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A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position
control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC),
which is insensitive to uncertainties and load disturbances, is studied widely in the application
of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on
the integer-order integration or differentiation of the state variables, while in this proposed robust
FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the
state variables. In fact, the conventional SMC method can be seen as a special case of the proposed
FOSMCmethod. The performance and robustness of the proposedmethod are analyzed and tested
for nonlinear load torque disturbances, and simulation results show that the proposed algorithm
is more robust and effective than the conventional SMC method.

1. Introduction

Permanent magnet synchronous motor (PMSM) has many applications in industries due
to its superior features such as compact structure, high efficiency, high torque to inertia
ratio, and high power density [1]. To get fast four-quadrant operation, good acceleration,
and smooth starting, the field-oriented control or vector control is used in the design of
PMSM drives [1–4]. However, the PMSM is a typical high nonlinear, multivariable coupled
system, and its performance is sensitive to external load disturbances, parameter changes in
plant, and unmodeled and nonlinear dynamics. To achieve good dynamic response, some
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robust control strategies such as nonlinear control [5, 6], adaptive control [7, 8], H∞ control
[9–11], and sliding mode control (SMC) [12–18] have been developed.

The SMC is a powerful nonlinear control technique and has been widely used for
speed and position control of PMSM system, because it provides a fast dynamic response and
is insensitive to external load disturbances and parameter variations. In [14], a fuzzy sliding
mode controller was proposed for the speed and position control of PMSM. In [15], a
hybrid controller (HC) which consists of a parallel connected sliding mode controller and
a neurofuzzy controller was proposed for the speed control of PMSM. In [16], a robust
wavelet-neural-network sliding mode controller was proposed which can achieve favourable
decoupling control and high-precision speed tracking performance of PMSM. The design of
the SMCmainly contains two steps: the first step is to select the sliding surface, which is usu-
ally the linear manifold of the state variables and can guarantee the asymptotic stability; the
second step is to determine the control output, which drives the system state to the designed
sliding surface and constrains the state to the surface subsequently. Usually, the design of
sliding surface for a PMSM is limited to integer order, which means that the sliding surface
is constructed by the integer-order integration or differentiation of the state variables.

Fractional calculus has a 300-year-old history, and for a long time, it was considered
as a pure theoretical subject with nearly no applications. In recent decades, not only the
theory of fractional-order calculus is developed greatly, but also the application of fractional
controller attracts increasing attention due to the higher degree of freedom provided [19–36].
In [33] the fractional-order adaptation law for integer-order sliding mode control is studied
and applied in the 2DOF robot. In [34], the synchronization of chaotic and uncertain Duffing-
Holmes system has been done using the sliding mode control strategy and fractional order
mathematics. In [35], a robust fractional-order proportion-plus-differential (FOPD) controller
for the control of PMSM was proposed. In control practice, it is useful to consider the
fractional-order controller design for an integer-order plant. This is due to the fact that the
plant model may have already been obtained as an integer-order model in classical sense. In
most cases, our objective of using fractional calculus is to apply the fractional-order control
(FOC) to enhance the system control performance.

This paper applies the fractional calculus into the sliding surface design and proposes
a robust fractional-order sliding mode controller (FOSMC) for the position control of a
PMSM. The rest of this paper is organized as follows. In Section 2, the fractional-order cal-
culus operation is introduced. In Section 3, the mathematical model of PMSM is given. In
Section 4, the conventional integer-order SMC for PMSM is reviewed. In Section 5, the
FOSMC method for position control of PMSM is derived. In Section 6, the robustness of
the proposed FOSMC method is analyzed. In Section 7, the effectiveness of the proposed
algorithm is illustrated through numerical examples and compared with the conventional
integer-order SMC. In Section 8, the guidance for parameters selection and design is given.
Finally, conclusions are presented in Section 9.

2. Fractional Calculus

Fractional calculus has been known since the development of the integer-order calculus, but
for a long time, it has been considered as a sole mathematical problem. In recent decades,
fractional calculus has become an interesting topic among system analyses and control fields.
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Fractional calculus is a generalization of integer-order integration and differentiation
to non-integer-order ones. Let symbol aDλ

t denote the fractional-order fundamental operator,
defined as follows [20, 21]:

Dλ � aD
λ
t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dλ

dtλ
R(λ) > 0,

1 R(λ) = 0,
∫ t
a (dτ)

−λ R(λ) < 0,

(2.1)

where a and t are the limits of the operation, λ is the order of the operation, and generally
λ ∈ R and λ can be a complex number.

The twomost used definitions for the general fractional differentiation and integration
are the Grunwald-Letnikov (GL) definition [22] and the Riemann-Liouville (RL) definition
[23]. The GL is given by

aD
λ
t f(t) = lim

h→ 0
h−λ

[(t−a)/h]∑

j=0
(−1)j

(
λ
j

)

f
(
t − jh), (2.2)

where [·]means the integer part.
The RL definition is given as

aD
λ
t f(t) =

1
Γ(n − λ)

dn

dtn

∫ t

a

f(τ)

(t − τ)λ−n+1
dτ, (2.3)

where n − 1 < λ < n, and Γ(·) is the Gamma function.
Having zero initial conditions, the Laplace transformation of the RL definition for a

fractional-order λ is given by

L
{

aD
λ
t f(t)

}
= sλF(s), (2.4)

where F(s) is the Laplace transformation of f(t).
Distinctly, the fractional-order operator has more degrees of freedom than that with

integer order. It is likely that a better performance can be obtained with the proper choice of
order.

3. Mathematical Model of PMSM

The PMSM is composed of a stator and a rotor; the rotor is made by a permanent magnet,
and the stator has 3-phase windings which are distributed sinusoidally. To get the model of
the PMSM, some assumptions are made: (a) the eddy current and hysteresis losses are ignored;
(b) magnetic saturation is neglected; (c) no damp winding is on the rotor; (d) the induced EMF is
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sinusoidal. Under the above assumptions, themathematics model of a PMSM can be described
in the rotor rotating reference frame as follows [2]:

ud = Rid −ωeLqiq + Ld
did
dt

,

uq = Riq +ωeLdid +ωeψf + Lq
diq

dt
.

(3.1)

In the above equations, ud and uq are voltages in the d- and q-axes, id and iq are currents in
the d- and q-axes, Ld and Lq are inductances in the d- and q-axes, R is the stator resistance,
ωe is the electrical angular velocity, and ψf is the flux linkage of the permanent magnet.

The corresponding electromagnetic torque is as follows:

Te = P
[
ψf iq +

(
Ld − Lq

)
idiq
]
, (3.2)

where Te is the electromagnetic torque, and P is the pole number of the rotor.
For surface PMSM, we have Ld = Lq; thus, the electromagnetic torque equation is

rewritten as follows:

Te = Pψf iq. (3.3)

The associated mechanical equation is as follows:

Te − TL = J
dωm

dt
+ Bωm, (3.4)

where J is the motor moment inertia constant, TL is the external load torque, B is the viscous
friction coefficient, and ωm is the rotor angular speed, and it satisfies

ωe = Pωm. (3.5)

In this paper, the id = 0 decoupled control method is applied, which means that there is
no demagnetization effect, and the electromagnetic torque and the armature current are the
linear relationship.

4. Review of Conventional SMC

4.1. State Equations of PMSM System

The object of the designed controller is to make the position θm strictly follow its desired
signal θref. Let

x1 = θref − θm,
x2 = ẋ1 = θ̇ref − θ̇m,

(4.1)
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where x1 and x2 are the state error variables of the PMSM system,

θ̇m = ωm,

θ̈m = ω̇m.
(4.2)

From (4.1) and (4.2), it is obvious that

ẋ1 = x2 = θ̇ref − θ̇m,
ẋ2 = θ̈ref − θ̈m = θ̈ref − ω̇m.

(4.3)

Substituting (3.3) and (3.4) into (4.3), we have

ẋ2 = θ̈ref − 1
J

[
Pψf iq − TL − Bωm

]
. (4.4)

Then the state-space equation of the PMSM control system can be written as follows:

[
ẋ1
ẋ2

]

=
[
0 1
0 0

][
x1
x2

]

+
[
0
E

]

U +
[
0
F

]

, (4.5)

where

E = −Pψf
J

, F = θ̈ref +
TL + Bωm

J
, U = iq. (4.6)

4.2. The Conventional Integer-Order SMC

The design of the SMC usually consists of two steps. Firstly, the sliding surface is designed
such that the system motion on the sliding mode can satisfy the design specifications; sec-
ondly, a control law is designed to drive the system state to the designed sliding surface and
constrains the state to the surface subsequently.

The conventional integer-order sliding surface S is designed as follows [4]:

S = cx1 + x2, (4.7)

where c is set as a positive constant, and the derivative of (4.7) is as follows:

Ṡ = cẋ1 + ẋ2. (4.8)

Substituting (4.3) and (4.4) into (4.8), we have

Ṡ = cx2 + θ̈ref − 1
J

[
Pψf iq − TL − Bωm

]
. (4.9)
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When TL = 0, and forcing Ṡ = 0, then the control output is obtained as follows:

Ueq = iq =
J

Pψf

(

cx2 + θ̈ref +
1
J
Bωm

)

. (4.10)

Here,Ueq is the equivalent control, which keeps the state variables on the sliding surface.
When the system has immeasurable disturbances with upper limit TL-max, then the

final control output can be given as

U = iq = Ueq + k sgn(S) =
J

Pψf

(

cx2 + θ̈ref +
1
J
Bωm

)

+ k sgn(S), (4.11)

where k is a positive switch gain, and sgn(·) denotes the sign function defined as

sgn(S) =

⎧
⎪⎪⎨

⎪⎪⎩

1 S > 0,
0 S = 0,
−1 S < 0.

(4.12)

4.3. Stability Analysis

The Lyapunov function is defined as

V =
1
2
S2. (4.13)

According to the Lyapunov stability theorem, the sliding surface reaching condition is SṠ < 0.
Taking the derivative of (4.13) and substituting (4.11) into (4.9), we have

V̇ = SṠ = S
[
TL-max

J
− Pψf

J
k sgn(S)

]

. (4.14)

From (4.14), it is obvious that when

k >
TL-max

Pψf
, (4.15)

then SṠ < 0, and the system is globally and asymptotically stable; S and Ṡwill approach zero
in a finite time duration.

5. Proposed Fractional-Order SMC (FOSMC)

In this section, the fractional-order sliding mode controller (FOSMC) for the position control
of PMSM will be proposed.
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5.1. Design of Fractional-Order Sliding Surface

First, the fractional-order sliding surface is designed as follows:

S = kpx1 + kdDμx1 = kpx1 + kdDμ−1x2, (5.1)

where kp and kd are set as positive constants, the functionDμ is defined as (2.1), and 0 < μ < 1.
From (5.1), it can be seen that the fractional-order differentiation of x1 is used to construct the
sliding surface. Meanwhile, as −1 < μ − 1 < 0, the operator Dμ−1x2 in (5.1), which means the
(μ−1)th-order integration of x2, can be seen as a low-pass filter and can reduce the amplitude
of high-frequency fluctuations of x2. In this sense, the fractional-order sliding surface defined
by (5.1) is more smooth compared with the conventional sliding surface shown as (4.7).

5.2. Design of FOSMC

Taking the time derivative on both sides of (5.1) yields

Ṡ = kpẋ1 + kdDμ+1x1 = kpx2 + kdDμ−1ẋ2. (5.2)

Substituting (4.4) into (5.2), we have

Ṡ = kpx2 + kdDμ−1ẋ2 = kpx2 + kdDμ−1
{

θ̈ref − 1
J

[
Pψf iq − TL − Bωm

]
}

, (5.3)

when TL = 0, and forcing Ṡ = 0, then the control output can be obtained as follows:

Dμ−1
{

θ̈ref − 1
J

[
Pψf iq − Bωm

]
}

= −kp
kd
x2. (5.4)

Taking the (1 − μ)th-order derivative on both sides of (5.4) will result in

θ̈ref − 1
J

[
Pψf iq − Bωm

]
= D1−μ

(

−kp
kd
x2

)

. (5.5)

From (5.5), the equivalent control can be obtained as

Ueq = iq =
J

Pψf

(
kp

kd
D1−μx2 + θ̈ref +

1
J
Bωm

)

. (5.6)

Similar to (4.11), when the system has load disturbances with upper limit TL-max, then the
control output of FOSMC method can be given as

U = iq = Ueq + k sgn(S) =
J

Pψf

(
kp

kd
D1−μx2 + θ̈ref +

1
J
Bωm

)

+ k sgn(S), (5.7)

where μ is called as the order of FOSMC method. If we set kp = c, kd = 1, and let A = Pψf/J ,
then the block diagram of the proposed FOSMC method can be shown in Figure 1.
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e

θref

ωm

c

du

dtu

d

dt

x2

d2

dt2

B

J

+
+

kp

kd

d1−μ

dt1−μ

k

+
+
+

1
A

+
+

iq

(x1)

Figure 1: Block diagram of the proposed FOSMC method.

5.3. Stability Analysis of FOSMC with Sign Function

When the sign function is used in the control output, then substituting (5.7) into (5.3), we
have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sgn(S)

)

. (5.8)

From (5.8), we can get the following.

(a) When S < 0, then sgn(S) = −1, and we have

δ1 �
(
TL-max

J
− Pψf

J
k sgn(S)

)

=
(
TL-max

J
+
Pψf

J
k

)

> 0. (5.9)

So the (μ − 1)th-order fractional integration of δ1 is higher than zero, that is,

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sgn(S)

)

> 0, (5.10)

which implies that the derivative of the Lyapunov function V̇ = SṠ < 0.

(b)When S > 0, then sgn(S) = 1, and we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k

)

. (5.11)

From (5.11), it is clear that when

δ2 � TL-max

J
− Pψf

J
k < 0, (5.12)

that is,

k >
TL-max

Pψf
, (5.13)
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then the (μ − 1)th-order fractional integration of δ2 is lower than zero, that is, Ṡ < 0, which
means that V̇ = SṠ < 0.

From (5.8) to (5.13), it is obvious that when

k >
TL-max

Pψf
, (5.14)

then the system is globally stable; S and Ṡwill approach zero in a finite time duration.
Moreover, from (5.8), it can be seen that because of the integration effect by the

operator Dμ−1(·), the variation amplitude of Ṡ in (5.8) is smaller than that of Ṡ in (4.14),
which means that when the sign function is used, the sliding surface of the proposed FOSMC
method has smaller chattering amplitude than the sliding surface of the conventional SMC
method.

5.4. Stability Analysis of FOSMC with Saturation Function

From (5.7), it can be seen that the sign function is involved in the output, so the chattering
phenomenon will be caused. In this paper, a saturation function is adopted to reduce the
chattering problem, described as follows:

sat(S) =

⎧
⎪⎪⎨

⎪⎪⎩

1 S > ε,
S

ε
−ε ≤ S ≤ ε,

−1 S < −ε,
(5.15)

where ε > 0 denotes the thickness of the boundary layer.
When the saturation function is used, the control output can be rewritten as

U = iq = Ueq + k sat(S) =
J

Pψf

(
kp

kd
D1−μx2 + θ̈ref +

1
J
Bωm

)

+ k sat(S), (5.16)

then, similar to (5.8), substituting (5.16) into (5.3), we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sat(S)

)

. (5.17)

From (5.17), the following is clear.

(a) When S < 0, then sat(S) < 0,

δ3 �
(
TL-max

J
− Pψf

J
k sat(S)

)

> 0. (5.18)
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So the (μ − 1)th-order fractional integration of δ3 is higher than zero, that is,

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sat(S)

)

> 0, (5.19)

which means that the derivative of the Lyapunov function V̇ = SṠ < 0.

(b) When S > ε, then sat(S) = 1, and we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k

)

. (5.20)

Similar with (5.11)–(5.13), when

k >
TL-max

Pψf
, (5.21)

then Ṡ < 0, which means that V̇ = SṠ < 0.

(c)When 0 < S ≤ ε, then sat(S) = S/ε, and we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k
S

ε

)

. (5.22)

From (5.22), it can be seen that when

δ4 �
(
TL-max

J
− Pψf

J
k
S

ε

)

< 0, (5.23)

that is,

k >
TL-max

Pψf

ε

S
≥ TL-max

Pψf
, (5.24)

then Ṡ < 0. Here, it is assumed that a load disturbance with magnitude TL-max is exerted on
the system. From (5.24), it can be seen that when the value of S is very small, then ε/S � 1,
so the condition for Ṡ < 0 is that the value of k is much higher than TL-max/Pψf , but in fact
the parameter k will not be given a so high value. Here, it is assumed that k is assigned a
minimum value which meets condition (5.21). Then the sliding surface S will undergo the
following stages.

(i) In the period 0 < S� ε, we have Ṡ� 0, so the system is unstable, meanwhile S will
rapidly arrive at the peak value S∗ (where S∗ > ε ) in a finite time with large initial
positive velocity.

(ii) As S = S∗ > ε, then from (5.24), it can be seen that the value of k satisfies condition
(5.21), so Ṡ < 0 and V̇ = SṠ < 0, that is, the system is globally stable again. In this
moment, because S > 0 and Ṡ < 0, then S will decrease with negative velocity.
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(iii) When S decreases until S < ε, then from (5.24), it can be seen that the value of k
does not satisfy condition (5.21) any longer, which means that Ṡ > 0, then S starts
to increase.

(iv) When S increases until S > ε, then similar to (ii), we have S > 0 and Ṡ < 0, then S
will decrease with negative velocity.

(v) After several oscillations and adjustments between stages (iii) and (iv), the sliding
surface function Swill finally maintain on the point of S = ε, and the system is in a
stable state with Ṡ = 0.

When the system is in the stable state described by (v), then from (4.7) or (5.1), it can
be seen that x2 = 0 or Dμx1 = 0, and the stable position error x1 can be estimated as follows:

S = cx1 = ε =⇒ x1 =
ε

c
(5.25)

or

S = kpx1 = ε =⇒ x1 =
ε

kp
. (5.26)

Generally, when the load disturbance is TL (TL < TL-max), then similar to the above analysis,
the stable position error x1 can be estimated as follows:

S = cx1 =
εTL
kPψf

=⇒ x1 =
εTL

ckPψf
(5.27)

or

S = kpx1 =
εTL
kPψf

=⇒ x1 =
εTL

kpkPψf
. (5.28)

With the maximum permissible position error x1 of the PMSM system, (5.26) or (5.28)will be
the constraint in designing the parameter ε and c or kp.

Remark 5.1. In the above analysis of parts (b) and (c), the integration effect of the operator
Dμ−1(·) is ignored temporarily. If the integration effect is considered, then the fractional-order
μ will decide the phase delay and variation magnitude of Ṡ. When μ is too small, especially
when μ = 0, then the operator Dμ−1(·) becomes a first-order integer integrator, and the long
time integration effect will lead to the largest phase delay and smallest variationmagnitude of
Ṡ, and the stable condition V̇ = SṠ < 0 may not be satisfied promptly, and so the system will
become unstable. When μ is too large, especially when μ = 1, then the operator Dμ−1(·) does
not have integration action, and Ṡ has zero-phase delay and the largest variation magnitude,
which are the same as the convention SMC method. When μ is selected as a proper value in
the range (0, 1), then the suitable phase delay of Ṡwill satisfy the stable condition V̇ = SṠ < 0,
and meanwhile, the appropriate variation magnitude of Ṡ will make the sliding surface S
change with small fluctuation, so a better control performance can be obtained.
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6. Robustness and Effectiveness Analysis of FOSMC

The robustness and effectiveness of the proposed FOSMC method will be analyzed in the
following two aspects.

6.1. Analysis of the Control Output

From the control output of the FOSMC method shown as (5.7) or (5.16), it can be seen that
two important terms are included.

(a) The term D1−μx2 denotes the (1 − μ)th-order differentiation of x2, so the fractional
dimension accelerating change rate of position error is contained in the output,
which means that the output of the FOSMCmethod is more sensitive to the change
rate of position error and can provide a prompt output.

(b) The other term is the sgn(S) in (5.7) or the sat(S) in (5.16), the former is a
high-frequency switching signal, and the latter is a relative smooth switch signal.
According to the sliding surface S defined by (5.1), it is clear that an (μ− 1)th-order
integrator for x2 is contained, that is, the proposed sliding surface S is more smooth
than the conventional sliding surface. In other words, by using the FOSMCmethod,
the chattering of sgn(S) in (5.7) is eliminated to some degree, and the term sat(S)
in (5.16) is more smooth.

6.2. Analysis of Stable Condition

With (5.8) and (5.17), it can be seen that when substituting the control output into the deri-
vative of fractional-order sliding surface S, we have

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sgn(S)

)

= kdDμ−1δ1 (6.1)

or

Ṡ = kdDμ−1
(
TL-max

J
− Pψf

J
k sat(S)

)

= kdDμ−1δ3. (6.2)

Here, the operator Dμ−1(·)means the fractional-order integration since 0 < μ < 1.
The following is assumed:

(i) the value of k is set as a constant which is satisfied with condition (5.14) or (5.21);

(ii) the system is in a reaching state (i.e., V̇ = SṠ < 0) or in a stable state (i.e., S =
0 or constant, and Ṡ = 0).

Then the following three cases will be discussed.
(a)When the system is in a reaching state and S > 0, Ṡ < 0, then

Ṡ = kdDμ−1δ1 < 0 =⇒ δ1 < 0 (6.3)



Abstract and Applied Analysis 13

or

Ṡ = kdDμ−1δ3 < 0 =⇒ δ3 < 0. (6.4)

If an instant load disturbance Tinstant which is greater than TL-max is applied on the system,
then from (6.1) or (6.2), it can be seen that in this moment δ1 > 0 or δ3 > 0, but because of the
integration effect by the fractional-order integration operator Dμ−1(·), the integration value
that is, Dμ−1(δ1) or Dμ−1(δ3), will not be greater than zero instantaneous, in other words the
system will remain stable for an extra short time.

While for the conventional SMCmethod, from (4.14), it can be seen that the derivative
of sliding surface S is

Ṡ =
[
TL-max

J
− Pψf

J
k sgn(S)

]

(6.5)

or

Ṡ =
[
TL-max

J
− Pψf

J
k sat(S)

]

. (6.6)

It is clear that when an instant load disturbance Tinstant (Tinstant > TL-max) is applied on the
system, then Ṡ < 0 immediately, and the system is also unstable at once.

(b)When the system is in a reaching state and S < 0, Ṡ > 0, then

Ṡ = kdDμ−1δ1 > 0 =⇒ δ1 > 0 (6.7)

or

Ṡ = kdDμ−1δ3 > 0 =⇒ δ3 > 0. (6.8)

Similar to the above analysis, when an instant negative load disturbance (i.e., an opposite
direction load disturbance) Tinstant which is smaller than (−TL-max) is applied on the system,
then from (6.1) or (6.2), it can be seen that in this moment δ1 > 0 or δ3 > 0, but because of the
integration effect by the operator Dμ−1(·), the integration value, that is, Dμ−1(δ1) or Dμ−1(δ3),
will not be smaller than zero instantaneously in other words, the system will continue to be
stable for an extra short time.

While for the conventional SMC method, it is clear that when an instant negative load
disturbance Tinstant (Tinstant < −TL-max) is exerted on the system, then according to (6.5) and
(6.6), it can be seen that Ṡ will be smaller than zero (i.e., Ṡ < 0) immediately, and thus, the
system is also unstable at once.

(c)When the system is in a stable state, that is, S = 0 or constant, and Ṡ = 0, then

Ṡ = kdDμ−1δ1 = 0 =⇒ δ1 = 0 (6.9)
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or

Ṡ = kdDμ−1δ3 = 0 =⇒ δ3 = 0. (6.10)

If an instant positive or negative load disturbance Tinstant is applied on the system, then from
(6.1) or (6.2), it is obvious that in this moment there is a step change for δ1 or δ3, but because
of the integration effect by the fractional-order integration operator Dμ−1(·), the integration
value, that is, Dμ−1(δ1) or Dμ−1(δ3), will not change greatly in a short time, which means that
the sliding surface S will change with smaller fluctuation comparing with the conventional
SMC method, so a better control performance is obtained.

In addition, when the load disturbance Tinstant is greater than TL-max, then the same
conclusions as those made from the above analysis of (a) and (b) can be obtained.

From the above analysis, it is obvious that the proposed FOSMC method is more
robust than the conventional SMC method.

7. Numerical Computation Examples and Simulation

7.1. Approximation of Fractional-Order Operator

The Matlab/Simulink is used to simulate the FOSMC control system. In the simulation,
a discrete-time finite-dimensional (z) transfer function is computed to approximate the
continuous-time fractional-order operator Dμ(·) by the IRID method [37], that is, dfod =
irid fod(u, Ts,N). In the simulation, the sampling frequency of FOSMC controller is 2KHz;
thus, in the IRID method, Ts = 0.0005 sec, and the approximation order isN = 5.

7.2. System Block and Configuration

The block diagram of the PMSM drive system using FOSMCmethod is shown in Figure 2, in
which the block “SMC” means the conventional integer-order SMC method, and the block
“FOSMC” is the proposed method, which is shown in Figure 1. The performance of the
proposed FOSMC is compared with that of the conventional SMC. The rotor of the PMSM
is the permanent magnet, and the flux linkage is constant. The specifications of the PMSM
are shown in Table 1.

As shown in Figure 2, the drive system has an outer loop of position controller based
on FOSMC method and an inner loop including two current controllers, that is, the q-axis
and d-axis stator current regulators, both of which are based on PI control algorithm with
sampling frequency of 10KHz, and the d-axis stator current command is set to zero. In the
block, ωref is the reference rotor speed in mechanical revolutions per minute, ω is the rotor
speed inmechanical revolutions per minute measured by encoder, and the space vector PWM
was used for the PWM generation.

For comparison, we first determine the optimal parameters of the conventional SMC
method, and then the corresponding parameters of the new proposed FOSMC method are
set similarely, that is, in Figure 2, the following parameters of SMC and FOSMC are set to be
the same, that is,

k = 3, kp = c = 100, kd = 1, ε = 1. (7.1)
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Figure 2: Block diagram of the PMSM position control system.
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Figure 3: Phase traces of the conventional SMC method and the proposed FOSMC method with saturation
function.

7.3. Simulation and Comparison

7.3.1. Simulation of Phase Trace

In this simulation, the phase traces by the conventional SMC method and the proposed
FOSMC method are simulated and compared. The given position reference is θref = π rad,
which is a step input with soft-start mode, and the order of the proposed FOSMC method is
μ = 0.6.

Figure 3 shows the simulation results of the phase traces by the conventional SMC
method and the proposed FOSMC method with saturation function. Figure 4 is similar to
Figure 3, and the only difference is that the saturation function is replaced by the sign function
in the two methods.
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Figure 4: Phase traces of the conventional SMC method and the proposed FOSMC method with sign
function.
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Figure 5: Sliding surfaces with saturation function and load disturbance of 2.5Nm at t = 0.5 s (μ = 0.6).

From Figure 3, it can be seen that the phase traces of bothmethods can reach the sliding
surface (S = 0) and arrive at the origin finally, but because of the fractional-order integration
effect (i.e., the term Dμ−1x2 in S), the phase trace of the proposed FOSMC method is more
smooth than that of the conventional SMCmethod; this alsomeans that the proposed FOSMC
has smaller speed vibration, which is consistent with the analysis of Section 5.1.

From Figure 4, it is obvious that the phase trace of the proposed FOSMC method is
more focused on the origin than that of the conventional SMC method, which means that the
proposed FOSMC has smaller speed error.

7.3.2. Simulation of Stability Condition

In this simulation, the stability condition will be tested. The position reference is step input
θref = π rad, the order of FOSMC is μ = 0.6, and other parameters are set as (7.1). From
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Figure 6: Position responses and error with saturation function and load disturbance of 2.5Nm at t = 0.5 s
(μ = 0.6).
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Figure 7: Sliding surfaces with saturation function and load disturbance of 2.6Nm at t = 0.5 s (μ = 0.6).

(5.13), (5.21), and Table 1, it can be calculated that the maximum load disturbance is TL-max =
2.568Nm. In each of the following cases, the conventional SMC method and the proposed
FOSMC method are executed.

Figures 5–8 are the time curves of sliding surface function S, position responses, and
position error, respectively. The saturation function is adopted, and different load disturbance
is applied at time t = 0.5 s.

In Figures 5 and 6, the load disturbance is 2.5Nm, and we can see that the system
controlled by SMC or FOSMC is stable, because the load disturbance is less than TL-max.
Meanwhile, from Figures 5 and 6(b), it can be seen that the stable value of sliding surface
function is S ≈ ε = 1, and the stable position error is x1 ≈ ε/c = 0.01, which are consistent
with the analysis of Section 5.4 and (5.26).
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Figure 8: Position responses and error with saturation function and load disturbance of 2.6Nm at t = 0.5 s
(μ = 0.6).
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Figure 9: Sliding surfaces with sign function and load disturbance of 2.3Nm at t = 0.5 s (μ = 0.6).

From Figure 5, one can see that when the external load is exerted on the system at
t = 0.5 s, the variation amplitude of the sliding surface by the FOSMCmethod is smaller than
that of the conventional SMC method, and consequently, the position error by the FOSMC
method is smaller than that by the conventional SMC method, just as shown by Figure 6(b).
The above two simulation results meet the analysis of Section 6.2(c).

In Figures 7 and 8, the load disturbance is 2.6Nm, and it is obvious that the system
controlled by SMC or FOSMCmethod is unstable, just because the load disturbance is greater
than TL-max. Moreover, an important result can be obtained from Figures 7 and 8, that is, when
the load disturbance is greater than TL-max, although the system is unstable any longer, the
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Figure 10: Position responses and error with sign function and load disturbance of 2.3Nm at t = 0.5 s
(μ = 0.6).
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Figure 11: Sliding surfaces with sign function and load disturbance of 2.5Nm at t = 0.5 s (μ = 0.6).

position error by the proposed FOSMCmethod is smaller than that by the conventional SMC
method, which is keeping with the analysis of Section 6.2.

Figures 9–14 are the time curves of sliding surface function S, position responses,
and position error, respectively, in which the sign function is adopted, and different load
disturbance is applied at t = 0.5 s.

In Figures 9 and 10, the load disturbance is 2.3Nm, and we can see that the system is
stable under the load disturbance, because the load disturbance is less than TL-max. Because of
the use of sign function, the chattering phenomenon exists in the sliding surface S, just as
shown in Figure 9. Meanwhile from Figures 9 and 10, two important results can be seen, that
is, (a) the chattering amplitude of the sliding surface S by the FOSMC method is smaller
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Figure 12: Position responses and error with sign function and load disturbance of 2.5Nm at t = 0.5 s
(μ = 0.6).
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Figure 13: Sliding surfaces with sign function and load disturbance of 2.6Nm at t = 0.5 s (μ = 0.6).

than that by the conventional SMC method; (b) the position error by the proposed FOSMC
method is also distinctly smaller than that by the conventional SMC method. The above two
results meet the analysis of Sections 5.3 and 6.1.

In Figures 11 and 12, the load disturbance is 2.5Nm, and it can be seen that the system
is critically stable after the load disturbance is applied, just because the load disturbance is
close to TL-max. And we also can see that the chattering amplitude of the sliding surface S
and the position error, by the FOSMC method, are also distinctly smaller than those by the
conventional SMC method, which meet the analysis of Sections 5.3 and 6.1.
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Figure 14: Position responses with sign function and load disturbance of 2.6Nm at t = 0.5 s (μ = 0.6).
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Figure 15: Position responses and velocity responses with load disturbances around t = 0.5 s and 1.0 s.

In Figures 13 and 14, the load disturbance is 2.6Nm, and it is clear that the system
driven by FOSMC or SMC method is unstable after the time 0.5 s, just because the load
disturbance is greater than TL-max. Meanwhile, although the system is unstable any longer,
the position error by the proposed FOSMC method is smaller than that by the conventional
SMC method, which is keeping with the analysis of Section 6.2.

All of the above simulation results show the correctness of the stability condition
shown by (5.13) or (5.21); meanwhile, the robustness analyses of Sections 5.3, 5.4, and 6 are
also verified.
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Figure 16: Results of the control outputs.

7.3.3. Simulation of Dynamic Position Response with Step Input Signal

In this simulation, the position reference is θref = π rad, the order of FOSMC is μ = 0.6, and
the saturation function is adopted. A step disturbance load of 3.1Nm is applied at t = 0.5 s and
withdrawn at t = 0.6 s, another step disturbance load of −3.1Nm is applied at t = 1.0 s and
withdrawn at t = 1.1 s. Figures 15(a) and 15(b) show the dynamic position and velocity
responses, respectively, of the conventional SMC method and the proposed FOSMC method
in the presence of the above disturbances load. Obviously, the position error by the proposed
FOSMC method is significantly smaller than that by the conventional SMC method; in other
words, the FOSMCmethod is of more robustness than the conventional SMC method, which
is in agreement with the analysis of Section 6.
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Figure 17: Position responses and error to sinusoidal input signal with load disturbances at t = 0.3 s and
0.75 s.
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Figure 20: Trapezoid reference input.
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Figure 21: Position error and error square with sine reference input (2.3Nm pulse disturbance, with
saturation function).

Figure 16(a) shows the control output iq between [0 s, 1.5 s], and the particular time
period b, c, and d in Figure 16(a) is zoomed in as shown by Figures 16(b), 16(c), and 16(d),
respectively. Figure 16(b) shows the control output iq between [0 s, 0.02 s], during which the
PMSMmotor just started; Figure 16(c) shows the control output iq between [0.195 s, 0.22 s] in
this time period, the position output reaches the desired reference value; Figure 16(d) shows
control output iq between [0.60 s, 0.66 s], in which the external disturbance load is withdrawn.
From Figures 16(b), 16(c), and 16(d), it can be seen that the control output iq of the proposed
FOSMC method is more smooth than that of the conventional SMC method; in other words,
the system chattering is eliminated to some degree by the FOSMC method.

7.3.4. Simulation of Dynamic Position Response with Sinusoidal Input Signal

In this simulation, the position reference is a sinusoidal trajectory with θref(t) = π sin(10t)rad,
the order of FOSMC is μ = 0.6, and the saturation function is used. A step disturbance load
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Table 1: PMSM specifications.

Features Values
Rated Voltage 300V
Maximum Speed (ωm) 2400 rpm
Number of Poles (P) 4
Phase Resistance (Rs) 2.46Ω
Winding Inductance (Ls) 4.233mh
Motor Inertia (J) 1.02 × 10−3 Kg·m2

Friction Coefficient (B) 1.0 × 10−4 N·m·s·rad−1

Rotor Flux Linkages ψf 0.214Wb
Torque (Te) 5.25Nm

Table 2: Controller Performance.

Controller Type Δe |Δe|2
SMC 0.8766 0.2899
FOSMC
μ = 0.35 575.6 90180
μ = 0.4 351.9 34470
μ = 0.45 0.4186 0.0669
μ = 0.5 0.2695 0.0413
μ = 0.55 0.3014 0.0409
μ = 0.6 0.328 0.0463
μ = 0.65 0.363 0.0549
μ = 0.7 0.4057 0.0675
μ = 0.75 0.4575 0.085
μ = 0.8 0.517 0.1078
μ = 0.85 0.5895 0.1384
μ = 0.9 0.6738 0.1781
μ = 0.95 0.7716 0.2292
μ = 0.99 0.8492 0.2745

of 3.1Nm is applied at t = 0.3 s and vanished at t = 0.35 s, and another step disturbance
load of −3.1Nm is applied at t = 0.75 s and vanished at t = 0.8 s. Figures 17(a) and 17(b)
show the position responses and position error, respectively. From the results, it is clear
that the dynamic tracking error of the proposed FOSMC method is smaller than that of the
conventional SMC method.

7.3.5. Controller Performance with Different Fractional Orders

We let the motor angle to track a sinusoidal trajectory θref(t) = π sin(10t)rad, and a pulse load
disturbance with 3.1Nm amplitude, 50% pulse width, and 100ms period is applied to the
PMSM the total running time is 5 seconds. Table 2 shows the controller performance of the
conventional SMC method and the proposed FOSMC method with different fractional-order
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Figure 22: Position error and error square with sine reference input (2.3Nm pulse disturbance, with sign
function).

μ, and the saturation function is adopted in both methods. In Table 2, the error Δe and error
square |Δe|2 are defined as follows:

Δe =
∫

|θref(t) − θm(t)|dt,

|Δe|2 =
∫

|θref(t) − θm(t)|2dt.
(7.2)

From Table 2, it can be seen that when the fractional order of the proposed FOSMC method
is set to small value, the performance is poor, but once the order is got value between μ ∈
[0.45, 0.95], then the position error and error square of the proposed FOSMC method are
significantly smaller than those of conventional SMC method, especially when μ ∈ [0.5, 0.6].
This also means that the control performance of the FOSMC method can be improved by
selecting a proper fractional-order μ and designing a corresponding fractional-order sliding
surface.

7.3.6. Controller Performance with Different Fractional-Order and Different
Reference Input

In this simulation, we check the effectiveness of the proposed FOSMC method to another
position reference input and find the general regularity between the control performance and
the different fractional-order μ. Three position reference inputs, that is, sine wave, triangle
wave, and trapezoid wave, are considered and, respectively, shown in Figures 18, 19, and 20.
A pulse load disturbance with 50% pulse width, 100ms period, and alternative amplitude of
3.1Nm and 2.3Nm is applied to the PMSM. The total running time is 5 seconds.

In the simulation, for each position reference input, the position error and error square
of the proposed FOSMCmethod and the convention SMCmethod are regarded as the control
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Figure 23: Position error and error square with sine reference input (3.1Nm pulse disturbance, with
saturation function).
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Figure 24: Position error and error square with sine reference input (3.1Nm pulse disturbance, with sign
function).

performance. The amplitude of the pulse load disturbance is set as 2.3Nm and 3.1Nm,
respectively, which means that the system is stable under the load disturbance of 2.3Nm
and unstable under the load disturbance of 3.1Nm. Moreover, under the two kinds of load
amplitude, the saturation function and sign function are considered, respectively.

For comparison convenience, in Figures 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and
32, the red dot line represents the error or error square obtained by the conventional SMC
method, and it has no relationship with the fractional-order μ, while the green solid line is
the error and error square got by the proposed FOSMCmethodwith different fractional-order
μ.
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Figure 25: Position error and error square with triangle reference input (2.3Nm pulse disturbance, with
saturation function).

0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

E
rr

or

SMC
FOSMC

Fractional order (μ)

(a) Position error

0.2 0.4 0.6 0.8 1
0.02

0.04

0.06

0.08

0.1

E
rr

or
 s

qu
ar

e 

SMC
FOSMC

Fractional order (μ)

(b) Position error square

Figure 26: Position error and error square with triangle reference input (2.3Nm pulse disturbance, with
sign function).

From Figures 21–32, it is clear that when μ ∈ (0, μ∗), then the error or error square
of the FOSMC method is bigger than that of the conventional SMC method, but when μ ∈
[μ∗, 1), the error or error square of the FOSMC method is significantly smaller than that of
the conventional SMCmethod. Moreover, from Figures 21–32, one can see that the value of μ∗

is around 0.5; this also means that when the fractional-order μ ∈ [0.5, 1), then the proposed
FOSMC method outperforms the conventional SMC method.

In fact, from the simulation results shown from Figures 21–32, it can be seen that the
best selection range for μ is [0.5, 0.6].
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Figure 27: Position error and error square with triangle reference input (3.1Nm pulse disturbance, with
saturation function).
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Figure 28: Position error and error square with triangle reference input (3.1Nm pulse disturbance, with
sign function).

8. Guidance for Parameters Selection and Design of FOSMC

In the proposed FOSMC method, there are five parameters, that is, kp, kd, k, ε, and μ, which
need to be designed. From the above analyses and numerical simulation results, one can
select and design the five parameters through the following procedures:

(i) select a value in the range [0.5, 0.6] or [0.5, 1) for the fractional-order μ;

(ii) estimate the maximum load disturbance TL-max;

(iii) according to the TL-max and (5.21), compute the value range of parameter k and then
select a suitable value for k;
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Figure 29: Position error and error square with trapezoid reference input (2.3Nm pulse disturbance, with
saturation function).

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

or

SMC
FOSMC

Fractional order (μ)

(a) Position error

0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

E
rr

or
 s

qu
ar

e 

SMC
FOSMC

Fractional order (μ)

(b) Position error square

Figure 30: Position error and error square with trapezoid reference input (2.3Nm pulse disturbance, with
sign function).

(iv) because kd is the coefficient of fractional-order differentiation of position error x1, if
the value of kd is big, it will be too sensitive to the variation of position error x1 and
cause oscillation. In general, kd can be set as a suitable small value, for example, in
this paper kd = 1;

(v) with the maximum permissible position error x1 of the PMSM system and the para-
meter k designed by the procedure (iii), then parameters ε and kp can be designed
and selected according to (5.28).
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Figure 31: Position error and error square with trapezoid reference input (3.1Nm pulse disturbance, with
saturation function).
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Figure 32: Position error and error square with trapezoid reference input (3.1Nm pulse disturbance, with
sign function).

9. Conclusions

A new and systematic design of the fractional-order sliding mode controller (FOSMC) for
PMSM position control system is presented. By selecting a proper fractional-order μ and
designing a fractional-order sliding surface, the control performance such as control precision
and system robustness of the proposed FOSMCmethod is distinctly more excellent than that
of the conventional SMC method, because an extra fractional order, the real parameters μ,
is involved. The robustness of the proposed FOSMC method is analyzed in detail, and the
guidance for parameters selection and design is given. The numerical simulation results
demonstrate the effectiveness and robustness of the proposed FOSMC method.
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