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By using a new mapping of Ahlfors covering surfaces, a fundamental inequality in the angular
domain for the algebroidal function is obtained.

1. Introduction and Main Results

In the field of valued distribution, the fundamental inequality is an important tool. For
example, it can be used to investigate the singular direction [1]. Using geometric theory,
Tsuji firstly obtained the second fundamental theory in an angular domain and proved the
existence of Borel direction [2]. The value distribution theory of meromorphic functions was
extended to algebroidal functions last century [3]. In 1983, Lv and Gu proved an inequality
of algebroidal function for an angular domain [4]. By the inequality, some results of singular
direction are obtained; see [5, 6]. In [7], the authors obtained a more accurate inequality for
angular domain. In this paper, we will use a new method to simplify and extent an inequality
of Tsuji to algebroidal functions.

First, we recall some definitions from [3].

Suppose that A,(z),..., Ao(z) are analytic functions with no common zeros in the
complex plane. ¥(z, W) is a bivariate complex function and satisfies

W(z, W) = Ap(2)W? + Ay (2)WO + -+ + Ag(z) = 0. (1.1)

For all z in the complex plane, the equation ¥(z, W) = 0 has v complex roots w; (z), w2(z),
..., Wy(z). Then, (1.1) defines a v-valued algebroidal function W (z); see [3, 8]. If A,(z) =
1, then W(z) is called v-valued integral algebroidal function. If ¥(z, W) is irreducible,
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correspondingly W (z) is called v-valued irreducible algebroidal function (note that W(z) is
a meromorphic function, if v = 1). Now we suppose that W (z) is an irreducible algebriodal
function defined by (1.1).

If Ay(20)#0, and the k-degree equation W(zo, W) = 0 and its partial derivative
(0¥/0W)(z9, W) = 0 have no common roots (i.e., zg is not a multiple root of ¥(zo, W) = 0),
then zy is said to be a regular point. The set of all regular points is called the regular set,
denoted by Ty . Its complementary set Sy := {z | |z|] < oo} — Tw is called the critical set.
Obviously, Sy, includes all branch points of W (see [3]).

The domain of a v-valued irreducible algebriodal function W is a connected Riemann
surface [8], and its single-valued domain is denoted by R.. A point in R is Z and sets lying
over |z| < r and {$1 < argz < ¢} (¢1 < ¢p) are |Z] < r and §(¢1,¢2). Let n(r, W = a) and
n(Q(¢1, ¢2), r,W = a) be the number of zeros, counted according to their multiplicities, of
W =ain {|Z| < r} and {|Z| < r} ﬂ§(¢1,¢2), respectively. Let n(r, W = a) be the number of
distinct zeros in {|Z| < r}, and let n(r, ﬁz) be the number of branch points in {|Z]| < r}. Simi-
larly, we can define n(Q(¢1, $2), r, W = a) and n(Q(¢1, $2), 1, INQZ). Let

2
W'(z)] )
St W)= H|z|<r<1+|W(z)| > aw. z=ret,

1 W@l
s@@updrw=off () W

Sit, W)
t

T(r,W) = fo 22 at,

f S(Q(¢1,¢2) EW)

N W = a) = J‘ nt, W =a) tn(O'W:a)dt+n(0'vZ:a)lnr,
0
N<r, ﬁz> _ %J.r n(t, ﬁz> —tn<0, ﬁz> g n(O;ﬁz> nr,
0
1 v 2 .
m(r,W) = br_vg fo In* (re’9> |d6.

Similarly, we can define N (Q(¢1, ¢2), 7, W = a), ﬁ(Q((j)l,(pz),r,W = a) and N (Q(¢1,
¢2),1, INQZ). From [3], we know that T(r,w) = N(r,W = o) + m(r, W) + O(1) and N(r, ﬁz) <
2(v - 1)T(r, W) + O(1).

In this paper, we will prove the main theorem.

Theorem 1.1. Let W (z) be a v-valued algebroidal function in region Q(¢1,¢2) = {|z| | ¢1 <
arg z < ¢} (¢1 < P2). a1, a2,...,a4 (q = 3) are q different complex numbers on the sphere with
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radius 6 € (0,1/2). For ¢p,e*,e (0 < e <¢, p1 < Pp—e<Pp-€" <P+ <Pp+e < ¢p), and
R > R* > 2, we have

(q-2)S(Qp-¢€"¢+e"),R,W)
5 q
<n(Q¢p-e¢+e) RR:)+ 2AQ(p-ed+e),RW=ay) 13
j=1 :

25072 In R

+ 6%(e—¢)(InR—InR*) +(q _2)S<Q<¢ -, P+, %,W))

By the inequality in Theorem 1.2, we will immediately have the following.

Theorem 1.2. For a meromorphic function W (a 1-valued algebroidal function with no branch points)
defined by (1.1) satisfying

—Tx,W
fim W) o (1.4)
R—ow In“R

it has at least one Nevanlinna direction, that is, there exists arg z = ¢, such that

2aeC Uloo} 0(a, o) < 2 holds for any finitely many deficient value a, where

5(a,go) = 1 - T T (@G0 —ego+e) RIW =)

e—0"R— o0 T(Q(¢0—E,¢O+E),R,W) > 0. (15)

2. Some Lemmas
First, it is easy to prove the following.

Lemma 2.1. Suppose that a,b > 0, then there exists p, q > 0, such that

. [ 1
p+ig= Py (2.1)

_ m+a _ \/m—a (22)
P=V 2@+ - 1T\ 2@+

where

Lemma 2.2. Suppose that A(z) = jg(dt/\/t(l —12))and B(z) = ((1 - z)/(1 + z))i, then

(1) the mapping Gy = A o B(z) maps the unit disc U to the square Q £ {z = x +iy |0 < x <
2h,0 < y < 2h}, where h is constant;

(2) Gy maps {|z| < r}, where 0 < r < 1, into a symmetrical convex region in Q;
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Q
u
Gy
Figure 1
(3) hin Lemma 2.2 satisfies
h= J‘1 dt = e dt >1 (2.3)
VA =2) Jo A -8)

Proof. Obviously, (1) holds. By the definition of B(z), we have B(1) = 0, B(-1) = oo, B(i) =
1, B(-i) = -1.

In order to compute h, first we prove that G; maps d(0), d(or/2), d(or/4), d(-m/4) to
four symmetry axes of Q, where d(0) = {re®; -1 <r < 1}.Letz = re?® (0 s fixed), r € (-1,1),

dt
VA=)
T elfdr

- 1 V1 -rtei®®

B
Gi(z) = Ao B(z) = f
° (2.4)

Hence, when 0 = 0, /4, 7w /2, —or /4, arg Gi(re®®) = m/4,7/2,-7/4,0, respectively,
see Figure 1.

Then, we compute h. Since z = 0 is the only intersection point of the lines d(0) and
d(or/4). The center of the square Q, h + hi, is that of the curves G;(d(0)) and G;(d(r/4)).
Then, G; conforms 0 onto h + hi.

Hence,

i vl d
h:G1<e “):A(ﬁ—l):fo ﬁ

(2.5)

:J'1 _dr
va2-1 V(1 -1?)

> fl dt>1
va-1 Vit '

(2) At last we prove that G; ({|z| < r}) is a convex region, see Figure 1.
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For a fixed r € (0,1), by (2.4),

6 (re") - [ etz

1 V1-z*
odr
= 1 +i J‘ 26
D) Ao (26)
. j" (1-1)do
0 \/(r2=rY)cos20 —i(r2+r2)sin20
Set Gy (re') = x(0) +iy(0). When 0 € (0, /4), cos 20, sin20 > 0, by Lemma 2.1,
0G; 1-i . .
it R —(1-i)(p+i
00 \/(r2-r%)cos20 —i(r2-r2)sin20 (A= p+ia) 2.7)
=(p+a)-(p-9i=x+yi
where p > g > 0.
0°Gi _ (1=i)[(r*—r?)sin20 +i(r 2 +r?) cos 26]
==
09 \/[(1"2 —12) c0s260 —i(r2 + r2) sin 26]°
(=) (p+qi)[(r?-7r?)sin20 +i(r? +r?) cos 26]
- (r2-r2)cos20 —i(r2+r?)sin20 2.8)
(p=q)(r" ") ~2(p +4) sin40
(r2 = 12)%c0s2 20 + (r2 + r2)*sin? 26
2(p— in 40 4yt
L 120 q)zsm tpra)(r r D ey
(r2 —12)%cos2260 + (r2 + r2)*sin 20
Hence,
dy_y __p-a
dx x  p+q’
dZy yllxl _ y/xu
7% R (2.9)
(14— ) (02 + 2
_ (- P’ +q) 0

x'2 [(r‘2 ~12)c0s220 + (r2 + r2) sin 29] '

Therefore, the image of L(r) = {re'?; 0 < 0 < r/4} is a descending convex curve. By
the symmetry of square, G1({|z| = r}) is a smooth curve, and G;({|z| < r < 1}) is a convex
symmetric figure in the square Q.

Then, we obtain Lemma 2.2. O
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Lemma 2.3. Suppose that mappings

C(z) 2 h+i(z—h) (where h is defined in Lemma 2.2),

log R + log R -
xlnR+,£: ogR+e  logR-¢_

Z) 2
D@2 = =—=+i5 2h 2n (2.10)
H(z) & ¢,

Go(z) 2 CloD o H ().

Then, the mapping Gy maps the region E = {1/R < |z| < R} N\{|arg z| < &} into the square Q, and
G;' o Gy(E*) C {|z| < r}, where E* £ {1/R* < |z| < R*}N{|arg z| < &'}, R" € (2, R), e € (0, ¢),
and

(2.11)

[(e-€e)? (e-¢)(InR-1InR*)
0<1 r<m1n{ e ire IR .

Proof. The conclusion is equivalent to Go(E*) € Gi({|z| < r}). We prove the lemma by two
cases.

Case I. When
£, R (2.12)
£ InR
then
he* e—¢ InR-InR* T
< — = 1 < —_—. .
0<arg GZ<h e+i(h—h lnR*/lnR)> arg[h< : "R )] sy @21
Gi({]z| < r <1}) is a convex symmetric figure if there exists a 8y € (0, or /4], such that
Re G; (rei9°> < hg _: ,
R0 R (2.14)
i0 nR-InR*
ImG (re °> < h—lnR ,
then Lemma 2.3 holds, see Figure 2.
In fact, for any r € (0,1), 8 € (0, /4],
; “(1+i)dz
Gi(re®) = - ( +i)dz
1< ) 1 V1-2zt
(2.15)

+ B,

f"" (1+idz e’ (1+i)dz , .
1 V1-z4 et V1-2z
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u

/:\
N
Gi >< : G2 /

where
e J‘ "1+ idz _ (" -(1+ i)ie'
1 V1-z  Jo v1-ef
0
dae \F — /6
= a0,
I 51n29 0 \f
(1 + 1)dz
S
1+14) f dr
7 4/(1-7%) cos20 (1 + r4) sin 20
where
a= <1 - 1'4) cos20 <1, b= <1 + r4> sin 26,
A+ =1+r8+2¢* (sin2 20 — cos? 29)
(2.17)
= <1 - r4> + 4r*sin® 20
> 47* sin 26.
By Lemma 2.1, we have

p L(1+i)(P+iq)dr=f[(P—q) (p+q)i]

= g+in,

(2.18)

R
\-‘f’
Figure 2

(2.16)
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where

2 2

dr

§=fkp—®dr=£21_q

p+q
1.2, 2
<f—p+qdr
r P

L 2dr
r vV a2 + b2
- J‘l dr
r 124/2sin 20

< 1-r (2.19)
2r+/sin 20

<1—r T
2r Vo’

1 1
n= f (p+q)dr<2f pdr

J‘l dr
<2 ———
r VvV a2 + b2
1-r Ea

r 20°
Let

g =) 7 (2.20)

0 4ore? 4°

Combing (3.1) (note that by (3.1), we have r > v/2/2),

ReG1<rei9°> =a+&<\/mh+ —12_:\/9%
- h(e—¢ ),
€

Im G (rei9°> =7n< ; % (2.21)

- I1InR-InR*
2 InR

InR-1InR*
InR



Abstract and Applied Analysis

u Q .
E/ :"-.\‘.
Gi SN Gy g B

Figure 3

Therefore, a vertex of G, (E*) (h—¢*h/e,h—hIn R*/ In R) € G1({|z| < r}). By Lemma 2.2,
G2(E") c Gi({lz[ < r}).

Case II. When

In R*

< 7
-~ InR

o™

(2.22)

since G1({|z| < r < 1}) is a convex symmetric figure, we also have Lemma 2.3, see Figure 3

O
For the convenience of readers, we prove the following lemma again, it can be found
in [9].

Lemma 2.4. (1) Let G(z) = G,' 0 G1(z)e™?, then

InR
|Gz +[Gz| < T(IGZI - |Gz)).

(2.23)
(2) Put s(x,y) = ReG, t(x,y) =ImG, then
s s, +Hh+1 < lnTR (Sxty — sytx). (2.24)
Proof. (1) Since f £ H™! 0 G1(z)e’? and C~! are holomorphic functions, then
f| =1 = | (C'1>F =0, |fz|=If|- (2.25)
For

(2.26)
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then

Hence,

Thus,

(2) By

we have

Similarly,

Then,

Abstract and Applied Analysis

D7) = o+

h(F+f) h(f-¥)
= 2InR * £ ’

- D] + D7 _InR+e/+[nR-¢ IR
ax |D;1 —‘D‘l “InR+e-|InR—¢ ¢
7
Gl +1Gel = | () . Df fe| +|(€7) . DF =
S[COMAE AR

Sy —is Sy —1is

Sz = -7 Sz = T .
1-1 1-1
_tx—ity ; _ty—itx

S T T A

1
GoP = 5[ty + 507+ (b =57,

IG=[? = %[(tx +5,)7+ (b =507

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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Therefore,

sr+ 5, + B+t = |G| + |G

< (IG2| + |Gz])?

InR ( (2.34)

(by (223)) < — (IG.P" - |G=P)

InR
\—st—s
(ssty = syt). .

Lemma 2.5 (see [10]). Let F be a connected covering surface on Fo, Fy is bounded by q different
points with radius 6 € (0,1/2), then

max{0,p(F)} > (g-2)S -2"x"67L, (2.35)

where L is the length of F and p(F) is Euler characteristic of F, |F| is the area of F and

|F|

=15 (2.36)

Lemma 2.6 (see [10]). Let V be a sphere with radius 1/2, Fy be bounded by q different points with
radius 6 € (0,1/2) and F, = W o G(Fy) then

F| 1 27 |wi | " (sxty = sytx)r
A=
0 k 1 1 +|wg o G|2>
where s(x,y) =ReG, t(x,y) =ImG.
Proof. Suppose that wy = u + iv. Then
|F,| = Jf ——dudo,
=) Gz 1 + i > (2.38)

where

U = (UsSy + upty)dx + (uss, +usty)dy,
(2.39)
dv = (vssx + Vst )dx + (vssy + vity ) dy.
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Hence, by the Jacobian determinant, we have
dudv = [(u? + v?) (sxty — sytx)]dx dy,

v (12 +02) (sxty — Syts
|Fr|=ZJ‘J‘N ) sty Z )dxdy
k=17 J [2l<r <1 + |wy o G|2> (2.40)

(7 |w;<|2(5xty = Sytx)T
= Zf f “—dr do.
k=170

° (1+fwkoGP)

By |Fo| = or, we have Lemma 2.6. O

3. Proof of Theorem 1.1

Proof. Set G(z) = G,' o Gi(z)e'?. It conforms the unit disc U = {|z| < 1} to the sector E =
{1/R < |W| < R} N{|arg z — ¢| < €} and the interior of U* = {|z| < r} to E* = {1/R* < [W| <
R*}N{larg z— ¢| < &*}, where2 < R* < R,0 < &* < ¢, and

[ (e-€)? (e-€)(InR-InR*)
0<l-r< rmn{ e treInR . (3.1)
Hence W o G conforms {|z| < r} to the sphere V.
Put D, = {|Z| < r}. Then by M. Hurwite Formula, we have
p(ﬁ) = n<r, I~€Z> - 0. (3.2)
PutD, = D, — {z ] H?zl(w 0G(z) —aj) =0} and F, = W o G(F). Then
- q
p(Fy) = p(Dy) = n<r, Rz> -+ Zﬁ(r,W oG = aj)
=1
(3.3)
5 q
<n(LR)-v+ Ya(1L,WoG=a) 2 N.
=1
By Lemma 2.5, it follows that
N = p(F,) = (g-2)S(r, W o G) - 27z 6 ¥ L(r). (3.4)
Now we will prove
L2(r) < 24wrr1n_RM' (3.5)

dr
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Foranyr € (0,1),k=1,2,...,vand € > 0, we have
||wkoc(re"9)| - (wkocf“ <e, (3.6)

where 0; = jr/n (j=1,2,...,2n),0 € [0,-1, 0;], |wioGI| = min{|kaG(rei9)|,9,-_1 <0<0;}.
By (3.6), for any 0 € [0;_1,0;], we have

|’wkoG<rei6>|2 < |wkoGj|2+25<£+'wkon'>. (3.7)
Therefore
1+ |wi 0 G(re)|? _ 262 2¢|wy 0 G|
1+|wkoG7|2 1+|wkoG]‘|2 1+|wkon|2 (3.8)
< V2.

Put wy = uk (s, t) +ivk(s,t), G = s(r,0) + it(r,0). Hence

2 |wi o G(re'®) — wyi o G(re' )|

L (r) £ lim
T \/1 + |wi 0 G(reiej)|2\/1 + |wk o G(re®1) |2

. { (10 ()0 + () to)d0] + 1o ()50 + (vk)tte)de]z}lxz

< lim

= 1+ |wi 0 G|
j | | (39)
5 ,11/2
20 [((we)ss0 + (k) ko) + (k)50 + (k) k)] O
< V2lim f —
n~>oo]-:1 01 1+ |kaG;<|
o[ bl
- 0 1+ |wk ) Gk|2 .
By
S = — Sxrsin +s,rcos0,
(3.10)
tg = —tyrsin® +t—t,rsin6,
where
X = —rcoso,
(3.11)

Yy =rsin0,
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we obtain
sé + té < 21‘2(536 + s; +12 4 t;),
. 2
L*(r) = <ZLk(T)>
k=1
1/2 2
o 2 |wpl (2 2+2) r
<8 Zf 5 de
k=170 1+ |wk o Gl
(by 224)) < 82K iJ’M il ecty st 2
Y h € k=170 1+ |wk [¢] G|2
o | |( )1/2 -9 (3.12)
. . InR & T |w | (sxty = sytx)
Cauchy inequali < 8v—— f k do
( y inequality) c ; o 1+ [y o G|2
v [ 277 12 t —g.t [ 2
(Schwarz mequallty) g 8vh1_RZ f |wk| (Sx Y Sy x2)rd9 J‘ rd9:|
R0 (1+weoGP) /0

< l6vrr

T 2
InR < JQ |kl (Sxty_sytx)rde

k=170 (1 +|eog o G|2>2

(by Lemma 2.6) < 16wz-rlnTRM.

dr

(1) Ifforall7' € (r,1)

Sr,WoG) > —, (3.13)

N
q-2

then by (3.4)

2 50, 22
(S(r’,WoG)— N> < 2T 1)
-2/ (q-2)°6®
14
2% InRdAS( ,W o G (319
(by (35)) < vr=r'In (r',WoG)
(q- 2)25385 dr'
that is,

. 2%p7rBInR ds(r',W o G)

r < (3.15)

T (9-2)%6%e (S(r,W o G) - N/(q-2))*
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Hence,
1 54 23 1 ’
1—pe dr'<2 v 2lnRJ‘ ds(r',WoG) .
r (g-2)°6%e/)r (S(r',WoG)-N/(q-2))
- %073 InR 1 B 1
S (g-2)6%e \S(b,WoG)-N/(g-2) S(RWoG)-N/(q-2)
202 In R 1
5% (q-2)S(r,WoG)-N
Therefore

25072 In R
-2)S(r,WoG) < ————+N
(4=2)5We ) < iy *

2507128 1InR

~ q _
(LR) + 0w oG- )«

i=1
(2) If there is a ' € (r,1), such that
(3-2)S(r,WoG)-N <0,
then
(9-2)S(r,WoG) < (9-2)S(r,WoG) <N,

Equation (3.17) holds.
By (3.17) and Lemma 2.3, we have

(9-2) S@(@ e p+e' R, W)) = (1-2)S(R(9-e"p+ e 7o W)

< (q-2)S(r,W o G)
5 q
(by 31)) < n(Qp-e¢+e), R R.) + SAQ@p-ep+e)RW =a)
j=1

. 25%6p7241In R
6%(e-e*)(InR-InR*)’

15

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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4. Proof of Theorem 1.2

Proof. By the hypothesis of Theorem 1.2, there exists an increasing sequence R, (R, — oo,
when n — o), such that

. T(Rn/ W)
lim ———= = +oo. (4.1)
n—o  In“R,

Then, there exist some ¢y € [0, 2], such that for arbitrary € € (0, ¢y),

—T(Ry,po—€,0+¢, W
T (Ru o -, o+, W) _

+00 (4.2)
n—o In’R,

holds. We claim that arg z = ¢y is the Nevanlinna direction.
Otherwise, for a positive number g, there exist some ay, ay, ..., a, (9 > 3), such that

q
> 6(aj, o) > 2+ 3ep. (4.3)
j=1

By the definition of 6(a;, o), we have

LIN@Q(fo-¢,¢o+e), RW =a))

lim i < q-2-3¢. (4.4)
em0 ko T(Q(fo—¢ do+e), R,W) 1 0
There exists €; > 0, such that for any € € (0, ¢1),
ST N(Q(do—¢,¢o+¢),RW = aj)
im = (X ) ! <q-2-2e¢. (4.5)
R— o0 T(Q(¢0—€,¢0+€),R,W>

Hence, for {R,} defined earlier, when # is sufficiently large,

q —
> N(Q(¢o— & ¢o+¢), Ry, W = aj)
" (4.6)

<(q-2-6)T(Q(¢o—¢€,Po+¢€), Ry, W).
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By Theorem 1.1, we have

(9-2)5(Q(p-5,9+5) R W)

~(a-25(Q(p- 54+ 51.W))

q (4.7)
<D AQ(p—e,¢p+e),2RW = aj)
i=1
25272410 2R
6%8¢In?2

Hence,
(@-2T(Q(¢-5,¢+3) R, W)

q__
< ZN(Q((j) -&¢+¢), Ry, W = aj)
= (4.8)
2 724n?2R,,

i 6B(e—£e*)In2 +o)

<(g-2-¢g+0(1)In’R,.

Hence,

— T(Q(p-¢/2, 2), R, W
o T(Q(0=¢/2.9 +¢/2) Ry W)
n—oo 11'1 Rn

<O(1), (4.9)
which contradicts (4.2). Therefore, Theorem 1.2 holds. O
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