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The purpose of this article is to present a general viscosity iteration process {x,} which defined by
Xp+1=(I-a,A)Txy + Bnyf(xn) + (a0 — Bu)x, and to study the convergence of {x,}, where T is a
nonexpansive mapping and A is a strongly positive linear operator, if {a, }, { 3,} satisfy appropriate
conditions, then iteration sequence {x,} converges strongly to the unique solution x* € f(T) of
variational inequality ((A—-yf)x*,x—x*) >0, forall x € f(T). Meanwhile, a approximate iteration
algorithm is presented which is used to calculate the fixed point of nonexpansive mapping and
solution of variational inequality, the error estimate is also given. The results presented in this
paper extend, generalize, and improve the results of Xu, G. Marino and Xu and some others.

1. Introduction

Iteration methods for nonexpansive mappings have recently been applied to solve convex
minimization problems; see, for example, [1-4] and the references therein. A typical problem
is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping
on a real Hilbert space H:

!
xrerllilngé(Ax,x) —(x,b), (1.1)

where F(T) is the fixed points set of a nonexpansive mapping T on H, b is a given point in
H,and A : H — H is strongly positive operator, that is, there exists a constant 6 > 0 with

the property

(Ax,x) > 8||x|?, VxeH. (1.2)
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Recall that T : H — H is nonexpansive if |[Tx — Ty|| < ||x — y|| for all x,y € H.
Throughout the rest of this paper, we denote by F(T) the fixed points set of T and assume
that F(T) is nonempty. It is well known that F(T) is closed convex (cf. [5]). In [4] (see also
[2]), itis proved that the sequence {x,} defined by the iteration method below, with the initial
guess xg chosen arbitrarily,

Xpi1 = (I —ay,A)Tx, +ayb, n>0, (1.3)

converges strongly to the unique solution of minimization problem (1.1) provided the
sequence {a,} satisfies certain conditions.

On the other hand, Moudafi [6] introduced the viscosity approximation method
for nonexpansive mappings (see [7] for further developments in both Hilbert and Banach
spaces). Let f be a contraction on H. Starting with an arbitrary initial guess xy € H, define a
sequence {x,} recursively by

Xne1 = (I =y A)Txp + anf(x,), n>0, (1.4)

where {a,} is a sequence in (0,1). It is proved [6, 7] that under certain appropriate conditions
imposed on {a,}, the sequence {x,} generated by (1.4) converges strongly to the unique
solution x* in F(T) of the variational inequality

(I-f)x*,x=x*)>0, xeF(T). (1.5)

Recently (2006), Marino and Xu [2] combine the iteration method (1.3) with the
viscosity approximation method (1.4) and consider the following general iteration method:

Xpi1 = (I = ap A)Tx, + ayy f(x,), n>0, (1.6)

they have proved that if the sequence {a,} of parameters satisfies appropriate conditions,
then the sequence {x,} generated by (1.6) converges strongly to the unique solution of the
variational inequality

((A-yf)x',x-x") 20, xeF(), (1.7)

which is the optimality condition for the minimization problem

1
xré}‘{%)§<Ax'x> —h(x), (1.8)

where h is a potential function for yf (i.e., I'(x) = yf(x) for x € H).
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The purpose of this paper is to present a general viscosity iteration process {x,} which
is defined by

Xn+l = (I - anA)Txn + ,Ban(xn) + (an - ,Bn)xn (19)

and to study the convergence of {x,}, where T is a nonexpansive mapping and A is a strongly
positive linear operator, if {a,}, {f,} satisfy appropriate conditions, then iteration sequence
{x,} converges strongly to the unique solution x* € F(T) of variational inequality (1.7).
Meanwhile, an approximate iteration algorithm

Xpe1 = (I =sA)Tx, +ty f(xn) + (s — )xy (1.10)

is presented which is used to calculate the fixed point of nonexpansive mapping and solution
of variational inequality; the convergence rate estimate is also given. The results presented in
this paper extend, generalize and improve the results of Xu [7], Marino and Xu [2], and some
others.

2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the
next section. Some of them are known; others are not hard to derive.

Lemma 2.1 (see [3]). Assume that {a,} is a sequence of nonnegative real numbers such that

ane1 < (1= Ay)a, + 6y, (2.1)

where {\,} is a sequence in (0,1) and {6, } is a sequence in (—oo,+o0) such that

(i) X2 An = o0/
(ii) imsup, ,  6,/1n <0, 0r 372 [64] < 0.

Then lim,, _, ,a,, = 0.

Lemma 2.2 (see [5]). Let H be a Hilbert space, K a closed convex subset of H,and T : K — K
a nonexpansive mapping with nonempty fixed points set F(T). If {x,} is a sequence in K weakly
converging to x and if {(I — T)x,} converges strongly to y, then (I - T)x = y.

The following lemma is not hard to prove.

Lemma 2.3. Let H be a Hilbert space, K a closed convex subset of H, f : H — H a contraction
with coefficient 0 < h < 1, and A a strongly positive linear bounded operator with coefficient 6 > 0.
Then, for 0 <y < (6/h),

> xyeH. (2.2)

(x=y, (A=y)x=(A=yf)y) 2 (6 —yh)||[x~y

That is, A — y f is strongly monotone with coefficient 6 — yh.
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Recall the metric (nearest point) projection Px from a real Hilbert space H to a closed
convex subset K of H is defined as follows: given x € H, Pxx is the only point in K with the

property

¢ = Prcx]] = min||x = y]. 2.3)

Px is characterized as follows.

Lemma 2.4. Let K be a closed convex subset of a real Hilbert space H. Given that x € H and y € K.
Then y = Pxx if and only if there holds the inequality

(x-y,y-2z)>0, VzeK. (2.4)

Lemma 2.5. Assume that A is a strongly positive linear-bounded operator on a Hilbert space H with
coefficient 6 > 0 and 0 < p < ||A||™Y. Then |1 - pA|| < (1 - pb).

Proof. Recall that a standard result in functional analysis is that if V' is linear bounded self-
adjoint operator on H, then

VIl = sup{[{Vx,x)| :x€H,|x[| =1}. (2.5)
Now for x € H with ||x|| = 1, we see that
((I-pA)x,x)=1-p(Ax,x) >1-p|lAl| >0 (2.6)
(i.e., I — pAis positive). It follows that

|- pA| =sup{((I -pA)x,x):x€H,|x| =1}
=sup{l-p(Ax,x):x € H,||x|| =1} (2.7)
<1-pé.

The following lemma is also not hard to prove by induction.

Lemma 2.6. Assume that {a,} is a sequence of nonnegative real numbers such that

ap < (1-Ay)a, + (/{n + ,un)M/ (2.8)

where M is a nonnegative constant and {\,}, { pn } are sequences in [0, +o0) such that
(i) XnZo dn = o0/
(i) 3520 Hn < 0.

Then {a,} is bounded.

Notation. We use — for strong convergence and — for weak convergence.
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3. A general Iteration Algorithm with Bounded Linear Operator

Let H be a real Hilbert space, A be a bounded linear operator on H, and T be a nonexpansive
mapping on H. Assume that the fixed point set F(T) = {x € H : Tx = x} of T is nonempty.
Since F(T) is closed convex, the nearest point projection from H onto F(T') is well defined.

Throughout the rest of this paper, we always assume that A is strongly positive, that
is, there exists a constant 6 > 0 such that

(Ax,x) > 8||x|?, VxeH. (3.1)

(Note: 6 > 0 is throughout reserved to be the constant such that (3.1) holds.)
Recall also that a contraction on H is a self-mapping f of H such that

If) = fW)l <hllx-yl, VxyeH (3.2)

where h € (0,1) is a constant which is called contractive coefficient of f.

For given contraction f with contractive coefficient 0 < h < 1, and t € [0,1),s €
(0,1),s > tsuchthat0 <t < s <||Al|"! and 0 < y < 6/h, consider a mapping S; s on H defined
by

Sisx=U-sA)Tx+tyf(x)+(s—t)x, x€H. (3.3)

Assume that

s=t o (3.4)
S

it is not hard to see that S; ; is a contraction for sufficiently small s, indeed, by Lemma 2.5 we
have

(1St = Stsyll < tyllf(x) = FW) || + (T = sA)(Tx = Ty) || + || (s =) (x = y) |
<(tyh+1-s6+s—t)||x -yl (3.5)
=(1+t(yh-1)-s(6-1))||x -y

Hence, S; s has a unique fixed point, denoted by x;,, which uniquely solves the fixed point
equation:

Xt = (I —sA)Txs+ ty f(xps) + (5 — )Xy (3.6)

Note that x; s indeed depends on f as well, but we will suppress this dependence of x;; on f
for simplicity of notation throughout the rest of this paper. We will also always use y to mean
anumber in (0,6/h).
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The next proposition summarizes the basic properties of x;, (t < s).
Proposition 3.1. Let x; ¢ be defined via (3.6).

(1) {xts} is bounded for t € [0, AT, s € (0, |A]™).
(ii) limg_o]|xts — Txr )| = 0.

(iii) {x: s} defines a continuous surface for (t,s) € [0, ] AlI™) x (0, |A||™), t < s into H.

Proof. Observe, for s € (0, ||A[|™), that ||I - sA|| <1 - s6 by Lemma 2.5.
To show (i) pick p € F(T). We then have

lxts —p|| = ||(I - sA) (Txis — p) + t(y f (x1,5) — Ap) — sAp + tAp||
< (1= 88)||xes = p|l +tllyf (xes) = Ap|| + (s = O Ap]|

(3.7)
< (1=356)||xes = pl| + s[yhl|xes —p|l + |y f () = Ap|l] + (s = O)|| Ap||
< [1=-s(6-ym)]|lxts —pll +sllyf(p) - Apl| + (s = ) || Ap]|-
It follows that
A A
e —pll < lyf(p) ~Apll , s-t[lApll _, (3.8)

6—yh s 6—yh '

Hence {x;s} is bounded.
(ii) Since the boundedness of {x; s} implies that of { f(x;s)} and {ATx;,}, and observe
that

”xt,s - Txt,s” = ”tf(xt,s) - SATxt,s + (S - t)xt,s

, (3.9)

we have

!ig(l]”xt,s —Txi6]l = 0. (3.10)

To prove (iii) take t,to € [0, [|A[|™)), s, so € (0,||AlI™Y), s > t, 50 >t and calculate

ll2¢t,s = Xtg 5011 = | (8 = t0)y f (xt5) + toy (f (xe,s) = f (Xto,5,)) = (5 = 50) AT x5
+(I = s0A)(Txys — Txyy5,) + (S — 1) (X5 — Xtg,5,) + (S — S0 + to — 1) Xy, 5, ||
< = toly || £ (xes) || + toyhllxes = Xty 50l + |5 = sol [ AT 1,
+ (1= 500)[Ixt,s = Xt 0|l + (5 = £)[|21,5 = X1y 50 |

+ [IS - Sol + |t - t0|] ”xto,SUH/
(3.11)
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which implies that

(506 — toyh + t = 5)llxts = Xp 50 [| < |t = toly[| f (ere) || + Is = Solll AT x|

(3.12)
+ [Is = sol + [t = tollllxt,,s,l — O

ast — ty, s — sp. Note that

lim (so6 —toyh+t—5s) =s9(6-1) —to(yh-1) >0, (3.13)
t—ty, s— 5o
it is obvious that

odim s = X5l = 0. (3.14)
This completes the proof of Proposition 3.1. O

Our first main result below shows that x; ; converges strongly as s — 0 to a fixed point
of T which solves some variational inequality.

Theorem 3.2. One has that x; s converges strongly as s — 0(t < s) to a fixed point X of T which
solves the variational inequality:

((A-yf)X,X-2z)<0, zeF(). (3.15)
Equivalently, One has Pr(ry(I — A +yf)X = X, where Prr)(:) is the nearest point projection from H
onto F(T).

Proof. We first shows the uniqueness of a solution of the variational inequality (3.15), which
is indeed a consequence of the strong monotonicity of A—y f. Suppose X € F(T) and x € F(T)
both are solutions to (3.15), then

((A-yf)x, %-%) <0,
((A-yf)x,z-%) <0.

(3.16)

Adding up (3.16) gets
((A-yf)x-(A-yf)x,Xx-x) <0. (3.17)

The strong monotonicity of A — yf implies that X = X and the uniqueness is proved. Below
we use X € F(T) to denote the unique solution of (3.15).
To prove that x; ; converges strongly to X, we write, for a given z € F(T),

Xps— 2z = t<yf(xt,s) - ;Az) + (I -sA)(Txis—z) + (s —1)xps (3.18)
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to derive that

lavis = 2P = (#(vf (x16) = TAZ) + (I = SA)(Txps = 2) + (5 = )15, X1 = 2)

=y f(xps) — Az, xp5 — z) + (I = SA) (Toxps — 2), Xp5 — 2)

(3.19)
+(s—t){xts— Az, x5 — 2)
< (1-86)|lxes = zl|* + H{y f (x1,6) = Az, X1 — Z) + (5 = 1) (x5 — Az, Xp5 — Z).
It follows that
;s — || < i( f(xis) — Az, x —z>+s—_t(x - Az, x5 - z)
t,s > 55 Y t,s s Ats 56 t,s 7 At,s
t
= () = f(2), %15 = 2) + (v f(2) = Az %16 - 2)}
P Az - (3.20)
= (xts— Az, X15 - 2) -
t 2
< = {1hllxis =21 + (rf(2) - Az x5 - 2) |
s—t
+ ?wt’s - Az, x5 —z),
which leads to
t
2
< — _
s =2 < S (1 (2) = Az s = 2)
; (3.21)
S —
+ m(}(}/s - Az,xt,s - Z>.
Observe that condition (3.4) implies
s—t

as s — 0. Since x;, is bounded as s — 0, s > t, then there exists real sequences {s,}, {t,}
in [0,1] such thats, — 0, s, > t, and {x;,,,} converges weakly to a point x* € H. Using
Proposition 3.1 and Lemma 2.2, we see that x* € F(T), therefore by (3.21), we see x;, 5, — x™*.
We next prove that x* solves the variational inequality (3.15). Since

Xts = (I —sA)Txps +ty f(xes) + (5 — )X, (3.23)
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we derive that

s(A - yf)xt,s =SAxts — xXps +ty f(xes) =Sy f(xes) + (I —sA)Txps + (s — )Xt s

(3.24)
= (I -sA)(Txps —xp5) + (s — 1) (x5 — Y f(x15)),
so that
1 s—t
(A - Yf)xt,s = ;(I - SA) (Txt,s - xt,s) + T(Xt's - Yf(xtls)). (325)
It follows that, for z € F(T),
1
<(A - Yf)xt,s, Xts — Z> = g((l -sA) (Txt,s - xt,s)/ Xts — z)
—t
+ ST<xt15 - Yf(xf,s)/ Xts — Z>
-1
= ?<(I -TNxts—(I-T)z, x5 - 2)
+ <A(I - T)xt,sr Xt,s — Z> (326)

s—t
+ T<xt,s - Yf(xt,s)rxt,s - Z>

<(AI =T)x1s, X, 5 — z)

s—t
+ T<xt,s - )’f(xt,s),xt,s - Z>,

since I — T is monotone (i.e., (x —y,(I —-T)x — (I - T)y) > 0 for x,y € H). This is due to the
nonexpansivity of T. Now replacing ¢, s in (3.26) with t,, s, and letting n — oo, we, noticing
that (I - T)xy, s, — (I -T)x* =0 for x* € F(T), obtain

((A-yf)x*,x* —z)<0. (3.27)

That is, x* € F(T) is a solution of (3.15), hence x* = X by uniqueness. In a summary, we have
shown that each cluster point of x; s equals X. Therefore, x;s — Xass — 0.
The variational inequality (3.15) can be rewritten as

(I-A+yf)X-X,X-2z)>0, zeF(T). (3.28)
This, by Lemma 2.4, is equivalent to the fixed point equation
PF(T) (I -A+ yf):? =X. (3.29)

This complete the proof. O
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Taking t = s in Theorem 3.2, we get

Corollary 3.3 (see [7]). One has that x; = x;; converges strongly as t — 0 to a fixed point X of T
which solves the variational inequality:

((A-yf)x,x-z)<0, zeF(T). (3.30)

Equivalently, One has Pr(ry(I — A +yf)X = X, where Prr)(:) is the nearest point projection from H
onto F(T).

Next we study a general iteration method as follows. The initial guess xy is selected in
H arbitrarily, and the (n + 1)th iterate x,,.; is recursively defined by

X1 = (I = g A) Ty + By f (xn) + (an = Br) X, (3.31)

where {a,} € (0,1), B, € [0,1), pn < a, are sequences satisfying following conditions:

(Cl) a, — 0;
(C) Xiloan=o0;

(C3) either 307 |n+1 — an| < 0o or limy,— oo (Ans1/n) = 1;
(Ca) Xio(an —Pn) < oo

Below is the second main result of this paper.

Theorem 3.4. Let {x,} be general by Algorithm (3.31) with the sequences {a,}, {Bn} of parameters
satisfying conditions (C1)—(Cy). Then {x,} converges strongly to X that is obtained in Theorem 3.2.

Proof. Since &, — 0 by condition (C;), we may assume, without loss of generality, that
a, < ||A||™! for all n.
We now observe that {x,} is bounded. Indeed, pick any p € F(T) to obtain

w1 = pl| = [|(T = 22 A) (Txn = p) + Bu(y f (x2) = Ap) + (@ = Pn) (xn = Ap) ||
< = an All||Txn = p|| + Bully f (xn) = Ap|| + (an = Br) |0 — Ap|
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< (1= and)||xn = p| + Buly || f ) = £ () | + [y £ () = Apll]
+ (atn = Pu) |20 = Ap|
< (1-6ay)||xn = p|| + anyhllxn = p|| - anyh|jx. - p||
+ Buyhllxn = p|l + Pully f (p) = Apll + (an = Bu) || xn - Ap|
= [1- (6 - yh)au] ||xn = || = (an = Pu) yh]lxa - p|
+Bully £ (p) = Ap|l + (an = Bu) (lxn = Pl + [P - ApI])
< [1- (6 -yh)au] [[xn = pl + (an = Bu) (1= yR) |0 = p|
+ Bullyf (p) - Apll + (an = Bu) I - Ap||
<[1-[(6=yh)an = (an = u) |1 = yh|]]l|xn = p|l + Bully f (P) - Ap||
+ (an = Bu)|Ip - Ap||

< [1- (G- vh)an = = B = vhl] = pl + (6= v
(3.32)

where M > ||y f (p) — Ap|| + ||[p — Apl| is a constant. By Lemma 2.6 we see that {x,} is bounded.
As a result, noticing

X1 — Txy = 0y AT Xy + Py f (xn) + (a0 — Prn) Xn (3.33)
and a,, — 0, we obtain
Xps1 — Tx, — 0. (3.34)
But the key is to prove that
Xp+1 — Xn — 0. (3.35)

To see this, we calculate

lxns1 = xa|l = |(I = @ A)(Txy, — Txp-1) — (n — ap—1) AT X1

+Y [“n(f(xn) - f(xn—l)) + (“n - an—l)f(xn—l)] + (“n - ﬁn) (xn - xn—l) ”
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< (1= (6 —yh)an)llxn — xnoll + an — ana ||| AT X1 = f(0) ||
+ (an = ) %0 = Xna
= (1+an—Pn— (6 - vh)aw)llxn = xn-1|
+ |y — apa ||| AT X1 = f (x0) ||
= [1=[(@=yh=1D)an+ ] ] tn = %1

+ law = @l [ ATx1 = f (1)

(3.36)
Since
20 [(6-yh-1)ay+p,] = io [(6 = yh)aw = (an = Pu)] = 0 (3.37)

and condition (C3) holds, an application of Lemma 2.1 to (3.36) implies (3.35) which
combined with (3.34), in turns, implies

x, —Tx, — 0. (3.38)

Next we show that

limsup(Tx, - X,y f(X) - AX) <0, (3.39)

n— oo

where X is obtained in Theorem 3.2.
To see this, we take a subsequence {x,, } of {x,} such that

lim sup(x, — X,y f(X) - AX) = l}%(xnk -X,yf(X) - AX). (3.40)

n—oo

We may also assume that x,,, — z. Note that z € F(T) in virtue of Lemma 2.2 and (3.38). It
follows from the variational inequality (3.15) that

limsup(x, — X,y f(X) - AX) = (z - X,y f(X) - AX) <0. (3.41)

n—oo

So (3.39) holds, thanks to (3.38).
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Finally, we prove x, — X. To this end, we calculate

21 = FIPP= || (I = anA)(Toxy = %) + an(y £ (xn) = AX) = @y £ (%) + Bay £ (Xn) + (@ = ) % ||’

IN

IN

IN

IN

(1 = @A) (T, = %) + e (1 f () = AR) + (0 = ) (30 = ¥ f () ||
I = 2w A) (Tt = )P + [l (y f () — AZ) ||

1 (@n = Bu) (e = Y F ) 1P + 2((1 = aw A)(Tx,, = ), aa (£ () = AX) )
+2((I = @y A) (T = B, (o = Pu) (X = Y f (X))

+2(an (v f (xn) = AX), (an = Pn) (Xn = 1 (xn)))

(1= an6)?l2tn = &> + @2 |y £ (xn) - AZ||?

+ (an = ) lloen =y o) I°

+ szn(Txn -X,yf(xn) - Aa?)

- 20 (A(Tx, - %),y f(x,) — AX)

+2(a, — ﬂn)(Txn - X, Xy — yf(xn)>

=20, (atn — Pn) (A(Txn -X),x, — yf(xn)>

+ 20ty (an = ) (Y f () — AT, 0 — Y f (2tu) )

(1 - au8) |l = ZI” + @[l £ (n) = AZ|” + (atn = B)? |00 = v £ ()|
+ 20, (T, — %, 7 f(xn) = Y f(X) + Y f(X) - AX)

— 202 (A(Txp - %),y f (Xn) = AX) +2(atn = Bu) (T2 — %, %0 — Y f (x0) )
= 20t (an = ) (AT = %), %0 = Y f (Xn))

+ 20ty (an = Pu) (Y f () — AT, 0 — Y f (2n) )

(1= a8) |l = ZI” + @[y (n) = AZ|* + (atu = B)? |00 = ¥ £ ()|
+ 20, (Tt = %,y f (2n) = Y (%)) + 2 (T = %,y f () - AF)

=202 (A(Txy = %),y f(xn) = AX) +2(an = Bu){Txn = X, % — Y f (xn))
— 20, (@ — ) (AT — %), 20 — 1 f ()

+ 200 (t — ) (Y f (3n) = AX, 20 = Y f(xn))

(1= u6)? 20 = &> + @2 ||y £ (xn) - AF||?

+ (ctn = Bu) (|20 = ¥ f (e) || + 20y R, — ZIP

+ 20, (Txy = X,y f(X) — AX) — 202 (A(Txn — %),y f (xn) — AX)

+2(a = B) (Txn = X, X0 — Y f ()
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14
=20, (ty = Bn) (A(Txp = X), x0 =y f (X))
+ 2“11(“11 - ﬂn)<Yf(xn) - AX, xp — Yf(xn)>
< [(1 —a,6)2 + sznyh] 2w — %2 + a2 |y f (xa) — AZ||?
+ (an - ﬁn)2||xn —yf(xn) ||2 + 20, (Tx, — X,y f(X) - AX)
— 200 ( A(Txy = %), 7 f (xn) = AX) + 2(aty = Bu)(Txn — X, %0 — Y f (X))
=20, (ty = Bn) (A(Txn = X), %0 =y f (%)) + 20 (any f(xn) = AX, X — 7 f (2n))
< [1-2(6 - yh)atu] | X0 — X|)* + a28%(|2cn — X|| + a2 ||y f (xn) — A 2
+ (an - ﬁn)2||xn —yf(xn) ||2 +2a,(Tx, — X,y f(X) - AX)
=202 (A(Txy — %),y f(x0) = AX) +2(an = Bu){Txn — X, % — Y f (xn))
=20, (ty—Pn) (A(Txp,—X), X —yE(2n) )+ 20 (n =) (Y f (Xn) —AX, X =Y f (1) )
< [1-2(6 - yh)au] |0 = X||* + a28%||2¢, — || + a3 ||y f (xn) = A)Nc||2
+ (an = ) lloen =¥ F o) |” + 2000 (T = %,y f (%) — A)
- 2“31<A(Tx" - i)' Yf(xn) - Ai> + 2(“11 - ﬂn)(Txn - f, Xn — Yf(xn)>
-2ay, (“n - pn)<A(Txn = X),Xn — Yf(xn)>
+ 2fxn(”‘n - ﬂn)<Yf(xn) - AX,x, — Yf(xn)>
< [1-2(6 = yh)an] %, = %> + 20, (Tx, = %, 7 £ (%) = AZ) + auM
(3.42)
where
) PRI
My = au|lyf (en) = AZ|* + "= [lx, =y f(x0) ||°
— 2, (A(Tx, — %), Y () — AX) + 22 ﬂ =(Txn = X, %u = Y f (Xn)) (3.43)
- 2(“n - ﬂn><A(Txn = X),Xn = Yf(xn)>
+2(an = Pu) (Y f (xn) — AX, x — 7 f () ).
That is,
%041 = ZII* < [1-2(6 - yh)ay]||x, - &I (3.44)

+a, [2(Tx, - X,y f(X) - AX) + M,,].
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Since {x,} is bounded, by the conditions of Theorem 3.4, we get lim,_.,, M, = 0 and
Siro(6 — yh)ay, = oo, this together with (3.39) implies that

limsup [2(Tx, - X,y f(X) — AX) + M,,| <0. (3.45)

n— oo

Now applying Lemma 2.1 to (3.44) concludes that x, — X. This complete the proof of
Theorem 3.4. O

If pick a, = B, we obtain the result of Marino and Xu [2].

4. Approximate Iteration Algorithm and Error Estimate

In this section, we use the following approximate iteration algorithm:
Yne1 = (L= sA)Tyn +ty f(Yn) + (S = )Y, (4.1)

for an arbitrary initial yo € H, to calculate the fixed point of nonexpansive mapping and
solution of variational inequality with bounded linear operator A, where A,T,y,s,t and
others 6, h as in the Section 3.

Meanwhile, the X € F(T) is obtained in Theorem 3.2 which is unique solution of
variational inequality (3.15) and {x,} — X,asn — oo, x5 — Xass — 0, where {x,]}
and x; ¢ are respectively defined by (3.31) and (3.6).

The following lemma will be useful for the establish of formula of convergence rate
estimate.

Lemma 4.1 (Banach’s Contractive Mapping Principle). Let H be a Banach space and S be a
contraction from H into self, that is,

[ISx =Syl < 0l|lx -y

, Vx,y€H, (4.2)

where 0 < 8 < 1 is a constant. Then the Picard iterative sequence X,.1 = Sxy, for arbitrary initial
Xo € H, converges strongly to a unique fixed point x* of S and

n

0
1-6

[l — x*|| < llxo = Sxol- (4.3)

ForaboveT, A, f, v, s, t, 6, we define the following contractive mapping:

Sisy = (I -sA)Ty+yf(y) +(s-t)y (4.4)
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from H into self. In fact, it is not hard to see that S; is a contraction for sufficiently small s,
indeed, by Lemma 2.5 we have, for any x,y € H, that

[|Stsx = Sesy |l < tyll f(x) = F()|| + |1 = sA)(Tx = Ty) || + |[(s =) (x = ») ||
<(tyh+1-s6+s—t)||x-yl| (4.5)

=(1+t(yh-1)-s6-1))||x-y|-

By using Lemma 4.1, then there exists unique fixed point x;s € H of S;s and the iterative
sequence

Yne1 = Stsyn = I = sA) Ty +yf(yn) + (s—t)yu, yo € H, (4.6)
converges strongly to this fixed point x; ;. Meanwhile, from (4.3) and (4.5) we obtain

(1+t(yh-1)-s(6-1))"

n - S < -S s . 4.7
(EZRE| 561 - ih=T) [0 = Stsyoll (4.7)
On the other hand, from (3.21) we have
e FIP < (Y f(B) — A%, %1~ %)
t,s = 56 — t}/h Y 7 Ats
, (4.8)
s - ~ ~ ~ ~ ~
+ m((xt,s —X,Xps—X) + (X — AX, x5 — X)),

which leads to

s—t o t B ~ ~
_ oy . )
(1 Sé_tyh>||xt,s B < St (0 () - A% 1 - )

; (4.9)
s — ~ ~ ~
+ m(x - AX, x5 — X).
Therefore,
s—t t s—t
1- ——— X — %) — A% % - AZ|,
( s6 — tyh) laees =X < s6 —tyh lyf ) - A%[| + s6 — tyh”x o
(4.10)
e = % € [y f(B) ~ AZ]| + ||~ AF]|
be “s6—tyh+t-s v s6—tyh+t—s ’
Letting D = |lyf(X) - AX||, D, = ||X — AX||, it follows that
~ t s—t
—x|| < D D
s x”_s6—tyh+t—s 1Jrs6—tyh+t—s (411)
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From inequality (4.11) together with (4.7), and letting D3 = ||y — Sts1oll, we get

t s—t

lyn = 2| < sé—ifyh+if—sD1+56—tyh+t—sD2

(4.12)
(1+t(yh-1)-s(6-1))"

s(6-1)-t(yh-1)

Inequality (4.12) is, namely, the error estimate for approximate fixed point y,,. Now, we give
several special cases of inequality (4.12).

Error Estimate 1

Consider
limsup ||y, — X|| < ! Dy + s ! D. (4.13)
noo ~s6—tyh+t-s s6—tyh+t—s '
Error Estimate 2
If t = s, then
_ 1 1-s(6-yh))"
ly. - %|| < Dy + ( (6=yh)) D3, (4.14)
(6-yh) s(6-1h)
which can be used to estimate error for iterative scheme
Yni1 = (L =sA) Ty, +syf(ya), vo€ H. (4.15)
Error Estimate 3
If A=1,then
B t 1+t(yh—=1) -=s(6-1))"
llym - | < D1+( (rh=1) ~s(5-1)) Ds, (4.16)
s6—tyh+t—s s(6-1)-t(yh-1)
which can be used to estimate error for iterative scheme
Yni1 = (1= 8)Tyn +tyf(yn) + (s —1)xn, yo € H. (4.17)
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