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We propose an approach for structural learning of directed acyclic graphs frommultiple databases.
We first learn a local structure from each database separately, and then we combine these local
structures together to construct a global graph over all variables. In our approach, we do not
require conditional independence, which is a basic assumption in most methods.

1. Introduction

Graphical models including independence graphs, directed acyclic graphs (DAGs), and
Bayesian networks have been applied widely to many fields, such as data mining, pattern
recognition, artificial intelligence, complex systems, and causal discovery [1–4]. Graphical
models can be used to cope with uncertainty for a large system with a great number of
variables. Structural learning of graphical models from data is an important and difficult
problem and has been discussed by many authors [1–5]. There are two main kinds of
structural learning methods. One is constraint-based learning and the other is score-based
learning. Most of the structural learning approaches deal with only one database with
completely observed data. With the development and popularity of computers, various
databases have been built, which may contain different sets of variables and overlap with
each other. For example, in medical research, a researcher collects data of these variables,
another researchermay collect data of other variables, and they have some common variables.

In this paper, we discuss how to learn the structures of DAGs frommultiple databases
with different and overlapped variables. In our approach, we first learn a local structure
from each database separately, and then we combine these structures together to construct
a global graph over all variables. Several theoretical results are shown for the validity of
our algorithm. Our approach can validly discover DAGs from multiple databases. In our
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approach, we only need a weaker condition than conditional independence, which is a basic
assumption in most methods [1–5]. This approach can also utilize the prior knowledge of
conditional independencies to reduce the number of variables in each conditional set.

Section 2 gives notation and definitions. In Section 3, we show how to construct the
DAG with multiple databases. We give an example in Section 4 to illustrate our approach for
recovering a DAG. Finally a discussion is given in Section 5.

2. Notation and Definitions

Let �GV = (V, �EV ) denote a DAG where V is a set of n vertices {a, b, . . .} and �EV ⊆ V × V is
a set of directed edges. A directed edge from a vertex a to another vertex b is denoted by
〈a, b〉, and we say that a is a parent of b and b is a child of a. We denote the set of all parents
of a vertex b by pa(b). A path l between the two distinct vertices a and b is a sequence of
distinct vertices that starts with a, ends with b, and two consecutive vertices are connected
by an edge; that is, l = (c0 = a, c1, . . . , cn−1, cn = b), where 〈ci−1, ci〉 or 〈ci, ci−1〉 is contained in
�EV , for i = 1, . . . , n (n ≥ 1), and ci /= cj , for all i /= j. We say that a is an ancestor of b and b is
a descendant of a if there is a path from a to b in �GV and all edges on this path point at the
direction toward b. Denote the set of ancestors of b as an(b). A path l is said to be separated
by a set of vertices Z if and only if there exists at least one i ∈ {1, 2, . . . , k−1}, such that ci ∈ Z.
And l is said to be d-separated by Z if and only if

(1) l contains a “chain” i → m → j or a “fork” i← m → j such that the middle vertex
m is in Z, or

(2) l contains an “inverted fork” i → m← j such that the collision vertexm is not in Z
and no descendant of m is in Z.

Two sets A and B of vertices are separated (d-separated) by a set C if C separates (d-
separates) every path from any vertex in A to any vertex in B, and we say C is a separator
(d-separator) of A and B. If a → c ← b, 〈a, b〉 /∈ �EV and 〈b, a〉 /∈ �EV in a DAG �GV , then the
triple (a, c, b) is called an immorality and a and b are called two parents of the immorality.

Note that the two vertexes a and b of the DAG are nonadjacent if and only if they are
d-separated by some subset S ⊂ V {a, b}. Though this is obvious the case by taking S to be
either pa(a) or pa(b) for DAGs, there are certain types of graphs in which nonadjacency is
not sufficient for separability, for example, the ancestral graph in [6].

Example 2.1. Consider a DAG �GV = (V, �EV ) in Figure 1, where V = {a, . . . , j} and
�EV = {〈a, b〉, 〈a, c〉, 〈a, d〉, 〈b, e〉, 〈c, e〉, 〈c, f〉, 〈d, f〉, 〈f, h〉, 〈g, e〉, 〈g, h〉, 〈g, i〉, 〈h, j〉}. In this
DAG, we have pa(e) = {b, c, g} and that (c, e, b), (b, e, g), (c, e, g), (c, f, d), and (f, h, g) are
immoralities. The path l = (a, c, f, h) between a and h is d-separated by {c} or {f}, while the
path l′ = (a, b, e, g) between a and g is d-separated by the empty set. Vertex a is an ancestor
of h and h is a descendant of a. The sets A = {a} and B = {e, f, g, h, i, j} are d-separated by
the set C = {b, c, d}.

Let n vertices {a, b, . . .} in a DAG �GV denote n variables {X1, . . . , Xn}. If a joint
distribution or density of variables X1, . . . , Xn satisfies

P(x1, . . . , xn) =
n∏

i=1

P
(
xi | pai

)
, (2.1)
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Figure 1: A directed graph �GV .

where P(xi | pai) is the conditional probability or density of Xi given pa(Xi) = pai, then
DAG �GV and the distribution P are said to be compatible [3] and P obeys the global directed
Markov property of �GV [2]. We use the notation in [7] to denote independence. Let X �Y
denote the independence of X and Y and X �Y |Z the conditional independence of X and Y
given Z for any variables or sets of variables X, Y , and Z. Since in our discussion we always
think the joint distribution corresponds to an underlying DAG, we do not differentiate the
usage of letters as X, Y , Z, A, B, C to denote variables or vertexes; however, we will make
an obvious reference if the context is not clear.

As pointed out by [3], if setsX and Y are d-separated byZ, thenX is independent of Y
conditionally on Z in every distribution that is compatible with �GV . In this paper, we assume
that all the distributions are compatible with �GV . We also assume that all independencies of
a probability distribution of variables in V can be checked by d-separation of �GV , called the
faithfulness assumption in [4]. The faithfulness assumption means that all independencies
and conditional independencies among variables can be represented by �GV . For a distribution
which obeys the faithfulness assumption, we can learn the underlying DAG by checking the
pairwise conditional independence X �Y | Z, where X and Y are two random variables and
Z is a subset of variables.

A hypergraph is a collection of vertex sets [8, 9]. Multiple databases C = {C1, . . . , CH}
are depicted as a hypergraph, where a hyperedge Ch is an observed variable set in a database
and ∪H

h=1Ch = V [5, 10]. A database with an observed variable set Ch is treated as a sample
from a marginal distribution of the variable set Ch. Let Dh = Ch ∩ (∪k /=hCk), which is the
intersection ofCh and the other sets. Given a collection of databases C, there is no information
on higher interactions over different databases.

Example 2.2. Let C = {C1 = {1, 2, 3, 4}, C2 = {1, 3, 5, 6}, C3 = {4, 6, 7}} be a hypergraph, as
shown in Figure 2. We can get that D1 = {1, 3, 4}, D2 = {1, 3, 6}, and D3 = {4, 6}.

3. Structural Learning of DAGs

In this section, we propose an approach for structural learning of DAGs. In our approach, we
first learn a local structure from each database, and then we combine these local structures
together to construct a global graph over all variables.

Note that for a distribution obeying the faithfulness assumption with respect to a
certain DAG �GV , there may not exist a DAG which can fully represent all the conditional
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Figure 2: A hypergraph.

independencies in themarginal distribution; see [6] for more discussion on this issue. Though
this fact implies that we may not expect to learn a DAG for each database, it will be shown
that under a certain condition a marginal structure could be learned which partially reflects
the original true structure.

We consider a joint distribution on a set of variables V which satisfies the faithfulness
assumption and denote by �GV = (V, �EV ) the DAG which can fully represent the conditional
independencies in this joint distribution. We consider the problem of structure recovery
from multiple databases. To facilitate our discussion, we first give the definition of the local
structure.

Definition 3.1. For a DAG �GV = (V, �EV ) and a subset V ′ ⊂ V , we define the local structure GV ′

to be an undirected graphGV ′ = (V ′, E′)where the edge set E′ = {(u, v) : u, v ∈ E′ and u��v |
S for all S ⊂ V ′ \ {u, v}}.

From the definition, it is known that to judge whether u and v are adjacent in the local
structureGV ′ , we need only to search for a d-separator S from all possible variable subsets S ⊂
V ′ such that two variables u and v are independent conditionally on S. With the faithfulness
assumption, this is equivalent to test whether u and v are independent conditionally on S and
this can be done by using data observed on V ′ only. Note that the edges in the local structure
may be spurious in the sense that its two vertexes are not adjacent in the original DAG; we
call these edges spurious edges. However, in the section below, we show that such learned
local structure could be used to identify part of the true structure of the original DAG under
one additional condition. We give a lemma to be used in proofs of theorems.

Lemma 3.2. If u is not an ancestor of v, then u and v are d-separated by a subset of V if and only if
they are d-separated by pa(u).

Proof. See [2].

The following two theorems show the relationship between the local structure and the
true structure of the original DAG.

Theorem 3.3. Let A, B, and C be a partition of V . If A and B are separated by C, then two vertices
in A are d-separated by a subset of V if and only if they are d-separated by a subset of A ∪ C.
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Proof. The necessity is obvious since V ⊇ A∪C. For the sufficiency, let u and v be two vertices
in A that are d-separated by S (⊆ V ). Thus there is no edge connecting u and v in �GV . Since
u and v are contained in A and A and C are separated by B, pa(u) and pa(v) are contained
in A ∪ C. Without loss of generality, suppose that u is not an ancestor of v. From Lemma 3.2
we have that pa(u) (⊆ A ∪ C) d-separates u and v.

From Theorem 3.3, we can see that two vertexes in A are adjacent in the DAG �GV if
and only if they are adjacent in the local structureGA∪C. This means that with the faithfulness
assumption, the existence of edges falling intoA can be determined validly from themarginal
distribution of A ∪ C.

Theorem 3.4. Suppose A, B, and C is a partition of V and A and B are separated by C. Let u ∈ C
and v ∈ A ∪ C. If u and v are d-separated by a subset of A ∪ C, then they are d-separated by a subset
of V .

Proof. The result is obvious since A ∪ C ⊆ V .

According to Theorem 3.4, we can see that u (∈ C) and v (∈ A ∪C) are not adjacent in
the DAG �GV if they are not adjacent in the local structure GA∪C. This means that we may get
spurious edges in the local structure GA∪C.

According to the two Theorems above, we can get that an edge whose two vertices
are contained only by one database Ch can be determined by using the marginal distribution
of Ch without requirement of the other databases. Those edges crossing Ch \ Dh and Dh or
falling into Dh may be spurious. Their existence must be determined according to multiple
databases.

Now we give the algorithm for structural learning of directed acyclic graphical
models.

Algorithm 3.5. Construct a DAG from Multiple Databases

(1) Input: Multiple databases C = {C1, . . . , CH}.
(2) Construct a local structure Gh from database Ch separately for each h:

(a) Initialize Gh as a complete undirected graph;

(b) Delete edge (x, y) fromGh if there exists a subset Z of Ch such that x and y are
conditional independent given Z.

(3) Construct the global undirected graph GV :

(a) Initialize the edge set E of GV as the union of all edge sets of Gh for h =
1, . . . ,H;

(b) For an edge (x, y), which falls into some Dh, delete it from GV if it is absent in
some other Gh′ .

(4) Delete spurious edges to construct the global skeleton:

(a) For an edge (x, y) with x in some Ch \ Dh and y in Dh, delete it from GV if
there exists a subset Z of ne(y) such that x and y are conditional independent
given Z;
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Figure 3: The ALARM network and multiple databases.

(b) For an edge (x, y), which fall in some Dh, delete it from GV if there exists
a subset Z of ne(x) \ {y} or ne(y) \ {x} such that x and y are conditional
independent given Z.

(5) Construct the equivalence class:

(a) Orient the local skeleton x − z − y as x → z← y if x and y are not adjacent in
GV and z /∈ Z;

(b) Orient other edges if each opposite of them creates either a directed cycle or a
new immorality.

(6) Output: The equivalence class of DAGs.

Note that ne(y) at step 4 denotes all the vertices that are adjacent with vertex y.
According to Theorems 3.3 and 3.4, the equivalence class constructed by the above algorithm
is valid.

4. Illustration of Structural Learning

In this section, we illustrate our algorithm using the ALARM network in Figure 3 that is
often used to evaluate structural learning algorithms [4, 11, 12]. The ALARM network in
Figure 3 describes causal relations among 37 variables in a medical diagnostic system for
patient monitoring. Using the network, some researchers generate continuous data from
normal distributions and others generate discrete data frommultinomial distributions [4, 12].
Our approach is applicable for both continuous and discrete data. Since the validity of our
algorithm can be ensured by Theorems 3.3 and 3.4, the algorithm is illustrated by using
conditional independencies from the underlying directed acyclic graph in Figure 3 rather
than conditional independence tests from simulated data.

Suppose that we have three databases as depicted by the hypergraph in Figure 3.
Database C1 contains variables {1, 2, 3, 4, 5, 6, 7, 8, 11, 27, 28}, database C2 contains variables
{8, 9, 28, 29, 30, 31, 32}, and database C3 contains variables {9, 10, 11, 12, 13, 14, 15, 16, 18, 19,
20, 22, 23, 24, 25, 26, 33, 34, 35, 36, 37}. Thus D1 = {8, 11, 28}, D2 = {8, 9, 28}, and D3 = {9, 11}.
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(c) The local structure G3 for database C3

Figure 4: Local structures for all databases.
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Figure 5: The global undirected graph.

Note that C1 \ D1 and V \ C1 are not conditional independent given D1. At Step 2, the local
structures are obtained separately from the three databases, as shown in Figures 4(a), 4(b),
and 4(c), respectively, for example, the undirected edge (6, 27) because 6 is independent of 27
conditional on {5}.

At step 3, we combine three local structures together to construct the global undirected
graph, as shown in Figure 5. At step 4, we delete the spurious edges to get the global skeleton,
which is the undirected version of Figure 6. For example, the spurious edge (8, 11) can be
deleted since variables 8 and 11 are conditional independent given {7, 10}.
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Figure 6: The partially directed acyclic graph.

At step 5, we determine immoralities and orient edges as much as possible. For
example, the direction of the undirected edge (1, 2) is determined as 〈2, 1〉 by 〈4, 2〉 so as not
to create a new v-structure, and the direction of the undirected edge (16, 23) is determined as
〈16, 23〉 by 〈16, 20〉 and 〈20, 23〉 so as not to create a cycle. At last we obtain the equivalence
class in Figure 6, in which all directed edges are oriented correctly, except that four undirected
edges (5, 27), (10, 33), (21, 34), and (35, 37) cannot be oriented because any of their orientation
leads to a Markov equivalent DAG.

5. Discussion

In this paper, we presented an approach for structural learning of directed acyclic graphs from
multiple databases. In our approach, we require that Ch \Dh and V \Ch are separated byDh,
which is a weaker condition than the condition that Ch \Dh and V \Ch are d-separated byDh.
This condition can be judged with experts’ prior knowledge of associations among variables,
such as Markov chains, chain graphical models, and time series.

There are several obvious advantages of our approach for structural learning. First
we do not require conditional independence, which is a basic assumption in most methods.
Second we search d-separators in Ch or ne(x), which is much smaller than V . At last,
the theoretical results proposed in this paper can be applied to scheme design of multiple
databases. Without loss of information on structural learning of DAGs, a joint data set can be
replaced by a group of incomplete data sets based on the prior knowledge.
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