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The Hausdorff capacity on the Heisenberg group is introduced. The Choquet integrals with respect
to the Hausdorff capacity on the Heisenberg group are defined. Then the fractional Carleson
measures on the Siegel upper half space are discussed. Some characterized results and the dual
of the fractional Carleson measures on the Siegel upper half space are studied. Therefore, the
tent spaces on the Siegel upper half space in terms of the Choquet integrals are introduced and
investigated. The atomic decomposition and the dual spaces of the tent spaces are obtained at the
last.

1. Introduction

It is well known that harmonic analysis plays an important role in partial differential
equations. The theory of function spaces constitutes an important part of harmonic analysis.
Heisenberg group, just as its name coming from the physicists Heisenberg, is very useful
in quantum mechanics. Therefore, to discuss new function or distribution spaces and some
characterizations of them is very significant in modern harmonic analysis and partial dif-
ferential equations. Especially, the function spaces related to the Heisenberg group will be
used in partial differential equations and physics. It is precisely the reason in which we are
interested.

The Hausdorff capacity on R
n is introduced by Adams in [1]. Some limiting form is the

classical Hausdorffmeasure. Adams also discussed some boundedness of Hardy-Littlewood
maximal functions related to it. The capacity and Choquet integrals, in some sense, are from
and applied to partial differential equations (see [2, 3]). As we know, the tent spaces have
been considered by many authors and play an important role in harmonic analysis on R

n (cf.
[4, 5]). By using the Choquet integrals with respect to Hausdorff capacity on R

n, the new
tent spaces and their applications on the duality results for fractional Carleson measures,
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Q spaces, and Hardy-Hausdorff spaces were discussed (see [6]). The theory of Q spaces
can be found in [7–11]). Inspired by the literature [6], in this paper, we will discuss the
fractional Carleson measures and the tent spaces on the Siegel upper half space. In order
to get the results in Section 3, some boundedness of Hardy-Littlewood maximal functions
on the Choquet integral space L

q

Λ∞
p
(Hn) with Hausdorff capacity on the Heisenberg group

are discussed in Section 2. In Section 3, by the Choquet integrals with respect to Hausdorff
capacity on the Heisenberg group, we will introduce the fractional Carleson measures on
the Siegel upper half space. The characterizations of the fractional Carleson measures on the
Siegel upper half space are obtained. And the dual of the fractional Carleson measures on
the Siegel upper half space is also obtained. In the last section, the tent spaces on the Siegel
upper half space in terms of Choquet integrals with respect to the Hausdorff capacity on
the Heisenberg group are introduced. Then, the atomic decomposition and the dual spaces
of the tent spaces are obtained. The fractional Carleson measures and the tent spaces on the
Siegel upper half space will be used for Q spaces and the Hardy-Hausdorff spaces on the
Heisenberg group (which will be discussed in another paper by us). On the other hand, they
may be used in partial differential equations and quantum mechanics.

As we know, Heisenberg group was discussed by many authors, such as [5, 12–15].
For convenience, let us recall some basic knowledge for the Heisenberg group.

Let Z, R, and C be the sets of all integers, real numbers, and complex numbers, and
Z
n, R

n, and C
n be n-dimensional Z, R, and C, respectively. The Siegel upper half space U

n in
C

n+1 is defined by

U
n =
{
z =
(
z′, zn+1

) ∈ C
n+1 : Im zn+1 >

∣∣z′∣∣2
}
, (1.1)

where z′ = (z1, z2, . . . , zn) ∈ Cn, |z′|2 =∑n
k=1 |zk|2. The boundary of U

n is

∂U
n =
{
z =
(
z′, zn+1

) ∈ C
n+1 : Im zn+1 =

∣∣z′∣∣2
}
. (1.2)

The Heisenberg group on C
n × R, denoted by H

n, is a noncommutative nilpotent Lie
group with the underlying manifold C

n × R. The group law is given by

zw =
(
z′, t
)(
w′, s

)
=
(
z′ +w′, t + s + 2 Im z′w′

)
, for z =

(
z′, t
)
, w =

(
w′, s

) ∈ H
n, (1.3)

where z′w′ = z1w1 + · · · + znwn is the Hermitean product on C
n.

It is easy to check that the inverse of the element z = (z′, t) is z−1 = (−z′,−t), and
the unitary element is 0 = (0, 0). The Haar measure dz on H

n coincides with the Lebesgue
measure dz′dt on C

n × R.
For each element ζ = (ζ′, t) of H

n, the following affine self-mapping of U
n:

(
ζ′, t
)
:
(
z′, zn+1

) �−→
(
z′ + ζ′, zn+1 + t + 2iz′ζ′ + i

∣∣ζ′∣∣2
)

(1.4)

is an action of the group H
n on the space U

n. Observe that the mapping (1.4) gives us a
realization of H

n as a group of affine holomorphic bijections of U
n (see [5]).
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The dilations on H
n are defined by δz = δ(z′, t) = (δz′, δ2t), δ > 0, and the rotation on

H
n is defined by σz = σ(z′, t) = (σz′, t) with a unitary map σ of C

n. The conjugation of z is
z = (z′, t) = (z′,−t). The norm function is given by

|z| =
(∣∣z′∣∣4 + |t|2

)1/4
, z =

(
z′, t
) ∈ H

n, (1.5)

which is homogeneous of degree 1 and satisfies |z−1| = |z| and |zw| ≤ C(|z| + |w|) for some
absolute constant C. The distance function d(z,w) of point z and w in H

n is defined by
d(z,w) = |w−1z|.

For z = (z′, t) ∈ H
n (or z = (x, y, t) ∈ H

n for x = (x1, x2, , . . . , xn), y = (y1, y2, , . . . , yn)),
we define

|z|∞ = max
{
|x1|, . . . , |xn|,

∣∣y1
∣∣, . . . , ∣∣yn

∣∣,
√
|t|
}
, (1.6)

where z′ = (z1, . . . , zn), and zk = xk + iyk, 1 ≤ k ≤ n.
To define the cube in H

n, let [x] = ([x1], [x2], . . . , [xn]), where [a] denotes the largest
integer less than or equal to a, and 〈x〉 = x − [x]. We define the function F(x, y) by

F
(
x, y
)
=

∞∑
j=1

2
4j
(〈

2jx
〉([

2jy
]
mod (2Zn)

)
−
〈
2jy
〉([

2jx
]
mod (2Zn)

))
, (1.7)

and set

I0 =
{(

x, y, t
) ∈ H

n : 0 ≤ xk ≤ 1, 0 ≤ yk ≤ 1, 1 ≤ k ≤ n, 0 ≤ t − F
(
x, y
) ≤ 1

}
, (1.8)

Γ = {(m,n, l) ∈ H
n : m,n ∈ Z

n; l ∈ Z}. Then

H
n =
∑
γ∈Γ

γ−1I ′0,
(
disjoint union

)
, (1.9)

where I ′0 = {(x, y, t) ∈ H
n : 0 ≤ xk < 1, 0 ≤ yk < 1, k = 1, 2, . . . , n, 0 ≤ t − F(x, y) < 1} (see

[14]). Now a “cube” (in fact, called “tile” more precisely) with center w = (u, v, s) and edge
sidelength l is defined by I = lw−1I0. Let |I| (with the Lebesgue measure) be the volume of I
with length l(I). It is easy to see that |I| = [l(I)]2n+2. Obviously, the diameter of I denoted by
diam(I) is equal to cnl(I), where cn is a constant depending only on n. The “dyadic cubes”
on H

n can be defined by I = 2−jγ−1I0, γ ∈ Γ, j ∈ Z. We also call the “cube” and “dyadic cube”
as cube and dyadic cube, respectively.

A ball in H
n with center w and radius r is denoted as B = B(w, r) = {z : |w−1z| < r}.

The tent based on the set E ⊂ H
n is defined by

T(E) =
{(

ξ, ρ
) ∈ U

n : B
(
ξ, ρ
) ⊂ E

}
. (1.10)

The Schwartz class of rapidly decreasing smooth function on H
n will be denoted by

S(Hn). The dual of S(Hn) is S′(Hn), the space of tempered distributions on H
n.
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2. Hausdorff Capacity on Heisenberg Group

In order to discuss the fractional Carleson measures on the Siegel upper half space, we
introduce the p-dimensional Hausdorff capacity and Choquet integral on the Heisenberg
group in the following.

Definition 2.1. For p ∈ (0, 1] and E ⊂ H
n, the p-dimensional Hausdorff capacity of E is defined

by

Λ∞
p (E) = inf

⎧
⎨
⎩
∑
j

∣∣Ij
∣∣p : E ⊂

∞⋃
j=1

Ij

⎫
⎬
⎭, (2.1)

where the infimum ranges only over covers of E by dyadic cubes.

Remark 2.2. It is easy to check that Λ∞
p satisfies the following properties.

(i) If Ej is nondecreasing, then Λ∞
p (
⋃

j Ej) = limj→∞Λ∞
p (Ej).

(ii) If Ej is nonincreasing, then Λ∞
p (
⋂

j Ej) = limj→∞Λ∞
p (Ej).

(iii) Λ∞
p has the strong subadditivity condition.

Λ∞
p

(
E1

⋃
E2

)
+ Λ∞

p (E1 ∩ E2) ≤ Λ∞
p (E1) + Λ∞

p (E2). (2.2)

For a nonnegative function f onH
n, the Choquet integral with respect to the Hausdorff

capacity on the Heisenberg group is defined by

∫

Hn

f(z)dΛ∞
p =

∫∞

0
Λ∞

p

({
z ∈ H

n : f(z) > λ
})

dλ. (2.3)

SinceΛ∞
p is monotonous, the integrand on the right hand side in (2.3) is nonincreasing

and then is Lebesgue measurable on [0,∞). It is easy to see that the equality (2.3) with
the Hausdorff measure is similar to the equality of the distribution function with Lebesgue
measure.

In order to characterize the fractional Carleson measure in the Siegel upper half space
in Section 3, we need to discuss the Hardy-Littlewood maximal operator on the Heisenberg
group.

Let f ∈ L1
loc(H

n). M(f), the dyadic Hardy-Littlewood maximal operator of f , is
defined by

M
(
f
)
(z) = sup

I�z

1
|I|
∫

I

∣∣f(ξ)∣∣dξ, (2.4)

where the supremum is taken over all dyadic cubes I containing z.
The boundedness of the dyadic Hardy-Littlewood maximal operators on the Choquet

integral spaces Lq

Λ∞
p
(Hn) is as follows.
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Theorem 2.3. Suppose 0 < p ≤ 1. There exists a constant C depending only on p and n such that

∫

Hn

M
(
f
)q
dΛ∞

p ≤ C

∫

Hn

∣∣f∣∣qdΛ∞
p , ∀f ∈ L

q

Λ∞
p
(Hn), q > p, (2.5)

Λ∞
p

({
ξ ∈ H

n : M
(
f
)
(ξ) > λ

}) ≤ C

λp

∫

Hn

∣∣f∣∣pdΛ∞
p , ∀f ∈ L

p

Λ∞
p
(Hn). (2.6)

To prove Theorem 2.3, we need to prove the following lemmas first.

Lemma 2.4. For p ∈ (0, 1], let {Ij} be a sequence of dyadic cubes in H
n such that

∑
j |Ij |p < ∞.

Then there is a sequence of disjoint dyadic cubes {Jk} so that
⋃

k Jk =
⋃

j Ij and
∑

k |Jk|p ≤ ∑j |Ij |p.
Moreover, if E ⊂ ⋃j Ij , then the following tent inclusion T(E) ⊂ ⋃k T(J

∗
k
) holds, where J∗

k
is the cube

with the same center as Jk and δn times the sidelength (δn is some constant depending only on n).

Proof. Since
∑

j |Ij |p < ∞, p ∈ (0, 1], we have that
∑

j |Ij | < ∞. Thus the union of Ij cannot form
arbitrarily large dyadic cubes. Thus, each Ij must be included in some maximal dyadic cube
Jk ∈ J, where J denotes the collection of all dyadic cubes J =

⋃{Ij : Ij ⊂ J}. If we write these
maximal cubes as a sequence {Jk}, then Jk is disjoint and

⋃
k Jk =

⋃
j Ij . By the definition of Jk

in J, we know that |Jk| ≤
∑

Ij⊂Jk |Ij |. Jensen’s inequality gives |Jk|p ≤ ∑Ij⊂Jk |Ij |p for 0 < p ≤ 1.
Consequently,

∑
k

|Jk|p ≤
∑
k

∑
Ij⊂Jk

∣∣Ij
∣∣p ≤

∑
j

∣∣Ij
∣∣p. (2.7)

Suppose that E ⊂ ⋃j Ij and (ξ, ρ) ∈ T(E). Then ξ ∈ E ⊂ ⋃k Jk and ξ ∈ Jk for some
fixed k. For this Jk, we consider the parent dyadic cube J ′k, namely, the unique dyadic cube
containing Jk whose sidelength is double of that of Jk. Since Jk is maximal in J, we have that
J ′
k
is not a union of the Ij ’s, that is, J ′k contains a point η ∈ H

n \ (⋃j Ij) ⊂ H
n \ E. Denoting the

boundary of E by ∂E, there is

ρ < dist(ξ, ∂E) ≤ diam
(
J ′k
)
= cnl

(
J ′k
)
= 2cnl(Jk). (2.8)

If J∗
k
is the cube with the same center as Jk, and 5cn times the sidelength, then

dist
(
ξ, ∂J∗k

) ≥ 1
2
(5cn − 1)l(Jk) ≥ 2cnl(Jk) > ρ, (since cn > 1), (2.9)

which means that (ξ, ρ) ∈ T(J∗
k
). The proof is completed.

Lemma 2.5. Let χI be the characteristic function on the cube I. Then

∫

Hn

M
(
χI

)q
dΛ∞

p ≤ C|I|p, q > p. (2.10)
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Proof. Let zI be the center of I. By the definition of the maximal function M, we obtain

M
(
χI

)
(ξ) ≤ C inf

⎧
⎨
⎩1,

|I|
∣∣z−1I ξ

∣∣(2n+2)

⎫
⎬
⎭. (2.11)

Since p/q < 1, there is

∫

Hn

M
(
χI

)q
dΛ∞

p ≤ C|I|p + C

∫1

0
|I|pλ−p/qdλ = C|I|p. (2.12)

The proof of Lemma 2.5 is complete.

Lemma 2.6. Let {Ij} be a family of nonoverlapping dyadic cubes. Then there is a maximal subfamily
{Ijk} such that for every dyadic cube I,

∑
Ijk⊂I

∣∣Ijk
∣∣p ≤ 2|I|p, (2.13)

Λ∞
p

(⋃
Ij
)
≤ 2
∑
k

∣∣Ijk
∣∣p. (2.14)

Proof. Similar to the proof in [16], if Ij1 = I1, then obviously Ij1 satisfies (2.13). If j1, . . . , jk have
been chosen so that (2.13) holds, then we define jk+1 as the first index such that the family
{Ij1 , . . . , Ijk , Ijk+1} satisfies (2.13). Continuing this proceeding, therefore, we have that {Ijk} is a
maximal subfamily of {Ij} satisfying (2.13). Hence (2.13) holds.

To prove (2.14), let j be an index such that jm < j < jm+1 for some m ∈ Z. Then by the
proof of (2.13), there exists a dyadic cube I∗j ⊃ Ij such that

∑
Ijk⊂I∗j ,k≤m

∣∣Ijk
∣∣p + ∣∣Ij

∣∣p > 2
∣∣∣I∗j
∣∣∣
p
. (2.15)

Therefore,

∣∣∣I∗j
∣∣∣
p ≤

∑
Ijk⊂I∗j ,k≤m

∣∣Ijk
∣∣p. (2.16)

We can assume that
∑

k |Ijk |p < ∞. Otherwise (2.14) is obviously correct. Then the sequence
{|I∗j |} is bounded. Thus, we can consider the family {Ĩl} of maximal cubes of the family {I∗j }.
Hence

⋃
j

Ij ⊂
(⋃

k

Ijk

)⋃(⋃
l

Ĩl

)
. (2.17)
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Consequently, by the definition of Λ∞
p , we obtain

Λ∞
p

(⋃
Ij
)
≤ 2
∑
k

∣∣Ijk
∣∣p. (2.18)

The proof is complete.

Proof of Theorem 2.3. By the definition of Λ∞
p , for any ε > 0, there exist {Ij}j such that

∑
j

∣∣Ij
∣∣p < Λ∞

p (Ek) + ε, (2.19)

where Ek = {ξ ∈ H
n : 2k < |f(ξ)| ≤ 2k+1}. If Λ∞

p (Ek) = 0, we can choose
∑

j |Ij |p = 0. If
Λ∞

p (Ek) > 0, then

∑
j

∣∣Ij
∣∣p ≤ 2Λ∞

p (Ek). (2.20)

By Lemma 2.4, for each integer k, there is a family of nonoverlapping dyadic cubes {I(k)j }
such that

{
ξ ∈ H

n : 2k <
∣∣f(ξ)∣∣ ≤ 2k+1

}
⊂
⋃
j

I
(k)
j ,

∑
j

∣∣∣I(k)j

∣∣∣
p ≤ 2Λ∞

p

({
ξ ∈ H

n : 2k <
∣∣f(ξ)∣∣ ≤ 2k+1

})
.

(2.21)

Set g =
∑

k 2
(k+1)qχFk , where χFk is the characteristic function of Fk =

⋃
j I

(k)
j . Then |f |q ≤ g.

First, assume that q > 1. Then the Hölder inequality tells us

M
(
f
)q ≤ M

(∣∣f∣∣q) ≤ M
(
g
) ≤
∑
k

2(k+1)q
∑
j

M

(
χ
I
(k)
j

)
. (2.22)

Therefore, by Lemma 2.5, we have

∫

Hn

M
(
f
)q
dΛ∞

p ≤ C
∑
k

2(k+1)q
∑
j

∫

Hn

M

(
χ
I
(k)
j

)
dΛ∞

p

≤ C
∑
k

2(k+1)q
∑
j

∣∣∣I(k)j

∣∣∣
p ≤ C

∑
k

2(k+1)qΛ∞
p (Ek)

≤ C
∑
k

22q

2q − 1

∫2kq

2(k−1)q
Λ∞

p

({
ξ ∈ H

n :
∣∣f(ξ)∣∣q > λ

})
dλ

≤ C

∫∞

0
Λ∞

p

({
ξ ∈ H

n :
∣∣f(ξ)∣∣q > λ

})
dλ = C

∫

Hn

∣∣f∣∣qdΛ∞
p .

(2.23)
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Now, assume that p < q ≤ 1. Since |f | ≤∑k 2
k+1χFk , there is

M
(
f
) ≤
∑
k

2k+1
∑
j

M

(
χ
I
(k)
j

)
. (2.24)

By using Jensen’s inequality, we obtain

M
(
f
)q ≤

∑
k

2(k+1)q
∑
j

M

(
χ
I
(k)
j

)q

. (2.25)

Thus, also by Lemma 2.5, there is

∫

Hn

M
(
f
)q
dΛ∞

p ≤ C
∑
k

2(k+1)q
∑
j

∫

Hn

M

(
χ
I
(k)
j

)
dΛ∞

p

≤ C
∑
k

2(k+1)q
∑
j

∣∣∣I(k)j

∣∣∣
p ≤ C

∑
k

2(k+1)qΛ∞
p (Ek)

≤ C

∫∞

0
Λ∞

p

({
ξ ∈ H

n :
∣∣f(ξ)∣∣q > λ

})
dλ = C

∫

Hn

∣∣f∣∣qdΛ∞
p .

(2.26)

That means that (2.5) holds.

For a given λ > 0, let {Ij} be the family of maximal dyadic cubes Ij such that

1∣∣Ij
∣∣
∫

Ij

∣∣f(ξ)∣∣dξ > λ. (2.27)

Note that M(f) is dyadic and {z ∈ H
n : M(f)(z) > λ} =

⋃
j Ij . Since 0 < p ≤ 1, there is

∑
j

∣∣Ij
∣∣ ≤
⎛
⎝∑

j

∣∣Ij
∣∣p
⎞
⎠

1/p

, Λ∞
1 (E) ≤ Λ∞

p (E)
1/p. (2.28)
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Hence
∫

Hn

∣∣f(z)∣∣dz =
∫∞

0
Λ∞

1

({
ξ ∈ H

n :
∣∣f(ξ)∣∣ > λ

})
dλ

=
1
p

∫∞

0
Λ∞

1

({
ξ ∈ H

n :
∣∣f(ξ)∣∣ > ρ1/p

})
ρ(1/p)−1dρ

≤ 1
p

∫∞

0
Λ∞

p

({
ξ ∈ H

n :
∣∣f(ξ)∣∣ > ρ1/p

})1/p
ρ(1/p)−1dρ

=
1
p

∫∞

0

[
Λ∞

p

({
ξ ∈ H

n : f(ξ)|p > ρ
})

ρ
](1/p)−1

Λ∞
p

({
ξ ∈ H

n :
∣∣f(ξ)∣∣p > ρ

})
dρ

≤ 1
p

(∫

Hn

∣∣f∣∣p dΛ∞
p

)(1/p)−1 ∫∞

0
Λ∞

p

({
ξ ∈ H

n :
∣∣f(ξ)∣∣p > ρ

})
dρ

=
1
p

(∫

Hn

∣∣f∣∣p dΛ∞
p

)1/p

,

(2.29)

where the last inequality is due to the fact that

Λ∞
p

({
ξ ∈ H

n :
∣∣f(ξ)∣∣p > ρ

})
ρ ≤
∫

{ξ∈Hn:|f(ξ)|p>ρ}

∣∣f∣∣pdΛ∞
p , ρ > 0. (2.30)

Therefore, by (2.27) and (2.29), we obtain

∣∣Ij
∣∣p ≤

(
1
λ

∫

Ij

∣∣f∣∣dξ
)p

≤ Cλ−p
∫

Ij

∣∣f∣∣pdΛ∞
p . (2.31)

For the above {Ij}, by Lemma 2.6 and (2.31), there exists a subfamily {Ijk} such that

Λ∞
p

({
z ∈ H

n : M
(
f
)
(z) > λ

})
= Λ∞

p

⎛
⎝⋃

j

Ij

⎞
⎠ ≤ 2

∑
k

∣∣Ijk
∣∣p

≤ Cλ−p
∑
k

∫

Ijk

∣∣f∣∣pdΛ∞
p ≤ Cλ−p

∫

Hn

∣∣f∣∣pdΛ∞
p .

(2.32)

The proof of Theorem 2.3 is complete.

3. p-Carleson Measure on Siegel Upper Half Space

Let I be a cube in H
n with center η. The Carleson box based on I is defined by

S(I) =
{(

ξ, ρ
) ∈ U

n :
∣∣∣η−1ξ

∣∣∣
∞
≤ l(I)

2
, ρ ≤ l(I)

}
. (3.1)
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For p > 0, a positive Borel measure μ on the Siegel upper half space U
n is called a

p-Carleson measure if there exists a constant C > 0 such that

μ(S(I)) ≤ C|I|p, ∀ cubes I ⊂ H
n. (3.2)

For z ∈ H
n, let Γ(z) = {(ξ, ρ) ∈ U

n : |z−1ξ| < ρ} be the cone at z. Suppose that f is a
measurable function on U

n. The nontangential maximal function N(f) of f is defined by

N
(
f
)
(z) = sup

(ξ,ρ)∈Γ(z)

∣∣f(ξ, ρ)∣∣. (3.3)

Since the nontangential maximal function and Hausdorff capacity are defined, we are
paying attention on the characterizations of the p-Carleson measures.

Theorem 3.1. For p ∈ (0, 1], let μ be a positive Borel measure on U
n. Then the following three

conclusions are equivalent.

(i) μ is a p-Carleson measure.

(ii) There exists a constant C > 0 such that

∫

Un

∣∣f(ξ, ρ)∣∣dμ ≤ C

∫

Hn

N
(
f
)
dΛ(∞)

p (3.4)

holds for all Borel measurable functions f on U
n.

(iii) For every q > 0, there exists a constant C > 0 such that

∫

Un

∣∣f(ξ, ρ)∣∣qdμ ≤ C

∫

Hn

(
N
(
f
))q

dΛ(∞)
p (3.5)

holds for all Borel measurable functions f on U
n.

Proof. (i)⇒(ii). Assume that μ is a p-Carleson measure, and f is a Borel measurable function
on U

n. For λ > 0, let Eλ = {z ∈ H
n : N(f)(z) > λ}. If the integral on the right hand side of (3.4)

is finite, wemay assume thatΛ(∞)
p (Eλ) < ∞. Let {Ij} be any of the dyadic cubes covering of Eλ

with
∑

j |Ij |p < ∞. Then Lemma 2.4 tells us that there is a sequence {Jk} of dyadic cubes with
mutually disjointed so that

⋃
k Jk =

⋃
j Ij ,
∑

k |Jk|p ≤ ∑j |Ij |p and T(Eλ) ⊂
⋃

k T(J
∗
k
), where J∗

k

is the cube with the same center and 5cn times sidelength of Jk.
If (ξ, ρ) ∈ U

n satisfies |f(ξ, ρ)| > λ, then N(f)(z) > λ for all z ∈ B(ξ, ρ). Thus (ξ, ρ) ∈
T(Eλ), and hence

{(
ξ, ρ
) ∈ U

n :
∣∣f(ξ, ρ)∣∣ > λ

} ⊂ T(Eλ) ⊂
⋃
k

T
(
J∗k
)
. (3.6)
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By Lemma 2.4, we obtain

μ
({(

ξ, ρ
) ∈ U

n :
∣∣f(ξ, ρ)∣∣ > λ

}) ≤ μ

(⋃
k

T
(
J∗k
)) ≤

∑
k

μ
(
T
(
J∗k
)) ≤ C

∥∥μ∥∥
∑
k

∣∣J∗k
∣∣p

≤ C
∥∥μ∥∥
∑
j

∣∣∣J∗j
∣∣∣
p
.

(3.7)

Taking an infimum over all such dyadic cube coverings, we have

μ
({(

ξ, ρ
) ∈ U

n :
∣∣f(ξ, ρ)∣∣ > λ

}) ≤ C
∥∥μ∥∥Λ(∞)

p (Eλ). (3.8)

Therefore,

∫

Un

∣∣f(ξ, ρ)∣∣dμ =
∫∞

0
μ
({(

ξ, ρ
) ∈ U

n :
∣∣f(ξ, ρ)∣∣ > λ

})
dλ

≤ C

∫∞

0

∥∥μ∥∥Λ(∞)
p (Eλ)dλ = C

∥∥μ∥∥
∫

Hn

N
(
f
)
dΛ(∞)

p .

(3.9)

(ii)⇒(i). Suppose that (3.4) is valid for all Borel measurable functions on U
n. For a cube

I ⊂ H
n, let φ(ξ, ρ) = χT(I). Note that (ξ, ρ) ∈ T(I) ∩ Γ(z) if and only if z ∈ B(ξ, ρ) ⊂ I, there is

N(φ) = χI . Then, by (3.4), we have

μ(T(I)) ≤ C

∫∞

0
Λ(∞)

p

({
N
(
φ
)
> λ
})

dλ = C

∫1

0
Λ(∞)

p (I)dλ ≤ C|I|p. (3.10)

It means that μ is a p-Carleson measure.
(ii)⇒(iii). Replacing |f |with |f |q in (3.4) for q > 0, we immediately obtain

∫

Un

∣∣f(ξ, ρ)∣∣qdμ ≤ C

∫

Hn

(
N
(
f
))q

dΛ(∞)
p . (3.11)

(iii)⇒(ii). If we set q = 1 in (3.5), then (3.4) holds.
The proof of Theorem 3.1 is complete.

To continue the characterization of the p-Carleson measures on the Siegel upper
half space, we need to prove the following Lemma 3.2. It is said that the nontangential
maximal functions are dominated by the dyadic Hardy-Littlewood maximal operators on
the Heisenberg group.
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Lemma 3.2. Let f be a locally integrable function on H
n, and φ ∈ S(Hn) be a nonnegative radial and

decreasing function with
∫
Hn φ(z) dz = 1. Then

N(F)(z) = sup
(ξ,ρ)∈Γ(z)

∣∣F(ξ, ρ)∣∣ = sup
(ξ,ρ)∈Γ(z)

∣∣f ∗ φρ(ξ)
∣∣ ≤ CM

(
f
)
(z), (3.12)

where φρ(ξ) = ρ−(2n+2)φ(ρ−1ξ) and ρ > 0 is real.

Proof. Since φ ∈ S(Hn), we can suppose that |φ(z)| ≤ C/(1 + |z|)2n+2+ε for some ε > 0. Then

∣∣f ∗ φρ(ξ)
∣∣ =
∣∣∣∣
∫

Hn

ρ−(2n+2)φ
(
ρ−1
(
η−1ξ

))
f
(
η
)
dη

∣∣∣∣

≤
∫

|η−1ξ|≤ρ
ρ−(2n+2)

∣∣∣φ
(
ρ−1
(
η−1ξ

))∣∣∣∣∣f(η)∣∣dη

+
∞∑
k=0

∫

2kρ<|η−1ξ|≤2k+1ρ
ρ−(2n+2)

∣∣∣φ
(
ρ−1
(
η−1ξ

))∣∣∣∣∣f(η)∣∣dη

≤ C

ρ2n+2

∫

|η−1ξ|≤ρ

∣∣f(η)∣∣dη + C
∞∑
k=0

∫

2kρ<|η−1ξ|≤2k+1ρ

ρ−(2n+2)
∣∣f(η)∣∣

(
1 +
((
η−1ξ

)
/ρ
))2n+2+ε dη

≤ CM
(
f
)
(ξ) + C

∞∑
k=0

1
ρ2n+2

∫

|η−1ξ|≤2k+1ρ

1
2k(2n+2+ε)

∣∣f(η)∣∣dη

≤ C′M
(
f
)
(ξ)

∞∑
k=0

2−(k+1)ε = C′′M
(
f
)
(ξ).

(3.13)

Hence

N(F)(z) = sup
(ξ,ρ)∈Γ(z)

∣∣f ∗ φρ(ξ)
∣∣ ≤ CM

(
f
)
(z). (3.14)

Lemma 3.2 is proved.

Theorem 3.3. For 0 < p ≤ 1, q > p, let μ be a positive Borel measure on U
n. Then μ is a p-Carleson

measure if and only if

∫

Un

∣∣G(ξ, ρ)∣∣qdμ ≤ C

∫

Hn

∣∣g∣∣qdΛ(∞)
p (3.15)

holds for all functions G on U
n which can be written as G(ξ, ρ) = g ∗ φρ(ξ), where g is a locally

integrable function on H
n, and φ is the function in Lemma 3.2.
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Proof. Suppose that μ is a p-Carleson measure. By the conclusions of Theorems 3.1 and 2.3
and Lemma 3.2, there is

∫

Un

∣∣G(ξ, ρ)∣∣qdμ ≤ C

∫

Hn

(N(G))qdΛ(∞)
p ≤ C

∫

Hn

(
M
(
g
))q

dΛ(∞)
p ≤ C

∫

Hn

∣∣g∣∣qdΛ(∞)
p . (3.16)

Conversely, for any cube I ⊂ H
n, if we set g = χI , then for (ξ, ρ) ∈ T(I), there is

G
(
ξ, ρ
)
=
∫

I

φρ

(
η−1ξ

)
dη ≥

∫

B(ξ,ρ)
φρ

(
η−1ξ

)
dη =

∫

B(ξ,1)
φ1

(
η−1ξ

)
dη

=
∫

B(0,1)
φ(z)dz = c.

(3.17)

Thus, by using the inequality (3.15), we obtain

cqμ(T(I)) = cq
∫

T(I)
dμ ≤

∫

T(I)

∣∣G(ξ, ρ)∣∣qdμ ≤
∫

Un

∣∣G(ξ, ρ)∣∣qdμ ≤ C

∫

Hn

∣∣g∣∣qdΛ(∞)
p

= C

∫

Hn

χIdΛ
(∞)
p = CΛ(∞)

p (I) ≤ C|I|p.
(3.18)

This ends the proof of Theorem 3.3.

Let N(Λ(∞)
p ) be the space of all Borel measurable functions f on U

n satisfying

∥∥f∥∥
N(Λ(∞)

p ) =
∫

Hn

N
(
f
)
dΛ(∞)

p < ∞. (3.19)

Then ‖ · ‖
N(Λ(∞)

p ) gives a (quasi) norm and N(Λ(∞)
p ) is complete.

The following result says that N(Λ(∞)
p ) is the dual of p-Carleson measure.

Theorem 3.4. Let p ∈ (0, 1]. Then there exists a duality between the space of p-Carleson measures
and N(Λ(∞)

p ) in the following sense.

(i) Every p-Carleson measure μ on U
n defines a bounded linear functional on N(Λ(∞)

p ) via the
pairing

〈
μ, f
〉
=
∫

Un

f
(
ξ, ρ
)
dμ. (3.20)

(ii) Let N0(Λ
(∞)
p ) be the closure in N(Λ(∞)

p ) of the continuous functions with compact support

in U
n. Then every bounded linear functional on N0(Λ

(∞)
p ) given via the pairing (3.20) by a

Borel measure μ on U
n is a p-Carleson measure.
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Proof. Assume that μ is a p-Carleson measure and f ∈ N(Λ(∞)
p ). By (3.19) and (ii) in

Theorem 3.1, we have

∫

Un

∣∣f(ξ, ρ)∣∣dμ ≤ C

∫

Hn

N
(
f
)
dΛ(∞)

p < ∞. (3.21)

Thus, 〈μ, f〉 =
∫
Un f(ξ, ρ)dμ is well defined. Hence, every p-Carleson measure μ defines a

bounded linear functional on N(Λ(∞)
p ). The part (i) is proved.

For part (ii), let L be a bounded linear functional on N0(Λ
(∞)
p ). By the continuity and

the closure ofN0(Λ
(∞)
p ), applying the Riesz representation theorem,we obtain a Borel measure

μ on U
n having

L
(
f
)
=
∫

Un

f
(
ξ, ρ
)
dμ =

〈
μ, f
〉
. (3.22)

If f = χT(I) for any cube I ∈ H
n, then

μ(T(I)) =
∫

Un

χT(I)dμ = L
(
χT(I)

) ≤ ‖L‖ · ∥∥χT(I)
∥∥

N(Λ(∞)
p )

= ‖L‖
∫

Hn

N
(
χT(I)

)
dΛ(∞)

p = C‖L‖
∫

I

dΛ(∞)
p = C‖L‖Λ(∞)

p (I) ≤ C‖L‖ · |I|p.
(3.23)

Hence, μ is a p-Carleson measure with ‖μ‖ ≤ C‖L‖. This ends the proof of Theorem 3.4.

4. Tent Spaces with Hausdorff Capacity

With Hausdorff capacity on the Heisenberg group discussed above, in this section, we
introduce the tent spaces on the Siegel upper half space, an analogy of the Coifman-Meyer-
Stein tent space on R

n (cf. [4, 6]). Then the atomic decomposition of the tent spaces and the
duality of the tent space are discussed.

Definition 4.1. Let p ∈ (0, 1]. A Lebesgue measurable function f on U
n is said to belong to T∞

p

if

∥∥f∥∥T∞
p
= sup

B⊂Hn

(
1

|B|p
∫

T(B)

∣∣f(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)

)1/2

< ∞, (4.1)

where B runs over all balls in H
n, and T(B) is a tent based on B.

Definition 4.2. Let p ∈ (0, 1]. The tent space T1
p consists of all measurable functions f on U

n for
which

∥∥f∥∥T1
p
= inf

w

(∫

Un

∣∣f(ξ, ρ)∣∣2w(ξ, ρ)−1 dξdρ

ρ1−2(n+1)(1−p)

)1/2

< ∞, (4.2)
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where the infimum is taken over all nonnegative Borel measurable functions w on U
n satis-

fying

∫

Hn

N(w)dΛ(∞)
p ≤ 1, (4.3)

and w is allowed to vanish only where f vanishes.
We will identify T∞

p with a dual space of T1
p . In order to do this, we first introduce the

T1
p -atom as follows.

Definition 4.3. A function a on U
n is said to be a T1

p -atom, if there exists a ball B ⊂ H
n such

that a is supported in the tent T(B) and satisfies

∫

T(B)

∣∣a(ξ, ρ)∣∣2 dξdρ

ρ1−2(n+1)(1−p)
≤ 1

|B|p . (4.4)

For the tent space T1
p on U

n and ‖ · ‖T1
p
, we have the triangle inequality with a constant

in the following lemma.

Lemma 4.4. Let p ∈ (0, 1]. If
∑

j ‖gj‖T1
p
< ∞, then g =

∑
j gj ∈ T1

p and

∥∥g∥∥T1
p
≤ C
∑
j

∥∥gj
∥∥
T1
p
. (4.5)

Proof. Without loss of generality, we assume that λj = ‖gj‖T1
p
> 0 for all j. Set fj = ‖g‖−1

T1
p
gj .

Then ‖fj‖T1
p
≤ 1 and g =

∑
j λjfj . Suppose that wj ≥ 0 for all j such that

∫
Hn N(wj) dΛ

(∞)
p ≤ 1

and

∫

Un

∣∣gj
(
ξ, ρ
)∣∣2wj

(
ξ, ρ
)−1 dξdρ

ρ1−2(n+1)(1−p)
≤ 2
∥∥gj
∥∥2
T1
p
. (4.6)

According to the definition of T1
p , the above inequality holds obviously. By using the Cauchy-

Schwarz inequality, we have

∣∣g∣∣2 ≤
⎛
⎝∑

j

λjwj

⎞
⎠
⎛
⎝∑

j

λj
∣∣fj
∣∣2w−1

j

⎞
⎠. (4.7)

Let w = (
∑

j λj)
−1∑

j λjwj . Notice that the vanishing of w implies the vanishing of all wj ,
which can only happen whenever all the gj vanish, that is, g = 0, then

∫

Hn

N(w)dΛ(∞)
p ≤

⎛
⎝∑

j

λj

⎞
⎠

−1∑
j

λj

∫

Hn

N
(
wj

)
dΛ(∞)

p ≤ 1. (4.8)
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Thus, by the inequality (4.7), we obtain

∫

Un

∣∣g(ξ, ρ)∣∣2w(ξ, ρ)−1 dξdρ

ρ1−2(n+1)(1−p)

≤ C

⎛
⎝∑

j

λj

⎞
⎠∑

j

λj

∫

Hn

∣∣fj
(
ξ, ρ
)∣∣2wj

(
ξ, ρ
)−1 dξdρ

ρ1−2(n+1)(1−p)

≤ 2C

⎛
⎝∑

j

λj

⎞
⎠∑

j

λj
∥∥fj
∥∥2
T1
p
= C

⎛
⎝∑

j

λj

⎞
⎠

2

= C

⎛
⎝∑

j

∥∥gj
∥∥
T1
p

⎞
⎠

2

.

(4.9)

Taking the infimum on the left above inequality, we have

∥∥g∥∥T1
p
≤ C
∑
j

∥∥gj
∥∥
T1
p
. (4.10)

The proof of Lemma 4.4 is complete.

Remark 4.5. By Lemma 4.4, one can show that ‖ · ‖T1
p
is a quasinorm and the tent space T1

p is
complete.

The main result of this section is the atomic decomposition of the tent space T1
p as

follows.

Theorem 4.6. Let p ∈ (0, 1]. Then a function f on U
n belongs to T1

p if and only if there exist a
sequence of T1

p -atoms {aj} and an l1-sequence {λj} such that

f =
∑
j

λjaj . (4.11)

Moreover,

∥∥f∥∥T1
p
≈ inf

⎧
⎨
⎩
∑
j

∣∣λj
∣∣ : f =

∑
j

λjaj

⎫
⎬
⎭, (4.12)

where the infimum is taken over all possible atomic decompositions of f ∈ T1
p .

Note that the right hand side of (4.12) in fact defines a norm and then T1
p becomes a

Banach space.

Proof. Suppose that a is a T1
p -atom on U

n. Then there exists a ball B = B(z, r) ⊂ H
n such that

suppa ⊂ T(B) and

∫

T(B)

∣∣a(ξ, ρ)∣∣2 dξdρ

ρ1−2(n+1)(1−p)
≤ 1

|B|p . (4.13)
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Fix ε > 0, and let

w
(
ξ, ρ
)
= hr−(2n+2)p min

{
1,
(

r

D(ξ, z)

)(2n+2)p+ε
}
, (4.14)

whereD(ξ, z) denotes the distance between (ξ, ρ) and (z, 0) in U
n, and h is a suitable constant

which will be chosen later. Obviously, w(ξ, ρ) is identically equal to hr−(2n+2)p on the upper
half ball of radius r (center is (z, 0), and D(ξ, z) ≤ r) and decays radially outside the ball
(outside the ballD(ξ, z) > r, andD(ξ, z) → +∞). For ξ ∈ H

n, the distance in U
n from the cone

Γ(ξ) to (z, 0) is c|z−1ξ| = cd(z, ξ). Then

N(w)(z) ≤ hr−(2n+2)p min

{
1,
(

r

cd(ξ, z)

)(2n+2)p+ε
}
. (4.15)

Therefore,

h−1
∫

Hn

N(w)dΛ(∞)
p =

∫∞

0
Λ(∞)

p

({
ξ ∈ H

n : h−1N(w) > λ
})

dλ

≤
∫ r−(2n+2)p

0
Λ(∞)

p

[
B

(
z,

1
c

(
rε

λ

)1/(2n+2)p+ε
)]

dλ

≤ C

∫ r−(2n+2)p

0
Λ̃(∞)

p

[
B

(
z,

1
c

(
rε

λ

)1/(2n+2)p+ε
)]

dλ

≤ C
(
rε/(2n+2)p+ε

)(2n+2)p ∫ r−(2n+2)p

0
λ−(2n+2)p/((2n+2)p+ε)dλ = C.

(4.16)

Thus,
∫
Hn N(w) dΛ(∞)

p ≤ 1 by choosing h = C−1. On the other hand, letw−1 = r(2n+2)p on T(B).
We have

∫

T(B)

∣∣a(ξ, ρ)∣∣2w(ξ, ρ)−1 dξdρ

ρ1−2(n+1)(1−p)
= r(2n+2)p

∫

T(B)

∣∣a(ξ, ρ)∣∣2 dξdρ

ρ1−2(n+1)(1−p)

≤ r(2n+2)p|B|−p = C.

(4.17)

Therefore, a ∈ T1
p and ‖a‖T1

p
≤ C.

Now, taking a sum
∑

j λjaj , where
∑

j |λj | < ∞ and every aj is T1
p -atom on U

n, by
Lemma 4.4, the sum converges in the quasinorm to f ∈ T1

p with

∥∥f∥∥T1
p
≤
∑
j

∣∣λj
∣∣∥∥aj

∥∥
T1
p
≤ C
∑
j

∣∣λj
∣∣ < ∞. (4.18)

That means f =
∑

j λjaj ∈ T1
p .



18 Abstract and Applied Analysis

Conversely, let f ∈ T1
p . We choose a Borel measurable function w ≥ 0 on U

n such that
(4.3) holds and

∫

Un

∣∣f(ξ, ρ)∣∣2w(ξ, ρ)−1 dξdρ

ρ1−2(n+1)(1−p)
≤ 2
∥∥f∥∥2T1

p
. (4.19)

For each k ∈ Z, let Ek = {Z ∈ H
n : N(w)(z) > 2k}. By Lemma 2.4 and the definition of

Λ(∞)
p , it follows that there exists a disjoint dyadic cubes sequence {Ik,j} such that

∑
j

∣∣Ik,j
∣∣p ≤ 2Λ(∞)

p (Ek), T(Ek) ⊂
⋃
j

S∗(Ik,j
)
, (4.20)

where S∗(Ik,j) = {(ξ, ρ) ∈ U
n : ξ ∈ Ik,j , ρ < 2diam(Ik,j)}. Define

Tk,j = S∗(Ik,j
) \
⋃
m>k

⋃
l

S∗(Im,l). (4.21)

Then Tk,j is disjoint in U
n for different j, k. Therefore,

K⋃
k=−K

⋃
j

Tk,j =
⋃
j

S∗(I−K,j

) \
⋃
m>k

⋃
l

S∗(Im,l) ⊃ T(E−K) \
⋃
m>k

⋃
l

S∗(Im,l). (4.22)

Note that
⋃

k T(Ek) = {(ξ, ρ) ∈ U
n : w(ξ, ρ) > 0}, (ξ, ρ) /∈ T(Ek) implies w(ξ, ρ) ≤ 2k. And each

S∗(Im,l) is contained in a cube of sidelength 4diam(Im,l) in U
n. By using the subadditivity of

the p-Hausdorff capacity and (4.3), there is

Λ(∞)
p

(⋃
m>k

⋃
l

S∗(Im,l)

)
≤ C
∑
m>k

∑
l

|Im,l|p ≤ C
∑
m>k

Λ(∞)
p (Em) −→ 0 (4.23)

as k → ∞. Thus, by (4.21),

⋃
k

⋃
j

Tk,j ⊃
⋃
k

T(Ek) \
⋂
k

⋃
m>k

⋃
l

S∗(Im,l) =
{(

ξ, ρ
) ∈ U

n : w
(
ξ, ρ
)
> 0
} \ E∞, (4.24)
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where E∞ is a set of zero p-Hausdorff capacity, that is,

Λ(∞)
p (E∞) = Λ(∞)

p

(⋂
k

⋃
m>k

⋃
l

S∗(Im,l)

)
= 0. (4.25)

Since w is allowed to vanish only where f vanishes, we have f =
∑

k,j f · χTk,j a.e. on U
n. Let

ak,j =

(∣∣∣I∗k,j
∣∣∣
p
∫

Tk,j

∣∣f(ξ, ρ)∣∣2 dξdρ

ρ1−2(n+1)(1−p)

)−1/2
f · χTk,j ,

λk,j =

(∣∣∣I∗k,j
∣∣∣
p
∫

Tk,j

∣∣f(ξ, ρ)∣∣2 dξdρ

ρ1−2(n+1)(1−p)

)1/2

,

(4.26)

where the I∗
k,j

is a cube as Lemma 2.4, that is, I∗
k,j

= 5cnIk,j .
Thus

f =
∑
k,j

λk,jak,j , a.e. on U
n. (4.27)

Note that, by (4.21), Tk,j ⊂ S∗(Ik,j) ⊂ T(Bk,j), where Bk,j is the ball with the same center as Ik,j
and radius cl(I∗

k,j
) (c > 1 is a constant). Thus, ak,j is supported in T(Bk,j), and

∫

T(Bk,j )

∣∣ak,j

(
ξ, ρ
)∣∣2 dξdρ

ρ1−2(n+1)(1−p)

=

(∣∣∣I∗k,j
∣∣∣
p
∫

Tk,j

∣∣f(ξ, ρ)∣∣2 dξdρ

ρ1−2(n+1)(1−p)

)−1 ∫

T(Bk,j )

∣∣∣f · χTk,j

∣∣∣
2 dξdρ

ρ1−2(n+1)(1−p)

=
∣∣∣I∗k,j
∣∣∣
−p

= C
∣∣Bk,j

∣∣−p.

(4.28)

This means that every ak,j is a T1
p -atom. The remaining is to estimate

∑
k,j |λk,j |.

Notice the fact that

w ≤ 2k+1 on Tk,j ⊂
(⋃

l

S∗(Ik+1,l)

)c

⊂ (T(Ek+1))c. (4.29)
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By the Cauchy-Schwarz inequality, (4.19) and (4.20), we have

∑
k,j

∣∣λk,j
∣∣ ≤
∑
k,j

2(k+1)/2
∣∣∣I∗k,j
∣∣∣
p/2
(∫

Tk,j

∣∣f(ξ, ρ)∣∣2w(ξ, ρ)−1 dξdρ

ρ1−2(n+1)(1−p)

)1/2

≤
⎛
⎝∑

k,j

2k+1
∣∣∣I∗k,j
∣∣∣
p

⎞
⎠

1/2⎛
⎝∑

k,j

∫

Tk,j

∣∣f(ξ, ρ)∣∣2w(ξ, ρ)−1 dξdρ

ρ1−2(n+1)(1−p)

⎞
⎠

1/2

≤ C
∥∥f∥∥T1

p

⎛
⎝∑

k

2k
∑
j

∣∣Ik,j
∣∣p
⎞
⎠

1/2

≤ C
∥∥f∥∥T1

p

(∑
k

2kΛ(∞)
p (Ek)

)1/2

= C
∥∥f∥∥T1

p

(∫+∞

0
Λ(∞)

p ({ξ ∈ H
n : N(w) > λ})dλ)

)1/2

≤ C
∥∥f∥∥T1

p

(∫

Hn

N(w)dΛ(∞)
p

)1/2

≤ C
∥∥f∥∥T1

p
.

(4.30)

If f =
∑

k λkak and every ak is a T1
p -atom, then, by Lemma 4.4, we obtain

∥∥f∥∥T1
p
≤ C
∑
k

|λk|‖ak‖T1
p
≤ C
∑
k

|λk|. (4.31)

Thus

∥∥f∥∥T1
p
≈ inf

⎧
⎨
⎩
∑
j

∣∣λj
∣∣ : f =

∑
j

λjaj

⎫
⎬
⎭, (4.32)

where the infimum is taken over all atomic decompositions of f ∈ T1
p . The proof is complete.

The dual result is as follows.

Theorem 4.7. Let p ∈ (0, 1]. Then the dual of T1
p can be identified with T∞

p under the pairing

〈
f, g
〉
=
∫

Un

f
(
ξ, ρ
)
g
(
ξ, ρ
)dξdρ

ρ
. (4.33)

Proof. We first show that

∫

Un

∣∣f(ξ, ρ)g(ξ, ρ)∣∣dξdρ
ρ

≤ C
∥∥f∥∥T1

p

∥∥g∥∥T∞
p

(4.34)

holds for all f ∈ T1
p and g ∈ T∞

p .
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In fact, assume that w is a nonnegative Borel measurable function on U
n satisfying

inequality (4.3) in Definition 4.2 and g ∈ T∞
p . Then there exists a constant C for any ball

B ⊂ H
n satisfying

1
|B|p

∫

T(B)

∣∣g(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)
≤ C. (4.35)

It means that |g(ξ, ρ)|2ρ−2(n+1)(1−p)−1 dξdρ is a p-Carleson measure, and ‖μ‖ ≈ ‖g‖2T∞
p
. Hence,

by Theorem 3.1, we obtain

∫

Un

w
(
ξ, ρ
)∣∣g(ξ, ρ)∣∣2ρ−2(n+1)(1−p)−1dξdρ ≤ C

∥∥g∥∥2T∞
p

∫

Hn

N(w)dΛ(∞)
p ≤ C

∥∥g∥∥2T∞
p
. (4.36)

Thus, for f ∈ T1
p , by using the Cauchy-Schwarz inequality, there is

∫

Un

∣∣f(ξ, ρ)g(ξ, ρ)∣∣dξdρ
ρ

≤
(∫

Un

∣∣f∣∣2w−1 dξdρ

ρ1−2(n+1)(1−p)

)1/2(∫

Un

∣∣g∣∣2w dξdρ

ρ1+2(n+1)(1−p)

)1/2

≤ C

(∫

Un

∣∣f(ξ, ρ)∣∣2w(ξ, ρ)−1 dξdρ

ρ1−2(n+1)(1−p)

)1/2

· ∥∥g∥∥T∞
p

≤ C
∥∥f∥∥T1

p

∥∥g∥∥T∞
p
.

(4.37)

This gives (4.34). Thus, every g ∈ T∞
p induces a bounded linear functional on T1

p via the
pairing (4.33). It suffices to prove the converse.

Let L be a bounded linear functional on T1
p and fix a ball B = B(z, r) ⊂ H

n. If f is
supported in T(B)with f ∈ L2(T(B), ρ−1dξdρ), then

∫

T(B)

∣∣f(ξ, ρ)∣∣2 dξdρ

ρ1−2(n+1)(1−p)
≤ r2(n+1)(1−p)

∫

T(B)

∣∣f(ξ, ρ)∣∣2dξdρ
ρ

= Cr2(n+1)|B|−p∥∥f∥∥2L2(T(B),ρ−1 dξdρ).

(4.38)

Therefore, f is a multiple of a T1
p -atom with

∥∥f∥∥2T1
p
≤ Cr2(n+1)

∥∥f∥∥2L2(T(B),ρ−1 dξdρ). (4.39)
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Hence, L induces a bounded linear functional on L2(T(B), ρ−1dξdρ). Thus, there exists a
function g which is locally in L2(Un, ρ−1dξdρ) such that

L
(
f
)
=
∫

Un

f
(
ξ, ρ
)
g
(
ξ, ρ
)dξdρ

ρ
, (4.40)

whenever f ∈ T1
p with support in some finite tent T(B). By the atomic decomposition of tent

function in Theorem 4.6, obviously, the subspace of such f is dense in T1
p . Therefore, the rest

of the proof is to show that g ∈ T∞
p and ‖g‖T∞

p
≤ C‖L‖.

Now, again fix a ball B ⊂ H
n and for every ε > 0, let

fε
(
ξ, ρ
)
= ρ−2(n+1)(1−p)g

(
ξ, ρ
)
χTε(B)

(
ξ, ρ
)
, (4.41)

where Tε(B) = T(B) ∩ {(ξ, ρ) : ρ > ε} is the truncated of T(B).
Since g ∈ L2(T(B)), there is

∫

T(B)

∣∣fε
(
ξ, ρ
)∣∣2 dξdρ

ρ1−2(n+1)(1−p)
=
∫

Tε(B)

∣∣g(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)
< ∞. (4.42)

Hence, fε is a multiple of a T1
p -atom with

∥∥fε
∥∥2
T1
p
≤ Cr2(n+1)p

∫

Tε(B)

∣∣g(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)
, (4.43)

where C is independent of ε. By (4.40), we obtain

∫

Tε(B)

∣∣g(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)
= L
(
fε
) ≤ ‖L‖ · ∥∥fε

∥∥
T1
p

≤ C‖L‖
(
|B|p
∫

Tε(B)

∣∣g(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)

)1/2

.

(4.44)

Thus

(
|B|−p

∫

Tε(B)

∣∣g(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)

)1/2

≤ C‖L‖. (4.45)

It follows that

(
|B|−p

∫

T(B)

∣∣g(ξ, ρ)∣∣2 dξdρ

ρ1+2(n+1)(1−p)

)1/2

≤ C‖L‖, (4.46)
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since (4.40) is true for all ε > 0. Therefore, g ∈ T∞
p and ‖g‖T∞

p
≤ C‖L‖. In fact, in (4.40), we

can replace the local function g by ordinary. Thus, we obtain the representation of L via the
pairing (4.40) for all f ∈ T1

p . This ends the proof of Theorem 4.7.
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