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This paper is concerned with exact null controllability analysis of nonlinear KdV-Burgers equation
with memory. The proposed approach relies upon regression tool to prove controllability property
of linearized KdV-Burgers equation via Carleman estimates. The control is distributed along with
subdomain ω ⊂ Ω and the external control acts on the key role of observability inequality with
memory. This description finally showed the exact null controllability guaranteeing the stability.

1. Introduction

In recent years there has been rapidly increasing interest in mathematical studies of dynam-
ical and statistical property of nonlinear fields described by the Burgers equation (see
[1–4]) and it has been motivated by several developments. As Burgers [5] noticed, the
Burgers equation is a convenient analytical model for the physical turbulence, which is
simultaneously taken into an account of two competing mechanisms: to determine properties
of the strong hydrodynamic turbulence: the interior nonlinearity and viscosity.

Moreover, the quantitative description in many physical processes leads to the Burgers
equation. One example here is an intense acoustical noise, such as the jet noise [6], where
knowledge of dynamical and statistical properties of the Burgers turbulence can be directly
applied to an analysis of nonlinear distortions. Another phenomenon is adequately for the
nonlinear evolution of gravitational instability and the related characteristic of large-scale
cellular structures (see [1, 7]).
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Many problems have been modelled on nonlinear Burgers equations. There has been
an enormous on-going research and it is directly investigating some nonlinear effects. For
example, the simpler model equation with higher dimension, which encapsulates to essential
features of the problem. But it is impossible to solve it directly in a higher dimension.
After few years, these issues were carried out by Fernández-Cara et al. [8] and it has been
discussed via Korteweg-de Vries (KdV). The KdV equation is a prototype of such a model
also describing the competition between nonlinear and disperse effects in water waves.

The KdV equations are not directly related to the disperse waves, the density fields in
Burgers turbulence, and it is rather difficult to do in higher dimensions. Although the KdV
equation of analytical model is not a convenient and also nonefficient model of the strong
turbulence, it holds at least one serious drawback from the viewpoint of physical applications
(see [6]). Namely, it does not take into account pressure forces that could lead to smoothing
of singularity, which appear in density fields driven by Burgerian velocity.

In this context we will consider the KdV-Burgers equations with memory, which is
described by the density fields, pressure forces as well as the viscosity and its dispersion,
and so forth. In various fields of physics and engineering, problems have been modelled by
partial differential equation with memory (see [9]). It is essential to take an account of the
effect of past history.

We consider a typical form of KdV-Burgers equation with memory; it is essential and
suitable for the above physical situation:

yt − yxx + yyx + yxxx +
∫ t
0
k(t, τ)yxxdτ = χωu(t, x) + f(t, x), (t, x) ∈ (0, T) ×Ω,

y(0, x) = y0(x), x ∈ Ω,

y(t, x) = 0, (t, x) ∈ (0, T) × ∂Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. The null controllability of
linear parabolic equation without memory kernels has been extensively studied by several
authors (see [8, 10–12], and references therein). Barbu and Iannelli [9] discussed the
approximate controllability for the similar type of equation with memory. Rosier [13] studied
the exact boundary controllability of linear KdV equation with the half-line and Russell
and Zhang [14] also discussed the exact controllability and stabilizability of KdV equation.
Sakthivel [15] has been proved the asymptotic stability of KdV-Burgers via Lyapunov
function technique by using L2 and L∞ norms with domain of [0, 1]. But the domain of
attraction always containing [0, 1] is impossible; therefore, the problems of KdV-Burgers
equations have not been fully investigated, and it is therefore still a challenging problem.

Some nonlinear control systems are modelled by partial differential equations; it will
be a strong control. Unfortunately in some cases, even if the linearized control system around
the equilibrium is not controllable. But the linear control system around the memory kernel
is always controllable. This method has been introduced in Temam [16], Kofman et al.
[7], and Coron [17] where they have discussed about the controllability depending on the
relationship between the pressure forces and the magnitude of initial velocity in gas models.
The distributed control is described by the behavior of water waves in a shallow channel,
compressible gas and strong hydrodynamic turbulence, and so forth. It will be indicated as
in (1.2) that appears as in control function.
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We consider the linearized control KDV-Burgers equation with memory effects of
dirichlet boundary conditions, which helps to develop (1.1) (as based on the existing result
Fursikov and Imanuvilov [12]):

yt(t, x) − yxx(t, x) +
(
a(t, x)y(t, x)

)
x + b(t, x)y(t, x) + yxxx(t, x) +

∫ t
0
k(t, τ)yxx(τ, x)dτ

= χωu(t, x) + f(t, x), (t, x) ∈ (0, T) ×Ω,

y(0, x) = y0(x), x ∈ Ω

y(t, x) = 0, (t, x) ∈ (0, T) × ∂Ω,

(1.2)

where ∂3y/∂x3 = yxxx, y(t, x) is a solitary wave of dispersion at the point x and time t, y0(x)
is an initial temperature distribution, the integral kernel k(t, τ) is called conservation of mass
or volume and has support in (t1, t2), where 0 < t1 < t2 < T , f(t, x) is a forcing term such as
pressure force, χω is a characteristic function of the subset ω ⊂ Ω, and u(t, x) is a control over
an arbitrary sub domain ω of the domain Ω.

The paper is organized as follows. Section 2 gives some basic assumptions and for-
mation of the problem. Section 3 gives the proof of the Carleman estimate and observability
result. Section 4 gives exact null controllability result as based on a unique continuation result
of adjoined problems and by using the observability inequality. A conclusion will be given in
Section 5.

Notation. We describe some function spaces which will be useful to formulate our results. For
each positive integer m and p > 1 or p = ∞, denote as usual by Wm,p(Ω) the sobolev space
of functions in Lp(Ω) whose weak derivatives are of order less than or equal to m. When
p = 2 instead ofWm,p(Ω), we will writeHm(Ω). Besides, we need the space L2(0, T : H1(Ω))
of all equivalence classes of square integrable functions from (0, T) to H1(Ω). The spaces
L2(0, T : L2(Ω)) and L∞(0, T : L2(Ω)) are analogously defined. Moreover, we set (see [18])

(i) Ω = {(t, x) : 0 < t < T, 0 < x <∞};

(ii) χω :=
{

1 for x ∈ ω,
0 for x ∈ Ω/ω;

(iii) Q := (0, T) ×Ω, Qω := (0, T) ×ω, and Σ := (0, T) × ∂Ω;

(iv) Hm(Ω):= the Sobolev spaces of functions in L2(Ω) whose weak derivatives are of
order less than or equal tom, wherem is a positive integer;

(v) L2(0, T ;H1(Ω)):= the space of all equivalence classes of square integrable functions
from (0, T) toH1(Ω);

(vi) Wm,p(Ω) = {y(x) : ‖y‖Wm,p = (
∑

|α|≤m
∫
Ω |Dαy|pdx)1/p <∞}.



4 Abstract and Applied Analysis

2. Assumptions and Main Results

A linearized control system (1.2) is a weak solution model of the control problem (1.1) (it is
supporting to prove the stabilization), then system (1.2) can be written as

yt(t, x) − yxx(t, x) + a(t, x)yx(t, x) + b(t, x)y(t, x) + yxxx(t, x) +
∫ t
0
k(t, τ)yxx(τ, x)dτ

= χωu(t, x) + f(t, x), (t, x) ∈ (0, T) ×Ω,

y(0, x) = y0(x), x ∈ Ω,

y(t, x) = 0, (t, x) ∈ (0, T) × ∂Ω,

(2.1)

where a ∈ W1,∞(0, T : L2(Ω)), b ∈ L∞(Q). The kernel k(t, ·) is smooth and has support in
(t0, t1) where 0 < t0 < t1 < T . Moreover, there are plenty of works related to exact and
approximate controllability properties of the parabolic system of type (1.2) without the
memory effects (see [11]). In this paper we constructed a system with memory; finally by
using Hölder’s inequality and changing the order of integration the memory term will be
observed by yxx ∈ ω ⊂ Ω.

The following lemma is a fundamental tool to proving controllability results.

Lemma 2.1. Let Ω be an open bounded and connected subset of the boundary ∂Ω in class C2, ω an
arbitrary subsets of Ω, and f ∈ L2(Q) such that

∣∣f(x, t)∣∣ ≤ ∣∣f1(x, t)∣∣esϕ(x,t)ϕx(x, t)ϕxx(x, t), a.e. (x, t) ∈ Q. (2.2)

For each y0 ∈ L2(Ω), and u ∈ L2(Q) such that

‖u‖L2(Q) ≤ C
(∣∣y0∣∣2 +

∥∥f1∥∥L2(Q)

)
, (2.3)

and the space yu ∈ C1[0, T];H1([0, T] : L2(Ω)) ∩ L2(0, T ;H1(Ω)) is a solution of (1.2).

Proof. The proof is similar to Theorem 1.3.1 from Barbu [10] and hence it will be omitted.

Theorem 2.2. Let Ω, ω be as in Lemma 2.1. System (1.2) is exactly null controllable for each T > 0,
if there exists u ∈ L2(Q) and yu ∈ C([0, T];L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that

yu(T, x) = 0 a.e. x ∈ Ω, ‖u‖L2(Q) ≤ C
(∣∣y0∣∣2 +

∥∥f1∥∥2L2(Q)

)
. (2.4)

(The proof of the theorem is given in Section 4).

3. Observability Results and Carleman Estimates

In this section we will derive the observability result via the Carleman estimate of adjoint
system (2.1).
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To prove the Carleman estimate, the weight functions are necessary. As based on
Fernández-Cara et al. [8] and Rosier [13] the weight functions ϕ and ψ are assumed as

ϕ(x, t) =
ψ(x)
β(t)

, ψ(x) > 0, ∀x ∈ Ω, ψ(x) = 0, ∀x ∈ ∂Ω, ∣∣ψx(x)∣∣ > 0,

ψx(x) < 0, ψxx(x) < 0,
(
ψxx(x) · ψx(x)

)
> 0,

(
ψx(x) ·

(
ψxxx(x)

))
> 0, x ∈ Ω \ω,

(3.1)

where β(t) = t(T − t).
Suppose that w is an adjoint state variable of system (2.1), then it has some solutions.

Therefore,

wt(t, x) +wxx(t, x) + c1wx(t, x) − c2w(t, x) +wxxx(t, x) −
∫T
t

k(τ, t)wxx(τ, x)dτ

= g(t, x), (t, x) ∈ Σ,

w(T, x) = wT (x), x ∈ Ω,

w(t, x) = 0, (t, x) ∈ (0, T) × ∂Ω,

(3.2)

where ‖a(t, x)‖ ≤ c1 > 0, ‖b(t, x)‖ ≤ c2 > 0, g ∈ L2(Q) and wT ∈ L2(Ω).
Now we will state the theorem to prove system (3.2) of solution w,which will be a

solution for (2.1). The question is how the system (3.2) of solution w will be a solution for
(2.1). As based on Carleman estimate (assume the weight functions ϕ, ψ as (3.1)), we can
prove that w will be a solution for (2.1) (see [12]).

Theorem 3.1 (Carleman estimate). The function ψ defined as in (3.1), the kernel has support in
(t1, t2) (where 0 < t1 < t2 < T ), there exist positive constants C, and s ≥ s0 such that the following
inequalities hold when w a solution of (3.2):

∫
Q

e2sϕ
((
sϕ
)−1(|wt|2 + |wx|2 + |wxx|2 + |wxxx|2

)

+s5ϕ4
xϕxx|w|2 + s3ϕ2

xϕxx|wx|2 + sϕ|wxx|2
)
dx dt

≤ Ce2sϕ
(∫

Q

∣∣g∣∣2dx dt +
∫
Qω

s4ϕ2
xϕ

2
xx|w|2dxdt

)
.

(3.3)
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Proof. We set w = e−sϕq (where s, ϕ are positive parameters) and q satisfies (3.2) (for our
convenient c1 = c2 = 1), then

qt + sϕtq + s2ϕ2
xq − sϕxxq − 2sϕxqx + qxx − s3ϕ3

xq + 3s2ϕxϕxxq + 3s2ϕ2
xqx

− 3sϕxxqx − 3sϕxqxx − sϕxxxq + qxxx − q − sϕxq + qx

− esϕ
(∫T

t

k(τ, t)e−sϕ(τ)q(τ, x)

)
dτ = gesϕ.

(3.4)

As based on Barbu [10]we can introduce the operators

L1q = qt − sϕtq − sϕxxq + s2ϕ2
xq − s3ϕ3

xq + 3s2ϕxϕxxq − sϕxxxq − q − sϕxq, (3.5)

L2q = qxx + qxxx − 2sϕxqx + 3s2ϕ2
xqx − 3sϕxxqx − 3sϕxqxx + qx. (3.6)

It follows from (3.4), (3.5), and (3.6) that

L1q + L2q = hs in Q, (3.7)

where

hs = gesϕ + esϕ
(∫T

t

k(τ, t)
(
e−sϕq

)
xxdτ

)
. (3.8)

Taking L2-norm of both sides of (3.7), we obtain

‖hs‖2L2(Q) =
∥∥L1q

∥∥2
L2(Q) +

∥∥L2q
∥∥2
L2(Q) + 2

〈
L1q, L2q

〉
L2(Q). (3.9)

Let us analyze the scalar product in (3.9) as

〈
L1q, L2q

〉
L2 = Eij , 1 ≤ i ≤ 9, 1 ≤ j ≤ 7, (3.10)

where Eij is an integral product of ith term in L1q and jth term in L2q.
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Now we will simplify the estimate 〈L1q, L2q〉L2(Q) by using Green’s theorem with
integration by parts:

〈
L1q, L2q

〉
L2(Q)

=
∫
Σ
sϕxxx

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
3
2

∫
Σ
s2ϕxϕxx

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
1
2

∫
Σ
s3ϕ3

x

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ

− 1
2

∫
Σ
s2ϕ2

x

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
1
2

∫
Σ
sϕxx

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
1
2

∫
Σ
sϕt

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
∫
Q

sϕtq
2
xdxdt

− 1
2

∫
Q

s
(
ϕt
)
xxq

2dxdt +
1
2

∫
Q

s
(
ϕt
)
xxxq

2dxdt −2
∫
Q

s
(
ϕt
)
xq

2
xdxdt+

∫
Q

sϕtq
2
xdxdt

+
∫
Q

s2
(
ϕt
)
xϕxq

2dxdt +
∫
Q

s2ϕtϕxxq
2dxdt +

3
2

∫
Q

s2ϕtϕxxq
2dxdt

+
3
2

∫
Q

s2ϕtϕxxq
2dxdt + 3

∫
Q

s3ϕtϕxϕxxxq
2dxdt +

3
2

∫
Q

s2
(
ϕt
)
xq

2dxdt

+ 3
∫
Q

s2ϕtϕxq
2
xdxdt −

3
2

∫
Q

s2
(
ϕt
)
xxϕxq

2dxdt + 2
∫
Q

sϕxxq
2
xdxdt

−
∫
Q

s2ϕ2
xxq

2dxdt +
3
2

∫
Q

s3ϕ2
xϕxxxq

2dxdt + 3
∫
Q

s3
(
ϕx
)
ϕ2
xxq

2dxdt

− 3
∫
Q

s2ϕxϕxxq
2
xdxdt −2

∫
Q

s2ϕ2
xq

2
xdxdt+

∫
Q

s2ϕ2
xxq

2dxdt+2
∫
Q

s2ϕxϕxxq
2dxdt

−
∫
Q

s2ϕxxϕxxxq
2dxdt − 2

∫
Q

s4ϕ3
xϕxxq

2dxdt + 3
∫
Q

s3ϕ3
xq

2dxdt

− 9
∫
Q

s3ϕxϕ
2
xxq

2
xdxdt −

3
2

∫
Q

s3ϕ2
xϕxxq

2dxdt + 2
∫
Q

s3ϕ3
xq

2
xdxdt

+ 7
∫
Q

s3ϕxϕxxϕxxxq
2dxdt +

3
2

∫
Q

s5ϕ4
xϕxxq

2dxdt + 9
∫
Q

s4ϕ2
xϕ

2
xxq

2dxdt

+
3
2

∫
Q

s4ϕ3
xϕxxxq

2dxdt − 3
∫
Q

s4ϕ4
xq

2
xdxdt + 6

∫
Q

s4ϕ3
xϕxxxq

2dxdt

+ 18
∫
Q

s4ϕ2
xϕ

2
xxq

2dxdt − 6
∫
Q

s2ϕxϕxxq
2
xdxdt + 3

∫
Q

s2ϕxxϕ
2
xxxq

2dxdt

+
3
2

∫
Q

s2ϕxxϕxxxq
2dxdt + 6

∫
Q

s2ϕxxϕxxxq
2
xdxdt + 3

∫
Q

s2ϕxxϕxxxq
2
xdxdt

+ 4
∫
Q

s2ϕ2
xxq

2dxdt + 6
∫
Q

s3ϕxϕ
2
xxq

2dxdt − 9
2

∫
Q

s4ϕ3
xϕxxxq

2dxdt

− 27
2

∫
Q

s4ϕ2
xϕxxq

2dxdt +
9
2

∫
Q

s3ϕ3
xxq

2dxdt + 9
∫
Q

s3ϕ2
xϕxxq

2
xdxdt

− 15
2

∫
Q

s3ϕ3
xxq

2dxdt +
∫
Q

sϕxxxq
2
xdxdt + 2

∫
Q

sϕxxxq
2
xdxdt

− 6
∫
Q

s3ϕ2
xϕxxq

2
xdxdt −

∫
Q

s2ϕxxϕxxxq
2dxdt − 3

∫
Q

s2ϕxϕxxxq
2
xdxdt.

(3.11)
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Since q = ϕ = 0 on ∂Ω, some manipulations are dominated by the same parameters and also
observed by powers of s. Finally we obtain

9∑
i=1

7∑
j=1

Eij = D1 +D2 +
3
2

∫
Q

s5ϕ4
xϕxxq

2dxdt + 3
∫
Q

s3ϕ2
xϕxxq

2
xdxdt, (3.12)

where D1, D2 are boundary terms:

D1 =
∫
Σ
sϕxxx

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
3
2

∫
Σ
s2ϕxϕxx

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
1
2

∫
Σ
s3ϕ3

x

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ

− 1
2

∫
Σ
s2ϕ2

x

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
1
2

∫
Σ
sϕxx

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
1
2

∫
Σ
sϕt

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ,

D2 =
∫
Q

sϕtq
2
xdxdt −

1
2

∫
Q

s
(
ϕt
)
xxq

2dxdt +
1
2

∫
Q

s
(
ϕt
)
xxxq

2dxdt

− 2
∫
Q

s
(
ϕt
)
xq

2
xdxdt +

∫
Q

sϕtq
2
xdxdt +

∫
Q

s2
(
ϕt
)
xϕxq

2dxdt +
∫
Q

s2ϕtϕxxq
2dxdt

+
3
2

∫
Q

s2ϕtϕxxq
2dxdt +

3
2

∫
Q

s2ϕtϕxxq
2dxdt + 3

∫
Q

s3ϕtϕxϕxxxq
2dxdt

+
3
2

∫
Q

s2
(
ϕt
)
xq

2dxdt + 3
∫
Q

s2ϕtϕxq
2
xdxdt −

3
2

∫
Q

s2
(
ϕt
)
xxϕxq

2dxdt

+ 2
∫
Q

s2ϕxϕxxq
2dxdt −

∫
Q

s2ϕxxϕxxxq
2dxdt − 2

∫
Q

s4ϕ3
xϕxxq

2dxdt

− 3
2

∫
Q

s3ϕ2
xϕxxq

2dxdt + 7
∫
Q

s3ϕxϕxxϕxxxq
2dxdt + 27

∫
Q

s4ϕ2
xϕ

2
xxq

2dxdt

+
3
2

∫
Q

s4ϕ3
xϕxxxq

2dxdt + 6
∫
Q

s4ϕ3
xϕxxxq

2dxdt − 6
∫
Q

s2ϕxϕxxq
2
xdxdt

+ 3
∫
Q

s2ϕxxϕ
2
xxxq

2dxdt +
3
2

∫
Q

s2ϕxxϕxxxq
2dxdt + 9

∫
Q

s2ϕxxϕxxxq
2
xdxdt

+ 6
∫
Q

s3ϕxϕ
2
xxq

2dxdt − 9
2

∫
Q

s4ϕ3
xϕxxxq

2dxdt − 27
2

∫
Q

s4ϕ2
xϕxxq

2dxdt

−
∫
Q

s2ϕxxϕxxxq
2dxdt − 3

∫
Q

s2ϕxϕxxxq
2
xdxdt.

(3.13)

By the time derivative definition ϕwe can write

∣∣ϕt∣∣ ≤ Cϕ2,
∣∣ϕtt∣∣ ≤ Cϕ3, (3.14)
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(where C does not depend on s, t, x). Using (3.14) for s is sufficiently large and observes the
same powers, then

|D2| ≤ C
[∫

Q

s4ϕ2
xϕ

2
xx

∣∣q∣∣2dxdt +
∫
Q

s2ϕxϕxx
∣∣qx∣∣2dxdt

]
. (3.15)

Now multiplying (3.7) by sϕq|∇ψ|2 and integrating over Q, we obtain

∫
Q

sϕq
∣∣∇ψ∣∣2L1q dx dt +

∫
Q

sϕq
∣∣∇ψ∣∣2L2qdxdt =

∫
Q

sϕq
∣∣∇ψ∣∣2hsdxdt. (3.16)

Therefore,

∫
Q

sϕq
∣∣∇ψ∣∣2hsdxdt =

∫
Q

sϕq
∣∣∇ψ∣∣2L1qdxdt +

∫
Q

sϕ
∣∣∇ψ∣∣2qqxxdxdt

+
∫
Q

sϕ
∣∣∇ψ∣∣2qqxxxdxdt − 2

∫
Q

s2ϕϕx
∣∣∇ψ∣∣2qqxdxdt

+ 3
∫
Q

s3ϕ
∣∣∣∇2

xψ
∣∣∣2qqxdxdt − 3

∫
Q

s2ϕϕxx
∣∣∇ψ∣∣2qqxdxdt

− 3
∫
Q

s2ϕϕx
∣∣∇ψ∣∣2qqxxdxdt,

∫
Q

sϕq
∣∣∇ψ∣∣2L1qdxdt ≤ 1

2

∫
Q

s2ϕ2∣∣∇ψ∣∣4q2dxdt + 2
∫
Q

∣∣L1q
∣∣2dxdt,

∫
Q

sϕ
∣∣∇ψ∣∣2qqxxdxdt = −

∫
Q

sϕ
∣∣∇ψ∣∣2q2xdxdt + 1

2

∫
Q

sϕxx
∣∣∇ψ∣∣2q2dxdt

+
∫
Q

sϕxΔψ
(∣∣∇ψ∣∣)q2dxdt,

∫
Q

sϕ
∣∣∇ψ∣∣2qqxxxdxdt =

∫
Q

sϕx
∣∣∇ψ∣∣2q2xdxdt + 1

2

∫
Q

sϕxxx
∣∣∇ψ∣∣2q2dxdt

+
∫
Q

sϕxx
(∣∣∇ψ∣∣)Δψq2dxdt + 2

∫
Q

sϕ
∣∣∇ψ∣∣2q2xdxdt

−
∫
Q

sϕx
∣∣∇ψ∣∣2q2dxdt −

∫
Q

sϕ
∣∣∇ψ∣∣2qxqxxdxdt,
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− 2
∫
Q

s2ϕxϕ
∣∣∇ψ∣∣2qqxdxdt =

∫
Q

s2ϕ2
x

∣∣∇ψ∣∣2q2dxdt +
∫
Q

s2ϕxxϕ
∣∣∇ψ∣∣2q2dxdt

+ 2
∫
Q

s2ϕxϕΔψ
(∣∣∇ψ∣∣)q2dxdt,

3
∫
Q

s3ϕϕ2
x

∣∣∇ψ∣∣2qqxdxdt ≤ 3
∫
Q

s3ϕ2
xϕ
∣∣∇ψ∣∣4q2dxdt + 3

4

∫
Q

s3ϕϕ2
xq

2
xdxdt,

− 3
∫
Q

s2ϕϕxx
∣∣∇ψ∣∣2qqxdxdt = 3

2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt + 3

2

∫
Q

s2ϕϕxxx
∣∣∇ψ∣∣2q2dxdt

+ 3
∫
Q

s2ϕϕxx
(∣∣∇ψ∣∣)Δψq2dxdt

−3
∫
Q

s2ϕxϕ
∣∣∇ψ∣∣2qqxxdxdt = 3

∫
Q

s2ϕϕx
∣∣∇ψ∣∣2q2xdxdt − 3

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt

− 3
∫
Q

s2ϕ2
x

(∣∣∇ψ∣∣)Δψq2dxdt − 3
2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt

− 3
2

∫
Q

s2ϕϕxxx
∣∣∇ψ∣∣2q2dxdt − 3

∫
Q

s2ϕϕxx
(∣∣∇ψ∣∣)Δψq2dxdt

−
∫
Q

s2ϕ2
x

(∣∣∇ψ∣∣)Δψq2dxdt.
(3.17)

By using the above calculation in (3.16), it becomes

− 3
4

∫
Q

s3ϕϕ2
xq

2
xdxdt

= −
∫
Q

sϕ
∣∣∇ψ∣∣2qhsdxdt +

∫
Q

s2ϕ2∣∣∇ψ∣∣4q2dxdt

+
∫
Q

sϕ
∣∣∇ψ∣∣2q2xdxdt + 1

4

∫
Q

∣∣L1q
∣∣2dxdt

+ 2
∫
Q

sϕΔψ
(∣∣∇ψ∣∣)q2xdxdt −

∫
Q

sϕ
∣∣∇ψ∣∣2qxqxxdxdt + 3

∫
Q

s3ϕϕxϕxx
∣∣∇ψ∣∣2q2dxdt

+
3
2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt +

∫
Q

s2ϕϕxx
∣∣∇ψ∣∣2q2dxdt + 2

∫
Q

s2ϕϕx
(∣∣∇ψ∣∣)Δψq2dxdt

+
3
2

∫
Q

s2ϕ2
x∇
(∣∣∇ψ∣∣2)q2dxdt + 3

2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt + 3

2

∫
Q

s3ϕϕ2
x

∣∣∇ψ∣∣4q2dxdt

+
5
2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt + 1

2

∫
Q

sϕx
∣∣∇ψ∣∣2q2dxdt + 3

∫
Q

s2ϕϕxxx
∣∣∇ψ∣∣2q2dxdt

+ 3
∫
Q

s2ϕϕx
∣∣∇ψ∣∣2q2xdxdt − 3

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt − 3

2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt
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− 3
2

∫
Q

s2ϕϕxxx
∣∣∇ψ∣∣2q2dxdt − 3

∫
Q

s2ϕϕxx
(∣∣∇ψ∣∣)Δψq2dxdt

− 3
∫
Q

s2ϕϕx∇
(∣∣∇ψ∣∣2)q2xdxdt + 1

4

∫
Q

sϕ
∣∣∇ψ∣∣4q2xdxdt.

(3.18)

From the above equation (the right hand side), we can observe the powers of s:

−3
4

∫
Q

s3ϕϕ2
xq

2
xdxdt = D3 + 3

∫
Q

s3ϕϕ2
x

∣∣∇ψ∣∣4q2dxdt +
∫
Q

sϕq2xxdxdt, (3.19)

where

D3 =
∫
Q

sϕq
∣∣∇ψ∣∣2hsdxdt +

∫
Q

sϕ
∣∣∇ψ∣∣2qL1qdxdt + 3

∫
Q

s2ϕϕx
∣∣∇ψ∣∣2q2xdxdt

+
3
2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt +

∫
Q

s2ϕϕxx
∣∣∇ψ∣∣2q2dxdt

+ 2
∫
Q

s2ϕϕx
(∣∣∇ψ∣∣)Δψq2dxdt − 3

∫
Q

s3ϕϕ2
x

(∣∣∇ψ∣∣)Δψq2dxdt

+
3
2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt + 3

2

∫
Q

s2ϕϕxxx
∣∣∇ψ∣∣2q2dxdt

+ 4
∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt − 3

2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2q2dxdt

− 3
2

∫
Q

s2ϕϕxxx
∣∣∇ψ∣∣2q2dxdt − 3

∫
Q

s2ϕϕxx
(∣∣∇ψ∣∣)Δψq2dxdt.

(3.20)

Applying Cauchy’s inequality (with ε = 1) for D3,

|D3| ≤ 1
4

∫
Q

∣∣L1q
∣∣2dxdt + 1

4

∫
Q

|hs|2dxdt + 3
2

∫
Q

s2ϕxϕxx
∣∣∇ψ∣∣2∣∣q∣∣2dxdt

+ 3
∫
Q

s2ϕϕ2
x

∣∣∇ψ∣∣2∣∣qx∣∣2dxdt.
(3.21)

Therefore

〈
L1q, L2q

〉
L2(Q) = D2 +D3 +

3
2

∫
Q

s5ϕ4
xϕxxq

2dxdt +
3
4

∫
Q

s3ϕ2
xϕxxq

2
xdxdt

+ 3
∫
Q

s3ϕϕ2
x

∣∣∇ψ∣∣4q2dxdt +
∫
Q

sϕq2xxdxdt.

(3.22)
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By using (3.22) in (3.7), we get

∥∥L1q
∥∥2 + ∥∥L2q

∥∥2 + 3
∫
Q

s5ϕ4
xϕxxq

2dxdt +
3
2

∫
Q

s3ϕ2
xϕxxq

2
xdxdt + 2

∫
Q

sϕq2xxdxdt

≤ Ce2sϕ
⎡
⎣
∫
Q

∣∣g∣∣2dxdt +
∫
Q

∣∣∣∣∣
∫T
t

k(τ, t)
(
e−sϕq

)
xxdτ

∣∣∣∣∣
2

dxdt

+
∫
Q

s4ϕ2
xϕ

2
xx

∣∣q∣∣2dxdt +
∫
Q

s2ϕxϕxx
∣∣qx∣∣2dxdt

⎤
⎦ +

1
2

∫
Q

∥∥L1q
∥∥2dxdt

+ 6
∫
Q

s3ϕϕ2
x

∣∣∇ψ∣∣4∣∣q∣∣2dxdt + 6
∫
Q

s2ϕϕx
∣∣∇ψ∣∣2∣∣qx∣∣2dxdt.

(3.23)

Recalling that s is sufficiently large and also observing that powers of s and |∇ψ| > 0 inΩ\ω,

1
2
∥∥L1q

∥∥2 + ∥∥L2q
∥∥2 + 3

∫
Q

s5ϕ4
xϕxxq

2dxdt +
3
2

∫
Q

s3ϕ2
xϕxxq

2
xdxdt +

∫
Q

sϕq2xxdxdt

≤ C
⎡
⎣
∫
Q

e2sϕ
∣∣g∣∣2dxdt +

∫
Q

e2sϕ
∣∣∣∣∣
∫T
t

k(τ, t)
(
e−sϕq

)
xxdτ

∣∣∣∣∣
2

dxdt

+
∫
Qω

s4ϕ2
xϕ

2
xx

∣∣q∣∣2dxdt +
∫
Qω

s2ϕϕx
∣∣qx∣∣2dxdt

⎤
⎦.

(3.24)

From the above inequality qx is in ω0,which will be eliminated (because ω0 is subset of ω0).
To prove qx as q in ω0 (term |qx|2 on the right hand side of (3.24)), the truncating function
is necessary, so let us define the truncating function ρ ∈ C∞

0 (Ω) with ρ(x) = 1 in ω0 and
ρ(x) = 0 in Ω \ω. Now we will multiply (3.7) by ρsϕq and integrating overQ, then we have

∫
Q

ρsϕqL1q dx dt +
∫
Q

ρsϕqL2q dx dt =
∫
Q

ρqsϕhsdxdt. (3.25)

Since

ρ

∫
Q

sϕqqxxdxdt =
∫
Q

ρsϕxxq
2dxdt −

∫
Q

ρsϕxq
2
xdxdt,

∫
Q

ρsϕqqxxxdxdt =
∫
Q

ρsϕxq
2
xdxdt −

∫
Σ
sϕ

∣∣∣∣∂q∂v
∣∣∣∣
2

dΣ +
∫
Q

ρsϕxq
2
xdxdt

−
∫
Q

ρsϕxxxq
2dxdt
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− 3
∫
Q

ρs2ϕϕxqqxxdxdt = 3
∫
Q

ρs2ϕϕxq
2
xdxdt − 3

∫
Q

ρs2ϕxϕxxq
2dxdt

+
3
2

∫
Q

ρs2ϕϕxxxq
2dxdt

− 2
∫
Q

ρs2ϕxqqxdxdt =
∫
Q

ρs2ϕxxϕq
2dxdt +

∫
Q

ρs2ϕ2
xq

2dxdt

− 3
∫
Q

ρs2ϕϕxxqqxdxdt =
3
2

∫
Q

ρs2ϕxϕxxq
2dxdt − 3

2

∫
Q

ρs2ϕϕxxxq
2dxdt

3
∫
Q

ρs3ϕϕ2
xqqxdxdt = −3

2

∫
Q

ρs3ϕ3
xq

2dxdt − 3
∫
Q

ρs3ϕϕxϕxxq
2dxdt. (3.26)

The boundary term − ∫Σ sϕ|∂q/∂v|2dΣ ≥ 0, then

∫
Q

ρs2ϕϕx
∣∣qx∣∣2dxdt

≤ 1
4

∫
Q

e2sϕ
∣∣g∣∣2dxdt − 3

2

∫
Q

ρs2ϕϕxx
∣∣q∣∣2dxdt + 3

2

∫
Q

ρs2ϕϕxxx
∣∣q∣∣2dxdt

+
∫
Q

ρs2ϕϕt
∣∣q∣∣2dxdt + 3

∫
Q

ρs2ϕxϕxx
∣∣q∣∣2dxdt +

∫
Q

ρs2ϕϕxxx
∣∣q∣∣2dxdt

+
∫
Q

ρsϕt
∣∣q∣∣2dxdt −

∫
Q

ρs3ϕϕ2
x

∣∣q∣∣2dxdt +
∫
Q

ρs4ϕϕ3
x

∣∣q∣∣2dxdt

+ 2
∫
Q

ρs2ϕ2∣∣q∣∣2dxdt + 1
4

∫
Q

ρe2sϕ
∣∣∣∣∣
∫T
t

k(τ, t)
(
e−sϕq

)
xxdτ

∣∣∣∣∣
2

dxdt.

(3.27)

Applying as ρ(x) = 1 in ω0 ⊂ ω,

∫
Qω

s2ϕϕx
∣∣qx∣∣2dxdt ≤ C

⎛
⎝
∫
Q

e2sϕ
∣∣g∣∣2dxdt +

∫
Qω

e2sϕ
∣∣∣∣∣
∫T
t

k(τ, t)
(
e−sϕq

)
xxdτ

∣∣∣∣∣
2

dxdt

+
∫
Qω

s4ϕϕ3
x

∣∣q∣∣2dxdt
⎞
⎠.

(3.28)
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The term s, ϕ is not inω, so it will be eliminated from the above inequalities. To eliminate s, ϕ,
we will multiply (3.5) and (3.6) on (sϕ)−1 (see [8, 12]):

∫
Q

(
sϕ
)−1(∣∣qx∣∣2 + ∣∣qxx∣∣2 + ∣∣qxxx∣∣2

)
dxdt

≤ C
(∫

Q

(
sϕ
)−1∣∣L2q

∣∣2dxdt +
∫
Q

(
sϕ
)−1

s2ϕxϕxx
∣∣q∣∣2dxdt

) (3.29)

∫
Q

(
sϕ
)−1∣∣qt∣∣2dxdt

≤ C
(∫

Q

(
sϕ
)−1∣∣L1q

∣∣2dxdt +
∫
Q

s4ϕ2
xϕ

2
xxq

2dxdt +
∫
Q

s2ϕ2
t q

2dxdt

) (3.30)

In view of the estimates (3.22)–(3.30), we obtain

∫
Q

(
sϕ
)−1(∣∣qt∣∣2 + ∣∣qx∣∣2 + ∣∣qxx∣∣2 + ∣∣qxxx∣∣2

)
dxdt

+
∫
Q

(
s5ϕ4

xϕxx
∣∣q∣∣2 + s3ϕ2

xϕxx
∣∣qx∣∣2 + sϕ∣∣qxx∣∣2

)
dxdt

≤ C
⎛
⎝
∫
Q

e2sϕ
∣∣g∣∣2 +

∫
Qω

s4
(
ϕ2
xϕ

2
xx + ϕϕ

3
x

)∣∣q∣∣2dxdt

+
∫
Qω

e2sϕ

⎧⎨
⎩
∣∣∣∣∣
∫T
t

k(τ, t)
(
e−sϕq

)
xxdτ

∣∣∣∣∣
2
⎫⎬
⎭dxdt

⎞
⎠.

(3.31)

From (3.31), we will eliminate the memory kernel term (that appears on the right hand side),
because it may not contain in ω. By using Hölder’s inequality and changing the order of
integration,

∫
Qω

e2sϕ

⎧⎨
⎩
∣∣∣∣∣
∫T
t

k(τ, t)
(
e−sϕq

)
xxdτ

∣∣∣∣∣
2
⎫⎬
⎭dxdt

≤
∫
Q

e2sϕ
∣∣∣∣∣
∫T
0
k(τ, t)

(
e−sϕq

)
xxdτ

∣∣∣∣∣
2

dxdt

≤
∫
Q

e2sϕ
(∫ t2

t1

|k(τ, t)|2sϕdτ
)(∫ t2

t1

s−1ϕ−1∣∣e−sϕqxx∣∣2dτ
)
dxdt

≤ C‖k‖2L∞e2sϕ
∫
Q

∫
(t1,t2)×Ω

e2sϕsϕ
∣∣(e−sϕq)xx

∣∣2dxdt,

(3.32)
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where C depends on Ω, ω, t1, t2, and T (since e2sϕs−1ϕ−1 ≤ C <∞, and e−2sϕsϕ ≤ C <∞ for all
(t, x) ∈ ((t1, t2) ×Ω)). Finally reverting to the original variablew to complete the proof, let us
choose ∇w = e−sϕ(qx − sϕxq), then
∫
Q

(
sϕ
)−1

e2sϕ|∇w|2dxdt ≤ C
(∫

Q

(
sϕ
)−1∣∣qx∣∣2dxdt +

∫
Q

(
sϕ
)−1

sϕx
∣∣q∣∣2dxdt

)
,

∫
Q

(
sϕ
)−1

e2sϕ|Δw|2dxdt ≤ C
(∫

Q

(
sϕ
)−1∣∣qxx∣∣2dxdt +

∫
Q

(
sϕ
)−1

s2ϕ2
x

∣∣q∣∣2dxdt
)
,

∫
Q

(
sϕ
)−1

e2sϕ|∇ ·Δw|2dxdt ≤ C
(∫

Q

(
sϕ
)−1∣∣qxxx∣∣2dxdt +

∫
Q

e2sϕs4ϕ2
xϕ

2
xx

∣∣q∣∣2dxdt
)
.

(3.33)

Similarly wt = e−sϕ(qt − sϕtq),
∫
Q

(
sϕ
)−1

e2sϕ|wt|2dxdt ≤ C
(∫

Q

(
sϕ
)−1∣∣qt∣∣2dxdt +

∫
Q

(
sϕ
)−1

s2ϕ2
t

∣∣q∣∣2dxdt
)
. (3.34)

From (3.32), we can observe the kernel term as

∫
Qω

e2sϕ

⎧⎨
⎩
∣∣∣∣∣
∫T
t

k(τ, t)
(
e−sϕq

)
xxdτ

∣∣∣∣∣
2
⎫⎬
⎭dxdt

≤ C‖k‖2L∞

{∫
Q

e2sϕ
∫
(t1,t2)×Ω

|wxx|2dxdt
}
.

(3.35)

If s ≥ s0 is sufficiently large, then there exists a constant C > 0 such that the above integral
terms have been absorbed onω ⊂ Ω (the right hand side of (3.31)). From the identifier (3.33)–
(3.35), we can conform all the terms |wxxx|2, |wt|2, |wxx|2, |w|2 involving in s ≥ s0, ω ⊂ Ω
and we obtain (3.3).

Lemma 3.2. Suppose that Theorem 3.1 is satisfied. If there exist positive constants C, μ (independent
of s) and w will be a solution of (2.1), such that the following inequality holds:

∫
Ω
|w(0, x)|2dx ≤ Ceμs

(∫
Q

e2sϕ
∣∣g∣∣2dxdt +

∫
Qω

e2sϕϕ2
xϕ

2
xx|w|2dxdt

)
. (3.36)

Proof. We multiply (3.2) by w and integrate on Ω (using Cauchy’s inequality, when ε = 1/2),
we obtain

− 1
2
d

dt

∫
Ω
|w|2dx + 2

∫
Ω
|∇w|2dx +

1
2

∫
Ω
|w|2dxdt + 2

∫
Ω
|∇ · (Δw)|2dxdt

≤
∫
Ω

(
2
∣∣g∣∣2 + 3

2
|w|2
)
dx + 2

∫
Ω

∣∣∣∣∣
∫T
t

k(τ, t)wxxdτ

∣∣∣∣∣
2

dx.

(3.37)
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Define

γ(t) = sup
{
e−2sϕϕ−2

x (x, t)ϕ−2
xx(x, t) : x ∈ Ω

}
≤ Ceμs/β(t), μ = 2e2m‖ψ‖∞ . (3.38)

Therefore,

− 1
2
d

dt

∫
Ω
|w|2dx ≤ C

⎛
⎝
∫
Ω

∣∣g∣∣2dx +
∫
Ω

∣∣∣∣∣
∫T
t

k(τ, t)wxxdτ

∣∣∣∣∣
2

dx +
∫
Ω
|w|2dx

+
∫
Ω
|∇w|2dx +

∫
Ω
|∇ · (Δw)|2dx

⎞
⎠.

(3.39)

Integrating (3.39) on (0, t),

−
∫ t
0

d

dt

[∫
Ω
|w|2dx

]
ds

≤ C
∫ t
0

⎛
⎝
∫
Ω

∣∣g∣∣2dx +
∫
Ω

∣∣∣∣∣
∫T
t

k(τ, t)wxxdτ

∣∣∣∣∣
2

dx +
∫
Ω
|∇w|2dx

+
∫
Ω
e2sϕγ(t)ϕ2

xϕ
2
xx|w|2dx +

∫
Ω
|∇ · (Δw)|2dx

⎞
⎠ds, for t ∈ (0, T).

(3.40)

Therefore,

∫
Ω
|w(0, x)|2dx ≤ C

⎛
⎝
∫
Ω
e2sϕϕ2

xϕ
2
xx|w|2dx +

∫
Ω

∣∣g∣∣2dx +
∫
Ω

∣∣∣∣∣
∫T
t

k(τ, t)wxxdτ

∣∣∣∣∣
2

dx

+
∫
Ω
|∇w|2dx +

∫
Ω
|∇ · (Δw)|2dx

⎞
⎠ for t ∈ (0, T).

(3.41)

Now we fix t1 and t2 such as 0 < t1 < t2 < T , then integrating the above inequality:

∫ t2
t1

∫
Ω
|w(0, x)|2e−μs/(t(t−T))dxdt

≤ C
∫ t2
t1

⎛
⎝
∫
Ω
e2sϕϕ2

xϕ
2
xx|w|2dx+

∫
Ω

∣∣g∣∣2dx+
∫
Ω
|∇w|2dx

+
∫
Ω

∣∣∣∣∣
∫T
t

k(τ, t)wxxdτ

∣∣∣∣∣
2

dx+
∫
Ω
|∇ · (Δw)|2dx

⎞
⎠dt.

(3.42)



Abstract and Applied Analysis 17

As based on (3.32), the kernel has been modified as

∫ t2
t1

∫
Ω

∣∣∣∣∣
∫T
t

k(τ, t)wxxdτ

∣∣∣∣∣
2

dxdt

≤
∫T
0

∫
Ω

(∫ t2
t1

|k(τ, t)|2e−2sϕsϕdτ
)(∫ t2

t1

|wxx|2e2sϕs−1ϕ−1dτ

)
dxdt

≤ C‖k‖2L∞

∫ t2
t1

∫
Ω
e2sϕs−1ϕ−1|wxx|2dxdt.

(3.43)

Using (3.43) in (3.42), then

∫ t2
t1

∫
Ω
|w(0, x)|2e−μs/(t(t−T))dxdt

≤ C
(∫

Q

∣∣g∣∣2dxdt +
∫
Q

|∇w|2dxdt +
∫
Q

|∇ · (Δw)|2dxdt

+
∫ t2
t1

∫
Ω
e2sϕ
(
ϕ2
xϕ

2
xx|w|2 + s−1ϕ−1|wxx|2

)
dxdt

)
.

(3.44)

Since

inf
t∈(t1,t2)

{
e−μs/β(t)

}
≥ C > 0 (3.45)

and the Carleman estimate (3.3) using in (3.44), we obtain

∫
Ω
|w(0, x)|2dx ≤ C

(∫
Q

e2sϕ
∣∣g∣∣2dxdt +

∫
Qω

e2sϕϕ2
xϕ

2
xx|w|2dxdt

)
.

(3.46)

4. Controllability Results

Now we are ready to give the proof of Theorem 2.2 result, which will be a main part of our
work.

Proof of Theorem 2.2. Let us fix T > 0, a ∈ W1,∞(0, T : L2(ω)), b ∈ L∞(Q), and y0 ∈ H1
0(Ω).

For every ε > 0, the penalized formula

Minimize
{
Hε(u);u ∈ L2(Q)

}
> 0, (4.1)
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where the functionalHε is (see [9, 11])

Hε(u) =
1
2

∫
Q

|u|2dxdt + 1
2ε

∫
Ω

∣∣y(T, x)∣∣2dx. (4.2)

Here y is a solution of (1.2), which is associated with the control u. SinceHε is a continuous
strictly convex functional in L2(Q), then Hε has a unique solution (uε, yε) (for any ε > 0).
If (uε, yε) (as ε → 0) is a null controllability solution of the system (1.1), then due to
penalization property (1/ε)

∫
Ω |y(T, x)|2dx, the limit exists in an appropriate norm. As based

on the pontryagin maximum principle, the maximal condition on the control uε is

uε = χωwε a.e in Q, (4.3)

and wu ∈ C([0, T];L2(Ω)) ∩ L2(0, T ;H1
0(Ω)) is a solution for

(wε)t + Δwε + (wε)x −wε + (wε)xxx −
∫T
t

k(τ, t)(wε)xxdτ = 0 in Q, (4.4)

wε = −1
ε
yε(T, x), in Ω, (4.5)

wε = 0, in Σ. (4.6)

Now we multiply (4.4) by yε (where y = yε), (1.2) by wε and integrate on Q,

∫
Qω

∣∣yε∣∣2dxdt + 1
ε

∫
Ω

∣∣yε(T, x)∣∣2dx −
∫
Ω
y0(x)wε(x, 0)dx +

∫
Q

fwεdxdt = 0. (4.7)

Applying the observability inequality (3.36), we have

∣∣∣∣
∫
Ω
y0(x)wε(x, 0)dx

∣∣∣∣ ≤ C
(∫

Qω

|wε(x, 0)|2dxdt
)1/2∣∣y0∣∣2. (4.8)

Using the Carleman estimate (3.3) and Lemma 2.1 condition,

∣∣∣∣∣
∫
Q

fwεdxdt

∣∣∣∣∣ ≤ C
(∫

Q

e2sϕϕ2
xϕ

2
xx|wε|2dxdt

)1/2(∫
Q

f2
1dxdt

)1/2

≤ C
(∫

Qω

e2sϕϕ2
xϕ

2
xx|wε|2dxdt

)1/2∥∥f1∥∥L2(Ω),

(4.9)

where C is a positive constant that is independent of ε and y0. By virtue of (4.7)–(4.9), we
obtain

∫
Q

∣∣yε∣∣2dxdt + 1
ε

∫
Ω

∣∣yε(T, x)∣∣2dx ≤ C
(∣∣y0∣∣22 +

∥∥f1∥∥2L2(Q)

)
, ∀ε > 0. (4.10)
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By the condition (4.10), we can observe

∫
Q

|uε|2dxdt + 1
ε

∫
Ω

∣∣yε(T, x)∣∣2dx ≤ C
(∣∣y0∣∣22 +

∥∥f1∥∥2L2(Q)

)
. (4.11)

Since uε is bounded in L2(Q), there exists a subsequence denoted by ε such that

uε −→ u∗ weakly in L2(Q),

yε −→ y∗ weakly in L2
(
0, T ;H1(Ω)

)
as ε −→ 0.

(4.12)

Clearly y∗ = yu
∗
, letting ε → 0 in (4.11), then we have |yε(T, x)|2 = 0 a.e. x ∈ Ω. This

completes the proof of Theorem 2.2.

5. Conclusions

In this paper, we investigated the null controllability result for linearized KdV-Burgers equa-
tion with memory. It is suggested as a model which permits an analytical treatment of the
Carleman estimate to prove the stability. The observability inequality has observed the null
controllability, and the kernel term expression been observed in yxx. It grants the stability, so
our model could be heuristically useful in the studies of nonlinear water waves in a shallow
channel, compressible gas, strong hydrodynamic turbulence as well as pressure force, and so
forth, [1, 2].
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