

n

)

− g
(

−x
n

))

+
n2

2

(

g

(
x

n

)

+ g
(

−x
n

))

(3.20)

for all g ∈ S and x ∈ V .
Notice that

Jmg(x) =
nm

2

(

g

(
x

nm

)

− g
(

− x

nm

))

+
n2m

2

(

g

(
x

nm

)

+ g
(

− x

nm

))

(3.21)

for all x ∈ V andm ∈ N.
Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ K. By the

definition of d, together with (3.5) and (3.17), we have

∥
∥Jg(x) − Jh(x)∥∥ ≤ n2 + n

2

∥
∥
∥
∥g

(
x

n

)

− h
(
x

n

)∥
∥
∥
∥ +

n2 − n
2

∥
∥
∥
∥g

(

−x
n

)

− h
(

−x
n

)∥
∥
∥
∥

≤ n2Kψ
(
x

n

)

≤ LKψ(x)

(3.22)

for all x ∈ V \ {0}. Thus, we get

d
(
Jg, Jh

) ≤ Ld(g, h) (3.23)

for any g, h ∈ S. That is, J is a strict contraction with the Lipschitz constant L.
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Moreover, it follows from (3.2), (3.5), and (3.17) that

∥
∥f(x) − Jf(x)∥∥ =

∥
∥
∥
∥
1
2
Df

(
x

n
,
x

n
, . . . ,

x

n

)∥
∥
∥
∥

≤ 1
2
ϕ

(
x

n
,
x

n
, . . . ,

x

n

)

≤ L

2n2
ϕ(x, x, . . . , x)

≤ L

2n2
ψ(x)

(3.24)

for all x ∈ V \ {0}, which implies that d(f, Jf) ≤ L/2n2 < ∞. Therefore, according to
Theorem 2.1, the sequence {Jmf} converges to the unique “fixed point” F of J in the set
T = {g ∈ S | d(f, g) <∞} and F is represented by (3.19). In view of Theorem 2.1, we have

d
(
f, F
) ≤ 1

1 − Ld
(
f, Jf

) ≤ L

2n2(1 − L) . (3.25)

Hence, the inequality (3.18) is true.
In a similar way presented in the proof of Theorem 3.1, it follows from (3.2), (3.17),

and (3.19) that

‖DF(x1, x2, . . . , xn)‖ = lim
m→∞

∥
∥
∥
∥
∥

nm

2

(

Df

(
x1
nm

,
x2
nm

, . . . ,
xn
nm

)

−Df
(

− x1
nm

,− x2
nm

, . . . ,− xn
nm

))

+
n2m

2

(

Df

(
x1
nm

,
x2
nm

, . . . ,
xn
nm

)

+Df
(

− x1
nm

,− x2
nm

, . . . ,− xn
nm

))∥∥
∥
∥
∥

≤ lim
m→∞

n2m + nm

2

(

ϕ

(
x1
nm

,
x2
nm

, . . . ,
xn
nm

)

+ ϕ
(

− x1
nm

,− x2
nm

, . . . ,− xn
nm

))

= 0
(3.26)

for all x1, x2, . . . , xn ∈ V \ {0}.

We can prove the following corollary by a similar way as we did in the proof of
Corollary 3.2. We omit the proof.

Corollary 3.4. Let ϕ : V n → [0,∞) be a given function such that ϕ(x1, x2, . . . , xn) =
ϕ(−x1,−x2, . . . ,−xn) for all x1, x2, . . . , xn ∈ V . Assume that a function f : V → Y satisfies f(0) = 0
and the inequality (3.2) for all x1, x2, . . . , xn ∈ V . If there exists a constant 0 < L < 1 such that ϕ has
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the property (3.17) for all x1, x2, . . . , xn ∈ V , then there exists a unique quadratic-additive function
F : V → Y such that

∥
∥f(x) − F(x)∥∥ ≤ L

2n2(1 − L)ϕ(x, x, . . . , x) (3.27)

for all x ∈ V .

4. Applications

For a given function f : V → Y , we will use the following abbreviation:

Af
(
x, y
)
:= f
(
x + y

) − f(x) − f(y) (4.1)

for all x, y ∈ V .

Corollary 4.1. Let fk : V → Y be functions for which fk(0) = 0 and there exist functions φk :
V 2 → [0,∞) such that

∥
∥Afk

(
x, y
)∥
∥ ≤ φk

(
x, y
)

(4.2)

for all x, y ∈ V and k ∈ {1, 2}. If there exists a constant 0 < L < 1 such that

φ1
(
nx, ny

) ≤ nLφ1
(
x, y
)
, (4.3)

n2φ2
(
x, y
) ≤ Lφ2

(
nx, ny

)
, (4.4)

and φk(x, y) = φk(−x,−y) for all x, y ∈ V and k ∈ {1, 2}, then there exist additive functions
Fk : V → Y such that

∥
∥f1(x) − F1(x)

∥
∥ ≤ Φ1(x)

2n(1 − L) , (4.5)

∥
∥f2(x) − F2(x)

∥
∥ ≤ LΦ2(x)

2n2(1 − L) , (4.6)

for all x ∈ V \ {0}, where Φk : V → Y are defined by

Φk(x) := n(n − 1)φk(x,−x) + 2
n−1∑

j=1

φk
(
jx, x

)
(4.7)
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for all x ∈ V and k ∈ {1, 2}. In particular, the functions F1 and F2 are represented by

F1(x) = lim
m→∞

f1(nmx)
nm

, (4.8)

F2(x) = lim
m→∞

nmf2

(
x

nm

)

(4.9)

for all x ∈ V .

Proof. By a long manipulation, we obtain

Dfk(x1, x2, . . . , xn) =
∑

1≤i,j≤n, i /= j
Afk
(
xi,−xj

)
+ 2

n−1∑

j=1

Afk

(
j∑

i=1

xi, xj+1

)

(4.10)

for all x1, x2, . . . , xn ∈ V and k ∈ {1, 2}. If we put

ϕk(x1, x2, . . . , xn) :=
∑

1≤i,j≤n, i /= j
φk
(
xi,−xj

)
+ 2

n−1∑

j=1

φk

(
j∑

i=1

xi, xj+1

)

(4.11)

for all x1, x2, . . . , xn ∈ V and k ∈ {1, 2}, then it follows from (4.2) and (4.10) that

∥
∥Dfk(x1, x2, . . . , xn)

∥
∥ ≤ ϕk(x1, x2, . . . , xn) (4.12)

for all x1, x2, . . . , xn ∈ V and k ∈ {1, 2}. By (4.3) and (4.4), we know that ϕ1 and ϕ2 satisfy
(3.3) and (3.17), respectively. Furthermore, ϕk(x1, x2, . . . , xn) = ϕk(−x1,−x2, . . . ,−xn) for all
x1, x2, . . . , xn ∈ V and k ∈ {1, 2}.

Therefore, according to Corollary 3.2, there exists a unique quadratic-additive function
F1 : V → Y satisfying (4.5) and F1 is represented by (3.6). By (4.2) and (4.3), we see

lim
m→∞

∥
∥
∥
∥
f1(nmx) + f1(−nmx)

2nm

∥
∥
∥
∥ = lim

m→∞

∥
∥
∥
∥
f1(nmx) + f1(−nmx) − f1(0)

2nm

∥
∥
∥
∥

= lim
m→∞

1
2nm

∥
∥Af1(nmx,−nmx)

∥
∥

≤ lim
m→∞

1
2nm

φ1(nmx,−nmx)

≤ lim
m→∞

Lm

2
φ1(x,−x)

= 0,

lim
m→∞

∥
∥
∥
∥
f1(nmx) + f1(−nmx)

2n2m

∥
∥
∥
∥ ≤ lim

m→∞
Lm

2nm
φ1(x,−x) = 0

(4.13)

for all x ∈ V . From these and (3.6), we get (4.8).
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Moreover, we have

∥
∥
∥
∥
∥

Af1
(
nmx, nmy

)

nm

∥
∥
∥
∥
∥
≤ φ1

(
nmx, nmy

)

nm
≤ Lmφ1

(
x, y
)

(4.14)

for all x, y ∈ V . Taking the limit asm → ∞ in the aforementioned inequality, we get

AF1
(
x, y
)
= 0 (4.15)

for all x, y ∈ V .
Now, according to Corollary 3.4, there exists a unique function F2 : V → Y satisfying

(4.6) and F2 is represented by (3.19). Due to (4.2) and (4.4), we get

lim
m→∞

n2m

2

∥
∥
∥
∥f2

(
x

nm

)

+ f2
(

− x

nm

)∥
∥
∥
∥ = lim

m→∞
n2m

2

∥
∥
∥
∥Af2

(
x

nm
,− x

nm

)∥
∥
∥
∥

≤ lim
m→∞

n2m

2
φ2

(
x

nm
,− x

nm

)

≤ lim
m→∞

Lm

2
φ2(x,−x)

= 0

(4.16)

as well as

lim
m→∞

nm

2

∥
∥
∥
∥f2

(
x

nm

)

+ f2
(

− x

nm

)∥
∥
∥
∥ ≤ lim

m→∞
Lm

2nm
φ2(x,−x) = 0 (4.17)

for all x ∈ V . From these and (3.19), we get (4.9).
Moreover, we have

∥
∥
∥
∥n

mAf2

(
x

nm
,
y

nm

)∥
∥
∥
∥ ≤ nmφ2

(
x

nm
,
y

nm

)

≤ Lm

nm
φ2
(
x, y
)

(4.18)

for all x, y ∈ V . Taking the limit asm → ∞ in the aforementioned inequality, we get

AF2
(
x, y
)
= 0 (4.19)

for all x, y ∈ V .

Corollary 4.2. Let X be a normed space and p ∈ (−∞, 1) ∪ (2,∞). If a function f : X → Y satisfies
f(0) = 0 and the inequality

∥
∥Df(x1, x2, . . . , xn)

∥
∥ ≤ θ(‖x1‖p + ‖x2‖p + · · · + ‖xn‖p

)
(4.20)
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for all x1, x2, . . . , xn ∈ X \ {0} and for some θ ≥ 0, then there exists a unique function F : X → Y
such that DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ X \ {0} and

∥
∥f(x) − F(x)∥∥ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n + 1)θ‖x‖p
2(n − np) if p < 1,

nθ‖x‖p
np − n2 if p > 2

(4.21)

for all x ∈ X \ {0}.

Proof. If we put

ϕ(x1, x2, . . . , xn) := θ
(‖x1‖p + ‖x2‖p + · · · + ‖xn‖p

)
(4.22)

for all x1, x2, . . . , xn ∈ X \ {0} and

L :=

{
np−1 if p < 1,
n2−p if p > 2,

(4.23)

then our assertions follow from Theorems 3.1 and 3.3.

Corollary 4.3. LetX be a normed space. If a function f : X → Y satisfies f(0) = 0 and the inequality

∥
∥Df(x1, x2, . . . , xn)

∥
∥ ≤ θ

∑

1≤i≤n, xi /= 0

‖xi‖p (4.24)

for all x1, x2, . . . , xn ∈ X and for some θ ≥ 0 and p ∈ (−∞, 1) ∪ (2,∞), then there exists a unique
quadratic-additive function F : X → Y such that

∥
∥f(x) − F(x)∥∥ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nθ‖x‖p
2(n − np) if p < 1,

nθ‖x‖p
2(np − n2) if p > 2

(4.25)

for all x ∈ X \ {0}. In particular, if p < 0, then f is a quadratic-additive function.

Proof. This corollary follows from Corollaries 3.2 and 3.4 by putting

ϕ(x1, x2, . . . , xn) := θ
∑

1≤i≤n, xi /= 0

‖xi‖p (4.26)

for all x1, x2, . . . , xn ∈ X with L defined in (4.23).
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Corollary 4.4. LetX be a normed space and let p1, p2, . . . , pn be real constants with p1+p2+ · · ·+pn ∈
(−∞, 1) ∪ (2,∞). If a function f : X → Y satisfies f(0) = 0 and the inequality

∥
∥Df(x1, x2, . . . , xn)

∥
∥ ≤ θ‖x1‖p1‖x2‖p2 · · · ‖xn‖pn (4.27)

for all x1, x2, . . . , xn ∈ X \ {0}, then there exists a unique function F : X → Y such that
DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ X \ {0} and

∥
∥f(x) − F(x)∥∥ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n + 1)θ‖x‖p
2n(n − np) if p < 1,

θ‖x‖p
np − n2 if p > 2

(4.28)

for all x ∈ X \ {0}, where p := p1 + p2 + · · · + pn.

Proof. If we put

ϕ(x1, x2, . . . , xn) := θ‖x1‖p1‖x2‖p2 · · · ‖xn‖pn (4.29)

for all x1, x2, . . . , xn ∈ X \ {0} and L is defined in (4.23), then our assertion follows from
Theorems 3.1 and 3.3.
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