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We establish some delay integral inequalities on time scales, which on one hand provide a handy
tool in the study of qualitative as well as quantitative properties of solutions of certain delay
dynamic equations on time scales and on the other hand unify some known continuous and dis-
crete results in the literature.

1. Introduction

During the past decades, with the development of the theory of differential and integral
equations as well as difference equations, a lot of integral and difference inequalities have
been discovered (e.g., see [1–13] and the references therein), which play an important role in
the research of boundedness, global existence, stability of solutions of differential and integral
equations as well as difference equations. On the other hand, Hilger [14] initiated the theory
of time scales as a theory capable to contain both difference and differential calculus in a
consistent way. Since then many authors have expounded on various aspects of the theory
of dynamic equations on time scales including various inequalities on time scales (e.g., see
[15–24], and the references therein). However, delay integral inequalities on time scales have
been paid little attention so far. Recent results in this direction include the works of Li [25]
and Ma and Pečarić [26] to our best knowledge.
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In this paper, we will establish some new delay integral inequalities on time scales,
which unify some known continuous and discrete results in the literature. New explicit
bounds for unknown functions concerned are obtained due to the presented inequalities.
Some applications will be presented for the established results.

Throughout this paper, R denotes the set of real numbers and R+ = [0,∞), while Z

denotes the set of integers. For two given sets G, H, we denote the set of maps from G to H
by (G,H).

2. Some Preliminaries on Time Scales

A time scale is an arbitrary nonempty closed subset of the real numbers. In this paper, T

denotes an arbitrary time scale. On T we define the forward and backward jump operators
σ ∈ (T,T) and ρ ∈ (T,T) such that σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

Definition 2.1. The graininess μ ∈ (T,R+) is defined by μ(t) = σ(t) − t.

Remark 2.2. Obviously, μ(t) = 0 if T = R, while μ(t) = 1 if T = Z.

Definition 2.3. A point t ∈ T is said to be left-dense if ρ(t) = t and t /= inf T, right-dense if
σ(t) = t and t /= sup T, left-scattered if ρ(t) < t, and right-scattered if σ(t) > t.

Definition 2.4. The set T
κ is defined to be T if T does not have a left-scattered maximum,

otherwise it is T without the left-scattered maximum.

Definition 2.5. A function f ∈ (T,R) is called rd-continuous if it is continuous in right-dense
points and if the left-sided limits exist in left-dense points, while f is called regressive if
1 + μ(t)f(t)/= 0. Crd denotes the set of rd-continuous functions, while � denotes the set of all
regressive and rd-continuous functions, and �+ = {f |f ∈ �, 1 + μ(t)f(t) > 0, for all t ∈ T}.

Definition 2.6. For some t ∈ T
κ, and a function f ∈ (T,R), the delta derivative of f at t is

denoted by fΔ(t) (provided it exists) with the property such that for every ε > 0 there exists
a neighborhood U of t satisfying

∣
∣
∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∣
∣
∣ ≤ ε|σ(t) − s| ∀s ∈ U. (2.1)

Remark 2.7. If T = R, then fΔ(t) becomes the usual derivative f ′(t), while fΔ(t) = f(t+1)−f(t)
if T = Z, which represents the forward difference.

Definition 2.8. For a, b ∈ T and a function f ∈ (T,R), the Cauchy integral of f is defined by

∫b

a

f(t)Δt = F(b) − F(a), (2.2)

where FΔ(t) = f(t), t ∈ T
κ.

The following two theorems include some important properties for delta derivative and
the Cauchy integral on time scales.
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Theorem 2.9 (see [27]). If f, g ∈ (T,R), and t ∈ T
κ, then

(i)

fΔ(t) =

⎧

⎪⎪⎨

⎪⎪
⎩

f(σ(t)) − f(t)
μ(t)

if μ(t)/= 0,

lim
s→ t

f(t) − f(s)
t − s

if μ(t) = 0.
(2.3)

(ii) If f, g are delta differentials at t, then fg is also delta differential at t, and

(

fg
)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t). (2.4)

Theorem 2.10 (see [27]). If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

(i)
∫b

a[f(t) + g(t)]Δt =
∫b

a f(t)Δt +
∫b

a g(t)Δt,

(ii)
∫b

a(αf)(t)Δt = α
∫b

a f(t)Δt,

(iii)
∫b

a f(t)Δt = − ∫ab f(t)Δt,

(iv)
∫b

a f(t)Δt =
∫c

a f(t)Δt +
∫b

c f(t)Δt,

(v)
∫a

a f(t)Δt = 0,

(vi) if f(t) ≥ 0 for all a ≤ t ≤ b, then
∫b

a f(t)Δt ≥ 0.

Definition 2.11. The cylinder transformation ξh : Ch → Zh is defined by

ξh(z) =

⎧

⎪
⎨

⎪
⎩

Log(1 + hz)
h

, if h/= 0
(

for z/= − 1
h

)

,

z, if h = 0,
(2.5)

where Log is the principal logarithm function.

Definition 2.12. For p ∈ � and s, t ∈ T, the exponential function is defined by

ep(t, s) = exp

(∫ t

s

ξμ(τ)
(

p(τ)
)

Δτ

)

. (2.6)

Remark 2.13. If T = R, then for s, t ∈ R, ep(t, s) = exp(
∫ t

s p(τ)dτ). If T = Z, then for s, t ∈ Z

and s < t, ep(t, s) =
∏t−1

τ=s[1 + p(τ)].

The following two theorems include some known properties on the exponential
function.

Theorem 2.14 (see [28]). If p ∈ �, then the following conclusions hold:

(i) ep(t, t) ≡ 1, and e0(t, s) ≡ 1,
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(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s),

(iii) ep(t, s) = 1/ep(s, t) = e�p(s, t),

where �p = −p/(1 + μp).

Theorem 2.15 (see [28]). If p ∈ �, and fix t0 ∈ T, then the exponential function ep (t, t0) is the
unique solution of the following initial value problem:

yΔ(t) = p(t)y(t),

y(t0) = 1.
(2.7)

For more details about the calculus of time scales, we advise to refer to [29].

3. Main Results

In the rest of this paper, for the sake of convenience, we denote T0 = [t0,∞)∩T, where t0 ∈ T,
and always assume T0 ⊂ T

κ.

Lemma 3.1 (see [30, Theorem 2.2]). Let t0 ∈ T
κ and ω : T × T

κ → R be continuous at (t, t),
where t ≥ t0, t ∈ T

κ with t > t0. Assume that ωΔ(t, ·) is rd-continuous on [t0, σ(t)]. If for any ε > 0,
there exists a neighborhood U of t, independent of τ ∈ [t0, σ(t)], such that

∣
∣
∣ω(σ(t), τ) −ω(s, τ) −ωΔ(t, τ)(σ(t) − s)

∣
∣
∣ ≤ ε|σ(t) − s| ∀s ∈ U, (3.1)

where ωΔ denotes the derivative of ω with respect to the first variable, then

g(t) :=
∫ t

t0

ω(t, τ)Δτ (3.2)

implies

gΔ(t) =
∫ t

t0

ωΔ(t, τ)Δτ +ω(σ(t), t). (3.3)

Theorem 3.2. Suppose u ∈ Crd(T0,R+), ω ∈ (R+,R+) with ω(u) > 0 for u > 0, and ω is
nondecreasing. τi ∈ (T0,T) with τi(t) ≤ t, i = 1, 2, and −∞ < α = inf{min{τi(t), i = 1, 2}, t ∈
T0} ≤ t0. f, g ∈ Crd([α,∞) ∩ T,R+). p, q, C are constants, and p > q > 0, C ≥ 0. If for t ∈ T0, u(t)
satisfies the following inequality:

up(t) ≤ Cp/(p−q) +
p

p − q

∫ t

t0

[

f(τ1(s))uq(τ1(s))ω(u(τ1(s))) + g(τ2(s))uq(τ2(s))
]

Δs (3.4)
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with the initial condition

u(t) = φ(t), t ∈ [α, t0] ∩ T,

φ(τi(t)) ≤ C1/(p−q), ∀t ∈ T0, τi(t) ≤ t0, i = 1, 2,
(3.5)

where φ ∈ Crd([α, t0] ∩ T,R+), then,

u(t) ≤
{

G−1
[

G

(

C +
∫ t

t0

g(τ2(s))Δs

)

+
∫ t

t0

f(τ1(s))Δs

]}1/(p−q)
, t ∈ T0, (3.6)

where G(x) =
∫x

1 1/ω(r1/(p−q))dr, x > 0 with G(∞) = ∞, and G−1 is the inverse of G.

Proof. Assume C > 0. Denote the right side of (3.4) by z(t). Then

u(t) ≤ z1/p(t), t ∈ T0. (3.7)

If τi(t) ≥ t0, for t ∈ T0, since τi(t) ≤ t, then τi(t) ∈ T0, and from (3.7) we have

u(τi(t)) ≤ z1/p(τi(t)) ≤ z1/p(t), i = 1, 2. (3.8)

If τi(t) ≤ t0, from (3.5) we obtain

u(τi(t)) = φ(τi(t)) ≤ C1/(p−q) ≤ z1/p(t), i = 1, 2. (3.9)

So from (3.8) and (3.9)we always have

u(τi(t)) ≤ z1/p(t), i = 1, 2, t ∈ T0. (3.10)

Furthermore,

zΔ(t) =
p

p − q

[

f(τ1(t))uq(τ1(t))ω(u(τ1(t))) + g(τ2(t))uq(τ2(t))
]

≤ p

p − q

[

f(τ1(t))zq/p(t)ω
(

z1/p(t)
)

+ g(τ2(t))zq/p(t)
]

,

(3.11)

that is,

zΔ(t)
zq/p(t)

≤ p

p − q

[

f(τ1(t))ω
(

z1/p(t)
)

+ g(τ2(t))
]

, (3.12)
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According to [29, Theorem 1.90], considering zΔ(t) ≥ 0, we have

(
p

p − q
z(p−q)/p(t)

)Δ

= zΔ(t)
∫1

0

[

z(t) + hμ(t)zΔ(t)
]−q/p

dh

=
zΔ(t)
zq/p(t)

∫1

0

[

1 + hμ(t)
zΔ(t)
z(t)

]−q/p
dh

≤ zΔ(t)
zq/p(t)

.

(3.13)

Combining (3.12) and (3.13), we obtain

(

z(p−q)/p(t)
)Δ ≤ f(τ1(t))ω

(

z1/p(t)
)

+ g(τ2(t)). (3.14)

Setting t = s in (3.14), an integration with respect to s from t0 to t yields

z(p−q)/p(t) − z(p−q)/p(t0) ≤
∫ t

t0

[

f(τ1(s))ω
(

z1/p(s)
)

+ g(τ2(s))
]

Δs. (3.15)

Since z(t0) = Cp/(p−q), then (3.15) implies

z(t) ≤
{

C +
∫ t

t0

[

f(τ1(s))ω
(

z1/p(s)
)

+ g(τ2(s))
]

Δs

}p/(p−q)
. (3.16)

Fix T ∈ T0, and let t ∈ [t0, T] ∩ T. Then,

z(t) ≤
{

C +
∫T

t0

g(τ2(s))Δs +
∫ t

t0

f(τ1(s))ω
(

z1/p(s)
)

Δs

}p/(p−q)
. (3.17)

Denote v(t) by C +
∫T

t0
g(τ2(s))Δs +

∫ t

t0
f(τ1(s))ω(z1/p(s))Δs. Then,

z(t) ≤ vp/(p−q)(t), t ∈ [t0, T] ∩ T, (3.18)

vΔ(t) = f(τ1(t))ω
(

z1/p(t)
)

≤ f(τ1(t))ω
(

v1/(p−q)(t)
)

, (3.19)

that is,

vΔ(t)
ω
(

v1/(p−q)(t)
) ≤ f(τ1(t)). (3.20)
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On the other hand, for t ∈ [t0, T] ∩ T, if σ(t) > t, then

[G(v(t))]Δ =
G(v(σ(t))) −G(v(t))

σ(t) − t
=

1
σ(t) − t

∫v(σ(t))

v(t)

1
ω
(

r1/(p−q)
)dr

≤ v(σ(t)) − v(t)
σ(t) − t

1
ω
(

v1/(p−q)(t)
) =

vΔ(t)
ω
(

v1/(p−q)(t)
) .

(3.21)

If σ(t) = t, then

[G(v(t))]Δ = lim
s→ t

G(v(t)) −G(v(s))
t − s

= lim
s→ t

1
t − s

∫v(t)

v(s)

1
ω
(

r1/(p−q)
)dr

= lim
s→ t

v(t) − v(s)
t − s

1
ω
(

ξ1/(p−q)
) =

vΔ(t)
ω
(

v1/(p−q)(t)
) ,

(3.22)

where ξ lies between v(s) and v(t). So from (3.21) and (3.22) we always have

[G(v(t))]Δ ≤ vΔ(t)
ω
(

v1/(p−q)(t)
) . (3.23)

Combining (3.20) and (3.23), we deduce

[G(v(t))]Δ ≤ f(τ1(t)). (3.24)

Setting t = s in (3.24), an integration with respect to s from t0 to t yields

G(v(t)) −G(v(t0)) ≤
∫ t

t0

f(τ1(s))Δs. (3.25)

Considering v(t0) = C +
∫T

t0
g(τ2(s))Δs, and G is increasing, then we obtain

v(t) ≤ G−1
[

G

(

C +
∫T

t0

g(τ2(s))Δs

)

+
∫ t

t0

f(τ1(s))Δs

]

, t ∈ [t0, T] ∩ T. (3.26)

Combining (3.7), (3.18), and (3.26), we have

u(t) ≤
{

G−1
[

G

(

C +
∫T

t0

g(τ2(s))Δs

)

+
∫ t

t0

f(τ1(s))Δs

]}1/(p−q)
, t ∈ [t0, T] ∩ T. (3.27)

Setting t = T in (3.27), considering that T ∈ T0 is selected arbitrarily, after substituting T with
t, we get the desired result.

If C = 0, then we carry out the process above with C replaced by ε, where ε > 0, and
after letting ε → 0, we also get the desired result. So the proof is complete.
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Remark 3.3. If we take T = R, t0 = 0, then Theorem 3.2 reduces to [31, Theorem 2.1]. If T = R,
t0 = 0, p = 2, q = 1, then Theorem 3.2 reduces to [32, Theorem 1]. If T = R, t0 = 0, p = 2, q = 1,
τ1(t) = τ2(t) = t, then Theorem 3.2 reduces to [33, Theorem 3(a6)]. If we take T = Z, t0 = 0,
p = 2, q = 1, τ1(t) = τ2(t) = t, then Theorem 3.2 reduces to [33, Theorem 6(b6)].

Theorem 3.4. Suppose u, a ∈ Crd(T0,R+), and a is nondecreasing. α, φ, τi, i = 1, 2 are defined
as in Theorem 3.2. f, h, fΔ

t , h
Δ
t ∈ Crd(T0 × ([α,∞) ∩ T),R+), g, d, gΔ

t , d
Δ
t ∈ Crd(T2

0,R+), where
fΔ
t , h

Δ
t , g

Δ
t , d

Δ
t denote the delta derivative of f, h, g, d with respect to the first variable. If for t ∈ T0,

u(t) satisfies the following inequality:

u(t) ≤ a(t) +
∫ t

t0

[

f(t, τ1(s))u(τ1(s)) + g(t, s)u(s)
]

Δs

+
∫ t

t0

h(t, τ2(s))u(τ2(s))Δs

∫ t

t0

d(t, s)u(s)Δs

(3.28)

with the initial condition

u(t) = φ(t), t ∈ [α, t0] ∩ T,

φ(τi(t)) ≤ a(t), ∀t ∈ T0, τi(t) ≤ t0, i = 1, 2,
(3.29)

then

u(t) ≤ a(t)e�(−F1)(t, t0)

1 + a(t)
∫ t

t0
e�(−F1)(σ(s), t0)F2(s)Δs

, t ∈ T0 (3.30)

provided that 1 + a(t)
∫ t

t0
e�(−F1)(σ(s), t0)F2(s)Δs > 0 and 1 − μ(t)F1(t) > 0 for ∀t ∈ T0, where

F1(t) =

{∫ t

t0

[

f(t, τ1(s)) + g(t, s)
]

Δs

}Δ

, F2(t) =

{∫ t

t0

h(t, τ2(s))Δs

∫ t

t0

d(t, s)Δs

}Δ

.

(3.31)

Proof. Assume a(0) > 0. Fix T ∈ T0, and let t ∈ [t0, T]∩T. If the right side of (3.28) is a(t)+z(t),
then

u(t) ≤ a(t) + z(t), (3.32)

and similar to the process of (3.8)–(3.10), we have

u(τi(t)) ≤ a(t) + z(t), i = 1, 2. (3.33)
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Furthermore, by Lemma 3.1 and Theorem 2.9(ii)

zΔ(t) =
∫ t

t0

[

fΔ
t (t, τ1(s))u(τ1(s)) + gΔ

t (t, s)u(s)
]

Δs + f(σ(t), τ1(t))u(τ1(t)) + g(σ(t), t)u(t)

+

[∫ t

t0

hΔ
t (t, τ2(s))u(τ2(s))Δs + h(σ(t), τ2(t))u(τ2(t))

]∫σ(t)

t0

d(σ(t), s)u(s)Δs

+
∫ t

t0

h(t, τ2(s))u(τ2(s))Δs

[∫ t

t0

dΔ
t (t, s)u(s)Δs + d(σ(t), t)

]

≤ [a(t) + z(t)]

{∫ t

t0

[

fΔ
t (t, τ1(s)) + gΔ

t (t, s)
]

Δs + f(σ(t), τ1(t)) + g(σ(t), t)

}

+ [a(t) + z(t)]2
{[∫ t

t0

hΔ
t (t, τ2(s))Δs + h(σ(t), τ2(t))

]∫σ(t)

t0

d(σ(t), s)Δs

+
∫ t

t0

h(t, τ2(s))Δs

[∫ t

t0

dΔ
t (t, s)Δs + d(σ(t), t)

]}

≤ [a(T) + z(t)]

{∫ t

t0

[

f(t, τ1(s)) + g(t, s)
]

Δs

}Δ

+ [a(T) + z(t)]2
{∫ t

t0

h(t, τ2(s))Δs

∫ t

t0

d(t, s)Δs

}Δ

,

(3.34)

that is,

zΔ(t)

[a(T) + z(t)]2
≤ 1

a(T) + z(t)

{∫ t

t0

[

f(t, τ1(s)) + g(t, s)
]

Δs

}Δ

+

{∫ t

t0

h(t, τ2(s))Δs

∫ t

t0

d(t, s)Δs

}Δ

≤ 1
a(T) + z(t)

F1(t) + F2(t),

(3.35)

where F1, F2 are defined in (3.31).
Considering zΔ(t) ≥ 0, from (3.35), we deduce

zΔ(t)
[a(T) + z(t)][a(T) + z(σ(t))]

≤ zΔ(t)

[a(T) + z(t)]2
≤ 1

a(T) + z(t)
F1(t) + F2(t). (3.36)
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Let v(t) = 1/(a(T) + z(t)). Then, by Theorem 2.9(ii), vΔ(t) = −zΔ(t)/[a(T) + z(t)][a(T) +
z(σ(t))], and (3.36) implies

vΔ(t) + v(t)F1(t) ≥ F2(t). (3.37)

On the other hand, since 1 − μ(t)F1(t) > 0, then 1 + μ(t)[�(−F1)(t)] = 1/(1 − μ(t)F1(t)) > 0.
So �(−F1) ∈ �+, and e�(−F1)(t, t0) > 0, ∀t ∈ T0. By Theorem 2.14(i), we have e�(−F1)(t0, t0) = 1.
Furthermore, by a combination of Theorem 2.9(ii), Theorems 2.15, and 2.14, we obtain

[

v(t)e�(−F1)(t, t0)
]Δ =

[

e�(−F1)(t, t0)
]Δ

v(t) + e�(−F1)(σ(t), t0)v
Δ(t)

= (�(−F1))(t)e�(−F1)(t, t0)v(t) + e�(−F1)(σ(t), t0)v
Δ(t)

= e�(−F1)(σ(t), t0)
[

(�(−F1))(t)
1 + μ(t)(�(−F1))(t)

v(t) + vΔ(t)
]

= e�(−F1)(σ(t), t0)
[

vΔ(t) + F1(t)v(t)
]

.

(3.38)

Combining (3.37) and (3.38), we deduce

[

v(t)e�(−F1)(t, t0)
]Δ ≥ e�(−F1)(σ(t), t0)F2(t). (3.39)

Setting t = s in (3.39), an integration with respect to s from t0 to t yields

v(t)e�(−F1)(t, t0) − v(t0)e�(−F1)(t0, t0) ≥
∫ t

t0

e�(−F1)(σ(s), t0)F2(s)Δs. (3.40)

Considering v(t0) = 1/a(T), it is then followed by

v(t) ≥
1 + a(T)

∫ t

t0
e�(−F1)(σ(s), t0)F2(s)Δs

a(T)e�(−F1)(t, t0)
, (3.41)

and furthermore

a(T) + z(t) ≤ a(T)e�(−F1)(t, t0)

1 + a(T)
∫ t

t0
e�(−F1)(σ(s), t0)F2(s)Δs

. (3.42)

Combining (3.32) and (3.42), we obtain

u(t) ≤ a(T)e�(−F1)(t, t0)

1 + a(T)
∫ t

t0
e�(−F1)(σ(s), t0)F2(s)Δs

, t ∈ [t0, T] ∩ T. (3.43)

Setting t = T in (3.43), since T ∈ T0 is selected arbitrarily, after substituting T with t, we get
the desired result.
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If a(0) = 0, then we carry out the process above with a(t) replaced by a(t)+ε, and after
letting ε → 0, we also get the desired result. So the proof is complete.

Remark 3.5. If we take T = R, t0 = 0, then Theorem 3.4 reduces to [34, Corollary 2.5]. If T = R,
t0 = 0, τ1(t) = τ2(t) = t, a(t) ≡ C, where C is a nonnegative constant, and f(t, s), g(t, s), h(t, s)
are replaced by f(s), g(s), h(s), then Theorem 3.4 reduces to [35, Theorem 1]. If we take
T = Z, t0 = 0, τ1(t) = τ2(t) = t, (t) ≡ C, where C is a nonnegative constant, and f(t, s), (t, s),
h(t, s) are replaced by f(s), g(s), h(s), then Theorem 3.4 reduces to [35, Theorem 5].

Next wewill study the delay integral inequality on time scales with the following form

up(t) ≤ Cp/(p−q) +
p

p − q

∫ t

t0

f(τ1(s))up(τ1(s))Δs

+
p

p − q

∫ t

t0

[

f(τ1(s))uq(τ1(s))
∫ s

t0

g(τ1(ξ))up−q(τ1(ξ))Δξ + h(τ2(s))uq(τ2(s))

]

Δs,

(3.44)

where u, f, g, p, q, C, α, φ, τi, i = 1, 2 are defined as in Theorem 3.2, and h ∈ Crd([α,∞)∩T,R+).

Lemma 3.6. Suppose u, f, g, τ1 are defined as in Theorem 3.2, and (f + g)(τ1(·)) ∈ �+, then for
t ∈ T0,

u(t) ≤ 1 +
∫ t

t0

f(τ1(s))u(s)Δs +
∫ t

t0

[

f(τ1(s))
∫ s

t0

g(τ1(ξ))u(ξ)Δξ

]

Δs (3.45)

implies

u(t) ≤ 1 +
∫ t

t0

f(τ1(s))e(f+g)(τ1(·))(s, t0)Δs. (3.46)

Proof. Denote the right side of (3.46) by z(t). Then, u(t) ≤ z(t), t ∈ T0, and

zΔ(t) = f(τ1(t))u(t) + f(τ1(t))
∫ t

t0

g(τ1(ξ))u(ξ)Δξ

≤ f(τ1(t))z(t) + f(τ1(t))
∫ t

t0

g(τ1(ξ))z(ξ)Δξ.

(3.47)

Letm(t) = z(t) +
∫ t

t0
g(τ1(ξ))z(ξ)Δξ. Then, z(t) ≤ m(t), and zΔ(t) ≤ f(τ1(t))m(t). Furthermore,

mΔ(t) = zΔ(t) + g(τ1(t))z(t) ≤ f(τ1(t))m(t) + g(τ1(t))m(t). (3.48)

Since (f + g)(τ1(·)) ∈ �+, by [28, Theorem 5.4], we have m(t) ≤ e(f+g)(τ1(·))(t, t0). So,

zΔ(t) ≤ f(τ1(t))e(f+g)(τ1(·))(t, t0). (3.49)
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Using z(t0) = 1, an integration for (3.49) from t0 to t yields

z(t) ≤ 1 +
∫ t

t0

f(τ1(s))e(f+g)(τ1(·))(s, t0)Δs, (3.50)

which confirms the desired inequality. So the proof is complete.

Theorem 3.7. If for t ∈ T0, u(t) satisfies the inequality (3.44) with the initial condition (3.5), then

u(t) ≤
{

J(t)

[

1 +
∫ t

t0

f(τ1(s))e(f+g)(τ1(·))(s, t0)Δs

]}1/(p−q)
, t ∈ T0 (3.51)

provided (f + g)(τ1(·)) ∈ �+, where

J(t) = C +
∫ t

t0

h(τ2(s))Δs. (3.52)

Proof. Let

z(t) = (C + ε)p/(p−q)

+
p

p − q

∫ t

t0

[

f(τ1(s))up(τ1(s))Δs +
p

p − q

∫ t

t0

f(τ1(s))uq(τ1(s))

×
∫ s

t0

g(τ1(ξ))up−q(τ1(ξ))Δξ + h(τ2(s))uq(τ2(s))

]

Δs,

(3.53)

where ε > 0 is an arbitrary small constant. Then,

u(t) ≤ z1/p(t), t ∈ T0, (3.54)

and similar to (3.8)–(3.10)

u(τi(t)) ≤ z1/p(t), i = 1, 2, t ∈ T0. (3.55)



Abstract and Applied Analysis 13

Furthermore,

zΔ(t) =
p

p − q
f(τ1(t))up(τ1(t))

+
p

p − q

[

f(τ1(t))uq(τ1(t))
∫ t

t0

g(τ1(ξ))up−q(τ1(ξ))Δξ + h(τ2(t))uq(τ2(t))

]

≤ p

p − q
f(τ1(t))z(t)

+
p

p − q

[

f(τ1(t))zq/p(t)
∫ t

t0

g(τ1(ξ))z(p−q)/p(ξ)Δξ + h(τ2(t))zq/p(t)

]

.

(3.56)

Using (3.13), we obtain ((p/(p − q))z(p−q)/p(t))Δ ≤ (zΔ(t)/zq/p(t)). So (3.56) implies

(

z(p−q)/p(t)
)Δ ≤ f(τ1(t))z(p−q)/p(t) + f(τ1(t))

∫ t

t0

g(τ1(ξ))z(p−q)/p(ξ)Δξ + h(τ2(t)). (3.57)

Considering z(t0) = (C + ε)p/(p−q), an integration for (3.57) from t0 to t yields

z(p−q)/p(t) ≤ C + ε +
∫ t

t0

f(τ1(s))z(p−q)/p(s)Δs

+
∫ t

t0

[

f(τ1(s))
∫ s

t0

g(τ1(ξ))z(p−q)/p(ξ)Δξ + h(τ2(s))

]

Δs

= Jε(t) +
∫ t

t0

f(τ1(s))z(p−q)/p(s)Δs

+
∫ t

t0

[

f(τ1(s))
∫ s

t0

g(τ1(ξ))z(p−q)/p(ξ)Δξ

]

Δs,

(3.58)

where Jε(t) = J(t) + ε, and J(t) is defined in (3.52). Then,

z(p−q)/p(t)
Jε(t)

≤ 1 +
∫ t

t0

f(τ1(s))
z(p−q)/p(s)

Jε(s)
Δs +

∫ t

t0

[

f(τ1(s))
∫s

t0

g(τ1(ξ))
z(p−q)/p(ξ)

Jε(ξ)
Δξ

]

Δs.

(3.59)

Denote z(p−q)/p(t)/Jε(t) = v(t). Then,

v(t) ≤ 1 +
∫ t

t0

f(τ1(s))v(s)Δs +
∫ t

t0

[

f(τ1(s))
∫s

t0

g(τ1(ξ))v(ξ)Δξ

]

Δs. (3.60)
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A suitable application of Lemma 3.6 to (3.60) yields

v(t) ≤ 1 +
∫ t

t0

f(τ1(s))e(f+g)(τ1(·))(s, t0)Δs. (3.61)

Combining (3.54) and (3.61), we obtain

u(t) ≤
{

Jε(t)

[

1 +
∫ t

t0

f(τ1(s))e(f+g)(τ1(·))(s, t0)Δs

]}1/(p−q)
. (3.62)

After letting ε → 0, we get the desired result. So the proof is complete.

Remark 3.8. If we take T = R, t0 = 0, p = 2, q = 1, τ1(t) = τ2(t) = t, then Theorem 3.7 reduces to
[33, Theorem 1(a2)]. If we take T = Z, t0 = 0, p = 2, q = 1, τ1(t) = τ2(t) = t, then Theorem 3.7
reduces to [33, Theorem 4(b2)].

Now we present a more general inequality than in Theorem 3.7.

Theorem 3.9. Suppose u, f, g,ω, p, q, C, α, φ, τi, i = 1, 2 are defined as in Theorem 3.2, and h ∈
Crd([α,∞) ∩ T,R+). If for t ∈ T0, u(t) satisfies the following inequality:

up(t) ≤ Cp/(p−q) +
p

p − q

∫ t

t0

f(τ1(s))up(τ1(s))Δs +
p

p − q

∫ t

t0

[

f(τ1(s))uq(τ1(s))

×
∫s

t0

g(τ1(ξ))ω(u(τ1(ξ)))Δξ + h(τ2(s))uq(τ2(s))]Δs

(3.63)

with the initial condition (3.5), then for t ∈ T0,

u(t) ≤
{

J(t) +
∫ t

t0

f(τ1(s))G̃−1
{

G̃(J(s)) +
∫s

t0

[

f(τ1(ξ)) + g(τ1(ξ))
]

Δξ

}

Δs

}1/(p−q)
, (3.64)

where J(t) is defined as in Theorem 3.7, and

G̃(x) =
∫x

1

1
r +ω

(

r1/(p−q)
) dr, x > 0 (3.65)

with G̃(∞) = ∞, and G̃−1 is the inverse of G̃.



Abstract and Applied Analysis 15

Proof. Let the right side of (3.63) is z(t), ε > 0 is an arbitrary small constant, and Jε(t) is
defined as in Theorem 3.7. Then, u(t) ≤ z1/p(t), t ∈ T0, and similar to the process of (3.53)–
(3.58), we obtain

z(p−q)/p(t) ≤ Jε(t) +
∫ t

t0

f(τ1(s))z(p−q)/p(s)Δs

+
∫ t

t0

[

f(τ1(s))
∫ s

t0

g(τ1(ξ))ω
(

z1/p(ξ)
)

Δξ

]

Δs.

(3.66)

Fix T ∈ T0, and let t ∈ [t0, T] ∩ T. Considering Jε(t) is nondecreasing, we deduce that

z(p−q)/p(t) ≤ Jε(T) +
∫ t

t0

f(τ1(s))z(p−q)/p(s)Δs

+
∫ t

t0

[

f(τ1(s))
∫ s

t0

g(τ1(ξ))ω
(

z1/p(ξ)
)

Δξ

]

Δs.

(3.67)

Denote the right side of (3.66) by v(t). Then, z(p−q)/p(t) ≤ v(t), t ∈ [t0, T] ∩ T, and

vΔ(t) = f(τ1(t))z(p−q)/p(t) + f(τ1(t))
∫ t

t0

g(τ1(ξ))ω
(

z1/p(ξ)
)

Δξ

≤ f(τ1(t))v(t) + f(τ1(t))
∫ t

t0

g(τ1(ξ))ω
(

v1/(p−q)(ξ)
)

Δξ.

(3.68)

Denote m(t) = v(t) +
∫ t

t0
g(τ1(ξ))ω(v1/(p−q)(ξ))Δξ. Then, v(t) ≤ m(t), and

vΔ(t) ≤ f(τ1(t))m(t). (3.69)

Furthermore,

mΔ(t) = vΔ(t) + g(τ1(t))ω
(

v1/(p−q)(t)
)

≤ f(τ1(t))m(t) + g(τ1(t))ω
(

m1/(p−q)(t)
)

≤ [f(τ1(t)) + g(τ1(t))
][

m(t) +ω
(

m1/(p−q)(t)
)]

,

(3.70)

that is,

mΔ(t)
m(t) +ω

(

m1/(p−q)(t)
) ≤ f(τ1(t)) + g(τ1(t)). (3.71)

On the other hand, similar to (3.21)–(3.23), we have

[

G̃(m(t))
]Δ ≤ mΔ(t)

m(t) +ω
(

m1/(p−q)(t)
) . (3.72)
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So combining (3.71) and (3.72), we deduce

[

G̃(m(t))
]Δ ≤ f(τ1(t)) + g(τ1(t)). (3.73)

Considering m(t0) = z(t0) = Jε(T), an integration for (3.73) from t0 to t yields

G̃(m(t)) ≤ G̃(Jε(T)) +
∫ t

t0

[

f(τ1(ξ)) + g(τ1(ξ))
]

Δξ. (3.74)

Since G̃ is increasing, then

m(t) ≤ G̃−1
{

G̃(Jε(T)) +
∫ t

t0

[

f(τ1(ξ)) + g(τ1(ξ))
]

Δξ

}

. (3.75)

Combining (3.69) and (3.75), we obtain

vΔ(t) ≤ f(τ1(t))G̃−1
{

G̃(Jε(T)) +
∫ t

t0

[

f(τ1(ξ)) + g(τ1(ξ))
]

Δξ

}

. (3.76)

Setting t = T in (3.76), since T is selected from T0 arbitrarily, then in fact (3.76) holds for all
t ∈ T0, that is,

vΔ(t) ≤ f(τ1(t))G̃−1
{

G̃(Jε(t)) +
∫ t

t0

[

f(τ1(ξ)) + g(τ1(ξ))
]

Δξ

}

, ∀t ∈ T0. (3.77)

Considering v(t0) = Jε(T), an integration for (3.77) from t0 to t yields

v(t) ≤ Jε(T) +
∫ t

t0

f(τ1(s))G̃−1
{

G̃(Jε(s)) +
∫ s

t0

[

f(τ1(ξ)) + g(τ1(ξ))
]

Δξ

}

Δs, (3.78)

which implies

u(t) ≤
{

Jε(T) +
∫ t

t0

f(τ1(s))G̃−1

×
{

G̃(Jε(s)) +
∫s

t0

[

f(τ1(ξ)) + g(τ1(ξ))
]

Δξ

}

Δs

}1/(p−q)
, t ∈ [t0, T] ∩ T.

(3.79)

Setting t = T in the above inequality, considering T is selected from T0 arbitrarily, after
replacing T with t and letting ε → 0, we get the desired result. So the proof is complete.
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Remark 3.10. If we take T = R, t0 = 0, p = 2, q = 1, τ1(t) = τ2(t) = t, then Theorem 3.9
reduces to [33, Theorem 3(a7)]. If we take T = Z, t0 = 0, p = 2, q = 1, τ1(t) = τ2(t) = t, then
Theorem 3.9 reduces to [33, Theorem 6(b7)].

Following in a similar manner as the proof of Theorem 3.7 and 3.9, then we present
two more theorems as follows, the special cases of which (p = 2, q = 1, t0 = 0, τ1(t) =
τ2(t) = t) unify the continuous [33, Theorems 1(a3), 3(a8)] and discrete inequalities [33,
Theorems 4(b3), 6(b8)].

Theorem 3.11. Suppose u, f, g, h, p, q, C, α, φ, τi, i = 1, 2 are defined as in Theorem 3.9. If for t ∈ T0,
u(t) satisfies the following inequality:

up(t) ≤ Cp/(p−q) +
p

p − q

∫ t

t0

[

f(τ1(s))uq(τ1(s))

×
∫s

t0

g(τ1(ξ))up−q(τ1(ξ)Δξ + h(τ2(s))uq(τ2(s))

]

Δs

(3.80)

with the initial condition (3.5), then

u(t) ≤ [J(t)eH(t, t0)]1/(p−q), t ∈ T0 (3.81)

provided H ∈ �+, whereH(t) = f(τ1(t))
∫ t

t0
g(τ1(ξ))Δξ, and J(t) is defined as in Theorem 3.7.

Theorem 3.12. Suppose u, f, g, h,ω, p, q, C, α, φ, τi, i = 1, 2 are defined as in Theorem 3.9. If for
t ∈ T0, u(t) satisfies the following inequality:

up(t) ≤ Cp/(p−q) +
p

p − q

∫ t

t0

[

f(τ1(s))uq(τ1(s))

×
∫ s

t0

g(τ1(ξ))ω(u(τ1(ξ))Δξ + h(τ2(s))uq(τ2(s))

]

Δs

(3.82)

with the initial condition (3.5), then

u(t) ≤
{

G−1
[

G(J(t)) +
∫ t

t0

f(τ1(s))
∫s

t0

g(τ1(ξ))ΔξΔs

]}1/(p−q)
, t ∈ T0, t ∈ T0, (3.83)

where G is defined as in Theorem 3.2, and J(t) is defined as in Theorem 3.7.

4. Some Applications

In this section, we will present some applications for the results which we have established
above and apply them to qualitative and quantitative analysis of solutions of certain delay
dynamic equations on time scales.
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Example 4.1. Consider the following delay dynamic integral equation on time scales:

up(t) = C +
∫ t

t0

F(τ(s), u(τ(s)))Δs, t ∈ T0 (4.1)

with the initial condition

u(t) = φ(t), t ∈ [α, t0] ∩ T,

∣
∣φ(τ(t))

∣
∣ ≤ |C|1/p, ∀t ∈ T0, τ(t) ≤ t0,

(4.2)

where u ∈ Crd(T0,R), τ ∈ (T0,T) with τ(t) ≤ t, −∞ < α = inf{τ(t), t ∈ T0} ≤ t0, φ ∈
Crd([α, t0] ∩ T,R), F ∈ Crd(([α,∞) ∩ T) × R,R), and p is a constant with p > 1.

Theorem 4.2. Suppose u(t) is a solution of (4.1)-(4.2), and |F(t, u)| ≤ f(t)|u|p + g(t)|u|p−1, where
f, g ∈ Crd([α,∞) ∩ T,R+), then

u(t) ≤
[

C +
∫ t

t0

g(τ(s))Δs

]

exp

[∫ t

t0

f(τ(s))Δs

]

, t ∈ T0. (4.3)

Proof. In fact, from (4.1) we have

|u(t)|p ≤ |C| +
∫ t

t0

|F(τ(s), u(τ(s)))|Δs

≤ |C| +
∫ t

t0

[

f(τ(s))|u(τ(s))|p + g(τ(s))|u(τ(s))|p−1
]

Δs

= |C| +
∫ t

t0

[

f(τ(s))|u(τ(s))|p−1ω(|u(τ(s))|) + g(τ(s))|u(τ(s))|p−1
]

Δs,

(4.4)

where ω(r) = r. Then a suitable application of Theorem 3.2 (with τ1 = τ2 = τ , q = p − 1) to
(4.4) yields

u(t) ≤ G−1
[

G

(

C +
∫ t

t0

g(τ(s))Δs

)

+
∫ t

t0

f(τ(s))Δs

]

, t ∈ T0, (4.5)

where G(x) =
∫x

1 (1/r)dr = lnx, for all x > 0. Using the expression of G in (4.5), we obtain
the desired result, and the proof is complete.

Example 4.3. Consider the following delay dynamic differential equation on time scales

(

u3(t)
)Δ

= F

[

τ(t), u(τ(t)),
∫ t

t0

M(τ(ξ), u(τ(ξ)))Δξ

]

, t ∈ T0 (4.6)
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with the initial condition

u(t0) = u0,

u(t) = φ(t), t ∈ [α, t0] ∩ T,
∣
∣φ(τ(t))

∣
∣ ≤ |u0|, ∀t ∈ T0, τ(t) ≤ t0,

(4.7)

where u, τ, α, φ are defined as in Example 4.1, F ∈ Crd(([α,∞)∩T)×R
2,R),M ∈ Crd(([α,∞)∩

T) × R,R).

Theorem 4.4. Suppose u(t) is a solution of (4.6)-(4.7), and |F(t, u, v)| ≤ f(t)|u|3 +
f(t)|u||v|, |M(t, u)| ≤ g(t)|u|2, where f, g ∈ Crd([α,∞) ∩ T,R+), then

u(t) ≤ |u0|
√
√
√
√

[

1 +
∫ t

t0

f(τ(s))e(f+g)(τ(·))(s, t0)Δs

]

, t ∈ T0 (4.8)

provided (f + g)(τ(·)) ∈ �+.

Proof. The equivalent integral form of (4.6)-(4.7) is denoted by

u3(t) = u3
0 +
∫ t

t0

F

[

τ(s), u(τ(s)),
∫ s

t0

M(τ(ξ), u(τ(ξ)))Δξ

]

Δs. (4.9)

So,

|u(t)|3 ≤ |u0|3 +
∫ t

t0

∣
∣
∣
∣
∣
F

[

τ(s), u(τ(s)),
∫ s

t0

M(τ(ξ), u(τ(ξ)))Δξ

]∣
∣
∣
∣
∣
Δs

≤ |u0|3 +
∫ t

t0

[

f(τ(s))|u(τ(s))|3 + f(τ(s))|u(τ(s))|
∣
∣
∣
∣
∣

∫s

t0

M(τ(ξ), u(τ(ξ)))Δξ

∣
∣
∣
∣
∣

]

Δs

≤
∣
∣
∣u2

0

∣
∣
∣

3/2
+
∫ t

t0

[

f(τ(s))|u(τ(s))|3 + f(τ(s))|u(τ(s))|
∫ s

t0

g(τ(ξ))|u(τ(ξ))|2 Δξ

]

Δs.

(4.10)

Then a suitable application of Theorem 3.7 (with p = 3, q = 1, τ1 = τ2 = τ, h(t) ≡ 0) to (4.10)
yields the desired inequality (4.8), and the proof is complete.

Theorem 4.5. If under the conditions of Theorem 4.4, for t ∈ T0,
∫ t

t0
f(τ1(s))e(f+g)(τ1(.))(s, t0)Δs ≤

L, where L > 0 is a constant, then the trivial solution of (4.6)-(4.7) is uniformly stable.

Theorem 4.6. Assume |F(t, u1, v1) − F(t, u2, v2)| ≤ f(t)|u3
1 − u3

2| + f(t)
√

|u3
1 − u3

2||v1 −
v2|, |M(t, u1) − M(t, u2)| ≤ g(t)|

√

|u3
1 − u3

2|, where f, g are defined as in Theorem 4.4, then (4.6)-
(4.7), have at most one solution.
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Proof. Suppose u1(t), u2(t) are two solutions of (4.6)-(4.7). By (4.9)we have

∣
∣
∣u3

1(t) − u3
2(t)
∣
∣
∣ ≤
∫ t

t0

∣
∣
∣
∣
∣
F

[

τ(s), u1(τ(s)),
∫ s

t0

M(τ(ξ), u1(τ(ξ)))Δξ

]

−F
[

τ(s), u2(τ(s)),
∫s

t0

M(τ(ξ), u2(τ(ξ)))Δξ

]∣
∣
∣
∣
∣
Δs

≤
∫ t

t0

[

f(τ(s))
∣
∣
∣u3

1(τ(s)) − u3
2(τ(s))

∣
∣
∣ + f(τ(s))

√
∣
∣u3

1(τ(s)) − u3
2(τ(s))

∣
∣

×
∫s

t0

[M(τ(ξ), u1(τ(ξ))) −M(τ(ξ), u2(τ(ξ)))]Δξ

]

Δs

≤
∫ t

t0

[

f(τ(s))
∣
∣
∣u3

1(τ(s)) − u3
2(τ(s))

∣
∣
∣ + f(τ(s))

√
∣
∣u3

1(τ(s)) − u3
2(τ(s))

∣
∣

×
∫s

t0

g(τ(ξ))
√
∣
∣u3

1(τ(ξ)) − u3
2(τ(ξ))

∣
∣Δξ

]

Δs.

(4.11)

Treat |u3
1(t) − u3

2(t)| as one variable, and applying Theorem 3.7 to (4.11) (with p = 1, q =
1/2, τ1 = τ2 = τ, h(t) ≡ 0) yields |u3

1 − u3
2| ≤ 0, which implies u1(t) ≡ u2(t), and the proof is

complete.
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[23] W. Liu and Q.-A. Ngô, “A generalization of Ostrowski inequality on time scales for points,” Applied
Mathematics and Computation, vol. 203, no. 2, pp. 754–760, 2008.

[24] M. Z. Sarikaya, “On weighted Iyengar type inequalities on time scales,” Applied Mathematics Letters,
vol. 22, no. 9, pp. 1340–1344, 2009.

[25] W.N. Li, “Some delay integral inequalities on time scales,” Computers &Mathematics with Applications,
vol. 59, no. 6, pp. 1929–1936, 2010.
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