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We propose simple forms of approximate analytical solutions for the generalized Blasius problem
based on the given boundary conditions and some known properties of the solution. The efficiency
of the proposed solutions is shown for various cases. As a result, one can see that the solutions are
uniformly accurate over the whole region.

1. Introduction

We consider the following generalized Blasius problem corresponding to two-dimensional
laminar viscous flow over a thin plate:

Nf(x) := f ′′′(x) + αf(x)f ′′(x) = 0, 0 ≤ x < ∞ (1.1)

for α > 0, subject to the boundary conditions

f(0) = f ′(0) = 0, f ′(∞) = β, (1.2)

where β > 0. We call the solution f(x) the Blasius function. Up to now many analytical
methods, for example, Adomian decomposition method [1–3], variational iteration method
[4–11], and homotopy analysis method [12–15] have been proposed. In addition, numerical
solutions were given in [16–18].

For the special case of α = 1/2 and β = 1, the Blasius problemwas completely reviewed
by Boyd [19] with several known properties of the Blasius function f(x). In the recent work
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[20], the author proposed simple approximate analytical solutions which result in good
uniform approximations to the exact solution f(x).

In this paper, we extend the method developed in [20] to the generalized Blasius
problem (1.1). Based on the given boundary conditions and known properties of the Blasius
function f(x), we propose three approximate analytical solutions which consist of the
hyperbolic cosine and tangent functions. From the results of the numerical experiments, we
can observe that for every cases of α and β the presented approximate solutions are efficient
and available over the whole region. In particular, the proposed three-term approximate
solution results in the relative errors less than 0.033% and 0.065% for approximation to the
exact solution and its derivative, respectively. In addition, using the known properties of the
Blasius function, we apply the proposed approach to the homotopy perturbation method
[6–8]. Numerical results show the validity of the obtained approximate solution.

2. Uniformly Accurate Analytical Solutions

We can see that for arbitrary α and β, the Blasius function f(x) satisfies the following
properties [21]:

(i) κ(α; β) := f ′′(0) =
√
αβ3 κ0,

(ii) B(α; β) := limx→∞{f(x) − βx} =
√
β/α B0,

where κ0 and B0 are the constants which correspond to the case of α = 1 and β = 1 as follows
[19, 22]:

κ0 = 0.4695999883 · · · , B0 = −1.2167806216 · · · . (2.1)

For the special case of α = 1/2 and β = 1, in the recent work [20], the author introduced
the single term approximate solution:

h(x) =
1
b

log[cosh(bx)] (2.2)

and the two term approximate solution

g(x) =
1
b
log[cosh(bx)] + c tanh4(rx), r > 0, (2.3)

where the constants b and c are determined from the known properties of the Blasius function
as follows:

g ′′(0) =
κ0√
2
, lim

x→∞
{
g(x) − βx

}
=
√
2B0. (2.4)

The parameter r is chosen by minimizing the L2-norm of the residual function Ng(x) over
the whole region [0,∞).
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Figure 1: Graphs of the presented solution hα,β(x) and its derivative (dotted lines) compared with those of
the numerical solution fα,β(x) (solid lines).

In this paper, we extend the aforementioned idea to the generalized Blasius problem
given in (1.1) and (1.2). First, referring to the single term approximate solution h(x) in (2.2),
we modify it as

hα,β(x) =
β

b
log[cosh(bx)]. (2.5)

It is straightforward to see that the function hα,β(x) has the first and second derivatives,

h′
α,β(x) = β tanh(bx), h′′

α,β(x) = bβsech2(bx) (2.6)

and all of the boundary conditions in (1.2) are satisfied. Moreover, taking h′′
α,β

(0) = κ(α; β),
from the property (i) we have

b =
κ
(
α; β

)

β
=
√
αβ κ0. (2.7)

For the cases of α = β = 1 and α = 1, β = 3, Figure 1 shows graphs of the
proposed approximate solution hα,β(x) and its first derivative h′

α,β
(x) compared with those of
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Table 1: Maximum relative % errors of the presented approximate solution hα,β(x) and its derivative for
the sample points xj = (0.2)j, j = 1, 2, . . . , 50.

α β M[0]hα,β M[1]hα,β

1/2

1/2 8.24 10.2
1 8.24 10.2
2 8.24 10.2
3 8.23 10.2

1

1/2 8.24 10.2
1 8.24 10.2
2 8.24 10.2
3 8.24 10.1

the numerical solution fα,β(x) obtained by using the software Mathematica. We, in this work,
regard fα,β(x) as the exact solution.

We can see that the function hα,β(x) has rather a similar behavior with the numerical
solution. Table 1 includes maximum values of the relative percentage errors of the presented
approximate solution hα,β(x) and its derivative. Therein, for a function u,M[m]u is defined as

M[m]u = Max
j

{∣∣∣E[m]u
(
xj

)∣∣∣
}
, m = 0, 1, (2.8)

where xj are sample points selected as xj = (0.2)j, j = 1, 2, . . . , 50, and

E[m]u
(
xj

)
=

u(m)(xj

) − f
(m)
α,β

(
xj

)

f
(m)
α,β

(
xj

) × 100 (%). (2.9)

The table shows that hα,β(x) uniformly approximates fα,β(x) with the maximum relative
errors less than 8.3% and 10.3% for approximation to fα,β(x) and its derivative, respectively.
In addition, this tendency of the proposed solution hα,β(x) seems to be independent of the
selected values of α (= 1/2, 1) and β (= 1/2, 1, 2, 3).

In order to improve the error of hα,β(x), we employ the two term approximate solution

gα,β(x) =
β

b
log[cosh(bx)] + c tanh4(rx), (2.10)

where b is given in (2.7) and c and r are unknowns to be determined later. We can see that
gα,β(x) satisfies the boundary conditions in (1.2) and the properties (i) as well, that is,

gα,β(0) = g ′
α,β(0) = 0, g ′

α,β(∞) = β,

g ′′
α,β(0) =

√
αβ3 κ0.

(2.11)



Abstract and Applied Analysis 5

Table 2: Numerical optimal values of the parameter r and maximum relative % errors of the two-term
approximate solution gα,β(x) for each value of α and β.

α β r∗ M[0]gα,β M[1]gα,β

1/2

1/2 0.21475516 0.434 0.965
1 0.30370966 0.434 0.962
2 0.42951032 0.434 0.965
3 0.52604056 0.433 0.955

1

1/2 0.30370966 0.434 0.962
1 0.42951032 0.434 0.965
2 0.60741932 0.434 0.962
3 0.74393370 0.433 0.933

To find the appropriate value of the constant c, we note that from (2.7) and (2.10)

lim
x→∞

{
gα,β(x) − βx

}
= −

√
β√

ακ0
log 2 + c. (2.12)

Then, taking a constraint limx→∞{gα,β(x) − βx} = B(α, β), from the property (ii) we can
determine the value of c as follows:

c = B
(
α, β

)
+

√
β√

ακ0
log 2 =

√
β

α

{
B0 +

log 2
κ0

}
. (2.13)

For determination of the optimal value of the parameter r in the approximate solution
gα,β(x), we consider minimization of the residual function

Ngα,β(x) = g ′′′
α,β(x) + α gα,β(x)g ′′

α,β(x) (2.14)

over the interval 0 < x < ∞ in the L2-norm sense, that is, minimization of

∥∥Ngα,β
∥∥2
2 =

∫∞

0

{
Ngα,β(x)

}2
dx (2.15)

with respect to the parameter r included therein. In practice, using the softwareMathematica,
we can obtain numerical optimal values of r in gα,β(x), denoted by r∗ = r∗(α, β), for each given
α and β. Numerical results for the values of r∗ and the maximum relative percentage errors of
gα,β(x)with r∗ are given in Table 2 for each α = 1/2, 1 and β = 1/2, 1, 2, 3. The table shows that
gα,β(x) uniformly approximates the numerical solution fα,β(x) with the maximum relative
errors less than 0.44% and 0.97% for approximation to fα,β(x) and its derivative, respectively.
As a result, one can see that the two term approximate solution gα,β(x) with r = r∗ well
improves the single term approximation hα,β(x).
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Table 3: Numerical optimal values of the parameter r and maximum relative % errors of the three-term
approximate solution kα,β(x) for each value of α and β.

α β r∗ M[0]kα,β M[1]kα,β

1/2

1/2 0.25243528 0.0321 0.0649
1 0.35699739 0.0314 0.0647
2 0.50487056 0.0321 0.0646
3 0.61833763 0.0320 0.0647

1

1/2 0.35699740 0.0314 0.0647
1 0.50487056 0.0321 0.0646
2 0.71399479 0.0311 0.0647
3 0.87446146 0.0310 0.0649

For further improvement of the approximate solutions given above, we propose
another approximate analytical solution as

kα,β(x) =
β

b
log[cosh(bx)] +

c

2

{
tanh4(rx) + tanh8(rx)

}
, (2.16)

where b and c are as given in (2.7) and (2.13). Similarly to the case of gα,β(x), the optimal
value r∗ of the parameter r in (2.16) should be determined by the minimization of ‖Nkα,β‖22.
Table 3 includes numerical results for the values of r∗ and the maximum relative percentage
errors for each α = 1/2, 1 and β = 1/2, 1, 2, 3. One can see that kα,β(x) uniformly approximates
fα,β(x) with the maximum relative errors less than 0.033% and 0.065% for approximation to
fα,β(x) and its derivative, respectively. Therefore, the three-term approximate solution kα,β(x)
with r = r∗ highly improves the previous approximate solutions hα,β(x) and gα,β(x).

Figure 2 includes graphs of the relative percentage errors of the proposed approximate
analytical solutions gα,β(x) and kα,β(x) and those of their derivatives g ′

α,β(x) and k′
α,β(x),

where the optimal values r = r∗ given in Tables 2 and 3 are used.

3. Application to the Homotopy Perturbation Method

In this section, we consider application of the presented approach to the homotopy
perturbation method [6] which is composed of coupling iteration method and perturbation
method.

First, we take an iteration formula for the original equation (1.1) as

φ′′′
n+1(x) + αφn(x)φ′′

n+1(x) = 0, n ≥ 0. (3.1)

Setting an initial approximate solution

φ0(x) =
a

α
(3.2)

for a constant a > 0 and substituting it into (3.1), we have

φ′′′
1 (x) + aφ′′

1(x) = 0. (3.3)
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Figure 2: Relative % errors of the presented approximate solutions (in upper row) and those of their
derivatives (in lower row). Thin lines indicate the two term approximate solution gα,β(x), and thick lines
indicate the three-term approximate solution kα,β(x).

Referring to the boundary conditions in (1.2), we have a solution

φ1(x) = βx − β

a

(
1 − e−ax

)
(3.4)

which satisfies φ1(0) = φ′
1(0) = 0 and φ′

1(∞) = β.
Substituting φ1(x) into (3.1), we obtain

φ′′′
2 (x) + aφ′′

2(x) + α

{
βx − β

a

(
1 − e−ax

) − a

α

}
φ′′
2(x) = 0. (3.5)

If we embed an artificial parameter ε, then it follows that

φ′′′
2 (x) + aφ′′

2(x) + εα

{
βx − β

a

(
1 − e−ax

) − a

α

}
φ′′
2(x) = 0. (3.6)

Suppose the solution of this equation can be expressed as

φ2(x) = φ
[0]
2 (x) + εφ

[1]
2 (x), (3.7)
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then we have the following two equations:

(
φ
[0]
2 (x)

)′′′
+ a

(
φ
[0]
2 (x)

)′′
= 0 (3.8)

with φ
[0]
2 (0) = (φ[0]

2 )
′
(0) = 0, (φ[0]

2 )
′
(∞) = β and

(
φ
[1]
2 (x)

)′′′
+ a

(
φ
[1]
2 (x)

)′′
+ α

{
βx − β

a

(
1 − e−ax

) − a

α

}(
φ
[0]
2 (x)

)′′
= 0 (3.9)

with φ
[1]
2 (0) = (φ[1]

2 )
′
(0) = 0, (φ[1]

2 )
′
(∞) = 0.

One can see that the solution of (3.8) is

φ
[0]
2 (x) = βx − β

a

(
1 − e−ax

)
. (3.10)

Substitution of φ[0]
2 (x) into (3.9) results in

(
φ
[1]
2 (x)

)′′′
+ a

(
φ
[1]
2 (x)

)′′
= −αβ

{
aβx − β

(
1 − e−ax

) − a2

α

}
e−ax. (3.11)

Assume that the approximate solution of (3.11) can be expressed as

φ
[1]
2 (x) = −2Ce−ax + Ce−2ax + C (3.12)

for some constant C.
By setting ε = 1 in (3.7), from (3.10) and (3.12) we obtain

φ2(x) = βx − β

a

(
1 − e−ax

) − 2Ce−ax + Ce−2ax + C (3.13)

with φ2(0) = φ′
2(0) = 0 and φ′

2(∞) = β. To determine the unknown constants C and a we
take the conditions limx→∞{φ2(x) − βx} = B(α, β) and φ′′

2(0) = κ(α; β) given in (ii) and (i),
respectively. Then it follows that

C =
β

a
+ B

(
α, β

)
,

aβ + 2Ca2 = κ
(
α; β

) (3.14)

which results in

a =
1

4B
(
α, β

)
{
−3β +

√
9β2 + 8κ

(
α; β

)
B
(
α, β

)}
. (3.15)
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Table 4:Maximum relative % errors of the approximate solutions φ2(x) and φ̃2(x) based on the homotopy
perturbation method.

α β M[0]φ2 M[1]φ2 M[0]φ̃2 M[1]φ̃2

1/2

1/2 19.2 21.8 8.08 8.95
1 19.2 21.8 8.07 8.93
2 19.2 21.8 8.07 8.95
3 19.2 21.8 8.06 8.96

1

1/2 19.2 21.8 8.07 8.93
1 19.2 21.8 8.07 8.95
2 19.2 21.8 8.06 8.88
3 19.2 21.7 8.09 8.91

On the other hand, if we take an additional term tanh4(rx) such as

φ̃2(x) = βx − β

a

(
1 − e−ax

) − 2Ce−ax + Ce−2ax + C + C tanh4(rx), (3.16)

then we have

C =
1
2

{
β

a
+ B

(
α, β

)}
,

a =
1

B
(
α, β

)
{
−β +

√
β2 + κ

(
α; β

)
B
(
α, β

)}
.

(3.17)

The value of r is taken by minimization of the L2-norm of the residual function Nφ̃2(x) as
defined in (2.14).

Numerical results for the maximum relative percentage errors of the homotopy
perturbation method (3.13) and the modified method (3.16) are included in Table 4. The table
shows that both the solutions φ2(x) and φ̃2(x) uniformly approximate the exact solution
fα,β(x), and that the maximum relative errors of φ̃2(x) are less than 8.09% and 8.96% for
approximation to fα,β(x) and its derivative, respectively. However, though the modified
solution φ̃2(x) improves φ2(x) based on the homotopy perturbation method, its accuracy
is not comparable with the three-term approximate solution kα,β(x) in (2.16).

4. Conclusions

In this paper, we have presented three forms of approximate analytical solutions for the
generalized Blasius problem (1.1) and (1.2). The presented solutions uniformly approximate
the exact solution on the whole interval 0 ≤ x < ∞, regardless of the values of α and β.
Particularly, the three-term approximate solution kα,β(x) in (2.16) with the parameter r = r∗

given in Table 3 results in the relative error less than 0.033%. However, it should be pointed
out that there will be room for further improvement if more properties of the exact solution,
like (i) and (ii) in Section 2, are informed. In addition, employing the known properties (i)
and (ii) of the generalized Blasius problem, we have explored the homotopy perturbation
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method for application of the presented approach. From the numerical results one can see
that the presented three-term approximate solution kα,β(x) gives superior results in accuracy.
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