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A kernel-based greedy algorithm is presented to realize efficient sparse learning with data-
dependent basis functions. Upper bound of generalization error is obtained based on complexity
measure of hypothesis space with covering numbers. A careful analysis shows the error has a
satisfactory decay rate under mild conditions.

1. Introduction

Kernel methods have been extensively utilized in various learning tasks, and its generaliza-
tion performance has been investigated from the viewpoint of approximation theory [1, 2].
Among these methods, a family of them can be considered as coefficient-based regularized
framework in data-dependent hypothesis spaces; see, for example, [3–8]. For given samples
{(xi, yi)}ni=1, the solution of these kernel methods has the following expression

∑n
i=1 αiK(xi, ·),

where αi ∈ R and K is a Mecer kernel. The aim of these coefficient-based algorithms is to
search a set of coefficients {αi}with good predictive performance.

Inspired by greedy approximation methods in [9–12], we propose a sparse greedy
algorithm for regression. The greedy approximation has two advantages over the regulariza-
tion methods: one is that the sparsity is directly controlled by a greedy approximation algo-
rithm, rather than by the regularization parameter; the other is that greedy approximation
does not change the objective optimization function, while the regularized methods usually
modify the objective function by including a sparse regularization term [13].

Before introducing the greedy algorithm, we recall some preliminary background for
regression. Let the input space X ⊂ R

d be a compact subset and Y = [−M,M] for some
constant M > 0. In the regression model, the learner gets a sample set z = {(xi, yi)}ni=1, where
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(xi, yi) ∈ Z := X × Y, 1 ≤ i ≤ n, are randomly independently drawn from an unknown
distribution ρ on Z. The goal of learning is to pick a function f : X → Y with the expected
error

E(f) =
∫

Z

(
f(x) − y

)2
dρ (1.1)

as small as possible. Note that the regression function

fρ(x) =
∫

Y
ydρ
(
y | x), x ∈ X, (1.2)

is the minimizer of E(f), where ρ(· | x) is the conditional probability measure at x induced
by ρ.

The empirical error is defined as

Ez
(
f
)
=

1
n

n∑

i=1

(
f(xi) − yi

)2
. (1.3)

We call a symmetric and positive semidefinite continuous function K : X ×X → R a
Mercer kernel. The reproducing kernel Hilbert space (RKHS)HK is defined to be the closure
of the linear span of the set of functions {Kx := K(x, ·) : x ∈ X} with the inner product 〈·, ·〉K
defined by 〈Kx,Kx′ 〉K = K(x, x′). For all x ∈ X and f ∈ HK, the reproducing property is
given by 〈Kx, f〉K = f(x). We can see κ := supx∈X

√
K(x, x) < ∞ because of the continuity of

K and the compactness ofX.
Different from the coefficient-based regularized method [3–6], we use the idea of

sequential greedy approximation to realize sparse learning in this paper. Denote Ĥ = {ĥi}2ni=1,
where ĥ2i−1 = Kxi and ĥ2i = −Kxi . The hypothesis space (depending on z) is defined as

CO2n

(
Ĥ
)
=

{

f : f(x) =
2n∑

i=1

αiĥi(x), αi ≥ 0,
2n∑

i=1

αi ≤ 1

}

. (1.4)

For any hypothesis function space G, we denote βG = {f : f = βg, g ∈ G}.
The definition of fρ tells us |fρ(x)| ≤ M, so it is natural to restrict the approximating

functions to [−M,M]. The projection operator has been used in error analysis of learning
algorithms (see, e.g., [2, 14]).

Definition 1.1. The projection operator π = πM is defined on the space of measurable
functions f : X → R as

π
(
f
)
(x) =

⎧
⎪⎪⎨

⎪⎪⎩

M, if f(x) > M;
−M, if f(x) < −M;
f(x), otherwise.

(1.5)
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The kernel-based greedy algorithm can be summarized as below. Let t be a stopping
time and let β be a positive constant. Set f̂0

β
= 0. And then for τ = 1, 2, . . . , t, define

ĥτ , α̂τ , β̂τ = argmin
h∈Ĥ,0≤α≤1,0≤β′≤β

Ez

(
(1 − α)f̂ τ−1

β + αβ′h
)
,

f̂ τ
β = (1 − α̂τ)f̂ τ−1

β + α̂τ β̂τ ĥτ .

(1.6)

Different from the regularized algorithms in [6, 12, 14–18], the above learning algorithm
tries to realize efficient learning by greedy approximation. The study for its generalization
performance can enrich the learning theory of kernel-based regression. In the remainder of
this paper, we focus on establishing the convergence rate ofπ(f̂ t

β) to the regression function fρ
under choice of suitable parameters. The theoretical result is dependent onweaker conditions
than the previous error analysis for kernel-based regularization framework in [4, 5].

2. Main Result

Define a data-free basis function set

H = {hi : h2i−1 = Kui , h2i = −Kui , ui ⊂ X, i = 1, . . . ,∞},

CO(H) =

{

f : f(x) =
∞∑

i=1

αihi(x), αi ≥ 0,
∞∑

i=1

αi ≤ 1

}

.
(2.1)

To investigate the approximation of π(f̂ t
β) to fρ, we introduce a data-independent

function

f∗
β = argmin

f∈βCO(H)
E(f). (2.2)

Observe that

E
(
π
(
f̂ t
β

))
− E(fρ

)

≤
{
E
(
π
(
f̂ t
β

))
− Ez

(
π
(
f̂ t
β

))
+ Ez

(
f∗
β

)
− E
(
f∗
β

)}
+
{
Ez

(
π
(
f̂ t
β

))
− Ez

(
f∗
β

)}

+
{
E
(
f∗
β

)
− E(fρ

)}
.

(2.3)

Here, the three terms on the right-hand side are called as the sample error, the hypothesis
error, and the approximation error, respectively.

To estimate the sample error, we usually need the complexity measure of hypothesis
function space HK. For this reason, we introduce some definitions of covering numbers to
measure the complexity.
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Definition 2.1. Let (U, d) be a pseudometric space and denote a subset S ⊂ U. For every ε > 0,
the covering number N(S, ε, d) of S with respect to ε, d is defined as the minimal number of
balls of radius ε whose union covers S, that is,

N(S, ε, d) = min

⎧
⎨

⎩
l ∈ N : S ⊂

l⋃

j=1

B
(
sj , ε
)
for some

{
sj
}l
j=1 ⊂ U

⎫
⎬

⎭
, (2.4)

where B(sj , ε) = {s ∈ U : d(s, sj) ≤ ε} is a ball in U.

The empirical covering number with 	2 metric is defined as below.

Definition 2.2. Let F be a set of functions onX, u = (ui)
k
i=1 and F|u = {(f(ui))

k
i=1 : f ∈ F} ⊂ R

k.
Set N2,u(F, ε) = N2,u(F|u, ε, d2). The 	2 empirical covering number of F is defined by

N2(F, ε) = sup
k∈N

sup
u∈Xk

N2,u(F, ε), ε > 0, (2.5)

where 	2 metric

d2(a,b) =

(
1
k

k∑

i=1

|ai − bi|2
)1/2

, ∀a = (ai)ki=1 ∈ R
k, b = (bi)

k
i=1 ∈ R

k. (2.6)

Denote Br as the ball of radius r with r > 0, where Br = {f ∈ HK : ‖f‖HK ≤ r}. We
need the following capacity assumption onHK, which has been used in [5, 6, 18].

Assumption 2.3. There exist an exponent p, with p ∈ (0, 2) and a constant cp,K > 0 such that

logN2(B1, ε) ≤ cp,Kε
−p. (2.7)

We now formulate the generalization error bounds for π(f̂ t
β
). The result follows from

Propositions 3.2–3.5 in the next section.

Theorem 2.4. Under Assumption 2.3, for any 0 < δ < 1, the following inequality holds with
confidence 1 − δ

E
(
π
(
f̂ t
β

))
− E(fρ

) ≤ 4
(
E
(
f∗
β

)
− E(fρ

))
+
32β2

t
+
4
(
3M + κ2β

)2

n
log
(
2
δ

)

+ 1280M2(cp,K
(
4Mκβ

)p)2/(2+p) log
(
2
δ

)

n−2/(2+p).

(2.8)

From the result, we know there exists a constantC independent of n, t, δ such that with
confidence 1 − δ

E
(
π
(
f̂ t
β

))
− E(fρ

) ≤ 4
(
E
(
f∗
β

)
− E(fρ

))
+ Cmax

{
β2

t
,
β2

n
,

(
βp

n

)2/(2+p)
}

log
(
2
δ

)

. (2.9)
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In particular, if fρ ∈ β̃CO(H) for some fixed constant β̃ and t ≥ n, we have E(π(f̂ t

β̃
))−E(fρ) →

0 with decay rate O(n−2/(2+p)). The learning rate is satisfactory as p → 0.
Here, the estimate of the hypothesis error is simple and does not need the strict

condition on ρ and X in [3–5] for learning with data-dependent hypothesis spaces.
If there are some additional conditions on approximation error with the increasing of

β, we can obtain the explicit learning rates with suitable parameter selection.

Corollary 2.5. Assume that the RKHSHK satisfies (2.7) and E(f∗
β
)−E(fρ) ≤ cγβ

−γ for some γ > 0.

Choose β = np/4(2+p). For any 0 < δ < 1 and t = n, one has

E
(
π
(
f̂ t
β

))
− E(fρ

) ≤ Cn−min{(4+p)/(4+2p),pγ/(8+4p)} log
(
2
δ

)

(2.10)

with confidence 1 − δ. Here C is a constant independent of n, δ.

Observe that the learning rate depends closely on the approximation condition
between fρ and f∗

β
. This means that only the target function can be well described by the

functions from the hypothesis space, the learning algorithm can achieve good generalization
performance. In fact, similar approximation assumption is extensively studied for error
analysis in learning theory; see, for example, [1, 2, 4, 17].

From Corollary 2.5, when the kernel K ∈ C∞, p > 0 can be arbitrarily small, one can
easily see that the learning rate is quite low. Future research direction may be furthered to
improve the estimate by introducing some new analysis techniques.

3. Proof of Theorem 2.4

In this section, we provide the proof of Theorem 2.4 based on the upper bound estimates of
sample error and hypothesis error. Denote

S1 =
{
Ez

(
f∗
β

)
− Ez
(
fρ
)} −

{
E
(
f∗
β

)
− E(fρ

)}
,

S2 =
{
E
(
π
(
f̂ t
β

))
− E(fρ

)} −
{
Ez

(
π
(
f̂ t
β

))
− Ez
(
fρ
)}

.

(3.1)

We can observe that the sample error

E
(
π
(
f̂ t
β

))
− Ez

(
π
(
f̂ t
β

))
+ Ez

(
f∗
β

)
− E
(
f∗
β

)
= S1 + S2. (3.2)

Here S1 can be bounded by applying the following one-side Bernstein type probability
inequality; see, for example, [1, 2, 14].

Lemma 3.1. Let ξ be a random variable on a probability space Z with mean Eξ and variance σ2(ξ) =
σ2. If |ξ(z) − Eξ| ≤ B for almost all z ∈ Z, then for all ε > 0,

Probz∈Zn

{
1
n

n∑

i=1

ξ(zi) − Eξ ≥ ε

}

≤ exp

{

− nε2

2(σ2 + Bε/3)

}

. (3.3)



6 Abstract and Applied Analysis

Proposition 3.2. For any 0 < δ < 1, with confidence 1 − δ, one has

S1 ≤ E
(
f∗
β

)
− E(fρ

)
+
2
(
3M + κ2β

)2

n
log
(
1
δ

)

. (3.4)

Proof. Following the definition of S1, we have S1 = (1/n)
∑n

i=1 ξ(xi) − Eξ, where random
variable ξ(x) = (y − f∗

β(x))
2 − (y − fρ(x))

2.
From the definition of f∗

β
, we know ‖f∗

β
‖K ≤ κβ and ‖f∗

β
‖∞ ≤ κ‖f∗

β
‖K ≤ κ2β. Then

|ξ(x)| =
∣
∣
∣
(
f∗
β(x) − fρ(x)

)((
f∗
β(x) − y

)
+
(
fρ(x) − y

))∣∣
∣ ≤
(
3M + κ2β

)2
:= c1 (3.5)

and |ξ − Eξ| ≤ 2c1. Moreover,

σ2 ≤ Eξ2 =
∫

Z

(
f∗
β(x) − fρ(x)

)2((
f∗
β(x) − y

)
+
(
fρ(x) − y

))2
dρ

≤ c1
{
E
(
f∗
β

)
− E(fρ

)}
.

(3.6)

Applying Lemma 3.1 with B = 2c1 and σ2 = c1{E(f∗
β
) − E(fρ)}, we get

1
n

n∑

i=1

ξ(xi) − Eξ ≤ t (3.7)

with confidence at least 1−exp{nt2/(2c1(E(f∗
β)−E(fρ)+(2/3)t))}. By setting −nt2/(2c1(E(f∗

β)−
E(fρ) + (2/3)t)) = log(δ), we derive the solution

t∗ =

(

(2c1/3) log(1/δ) +
√
(
(2c1/3) log(1/δ)

)2 + 2c1 log(1/δ)
(
E
(
f∗
β

)
− E(fρ

))
)

n

≤ 2c1
n

log
(
1
δ

)

+ E
(
f∗
β

)
− E(fρ

)
.

(3.8)

Thus, with confidence 1 − δ, we have

1
n

n∑

i=1

ξ(xi) − Eξ ≤ 2c1
n

log
(
1
δ

)

+ E
(
f∗
β

)
− E(fρ

)
. (3.9)

This completes the proof.

To establish the uniform upper bound of S2, we introduce a concentration inequality
established in [18].
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Lemma 3.3. Assume that there are constants B, c > 0 and α ∈ [0, 1] such that ‖f‖∞ ≤ B and
Ef ≤ c(Ef)α for every f ∈ F. If for some a > 0 and p ∈ (0, 2),

log(N2(F, ε)) ≤ aε−p, ∀ε > 0, (3.10)

then there exists a constant c′p depending only on p such that for any t > 0, with probability at least
1 − e−t, there holds

Ef − 1
n

n∑

i=1

f(zi) ≤ 1
2
η1−α(Ef

)α + c′pη + 2
(
ct

n

)1/(2−α)
+
18Bt
n

, ∀f ∈ F, (3.11)

where

η := max

{

c(2−p)/(4−2α+pα)
(
a

n

)2/(4−2α+pα)
, B(2−p)/(2+p)

(
a

n

)2/(2+p)
}

. (3.12)

Proposition 3.4. Under Assumption 2.3, for any 0 < δ < 1, one has with confidence at least 1 − δ

S2 ≤ 1
2

{
E
(
π
(
f̂ t
β

))
− E(fρ

)}
+ 640M2(cp,K

(
4Mκβ

)p)2/(2+p) log
(
1
δ

)

n−2/(2+p). (3.13)

Proof. From the definition of f̂ t
β
, we have ‖f̂ t

β
‖K ≤ κβ. Denote

Fκβ =
{
g(z) =

(
y − π

(
f
)
(x)
)2 − (y − fρ(x)

)2 : f ∈ Bκβ

}
. (3.14)

We can see that Eg = E(π(f)) − E(fρ) and (1/n)
∑n

i=1 g(zi) = Ez(π(f)) − Ez(fρ). Since
‖π(f)‖∞ ≤ M and |fρ(x)| ≤ M, we have

∣
∣g(z)

∣
∣ =
∣
∣
(
π
(
f
)
(x) − fρ(x)

)((
π
(
f
)
(x) − y

)
+
(
fρ(x) − y

))∣
∣ ≤ 8M2,

Eg2 =
∫

Z

(
π
(
f
)
(x) − fρ(x)

)2((
π
(
f
)
(x) − y

)
+
(
fρ(x) − y

))2
dρ ≤ 16M2Eg.

(3.15)

For g1, g2 ∈ Fκβ, we have

∣
∣g1(z) − g2(z)

∣
∣ =
∣
∣
∣
(
y − π

(
f1
)
(x)
)2 − (y − π

(
f2
)
(x)
)2
∣
∣
∣ ≤ 4M

∣
∣π
(
f1
)
(x) − π

(
f2
)
(x)
∣
∣

≤ 4M
∣
∣f1(x) − f2(x)

∣
∣.

(3.16)

Then, from Assumption 2.3,

N2,z
(Fκβ, ε

) ≤ N2,x

(
Bκβ,

ε

4M

)
≤ N2,x

(

B1,
ε

4Mκβ

)

≤ cp,K
(
4Mκβ

)p
ε−p. (3.17)
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Applying Lemma 3.3 with B = c = 16M2 and a = cp,K(4Mκβ)p, for any δ ∈ (0, 1) and
for all g ∈ Fκβ,

Eg − 1
n

n∑

i=1

g(zi) ≤ 1
2
Eg + c′p

(
16M2

)(2−p)/(2+p)
(

cp,K
(
4Mκβ

)p

n

)2/(2+p)

+ 320M2 log(1/δ)
n

,

≤ 1
2
Eg + 640M2(cp,K

(
4Mκβ

)p)2/(2+p) log
(
1
δ

)

n−2/(2+p)

(3.18)

holds with confidence 1 − δ. This completes the proof.

Different from the previous studies related with regularized framework [3–5], we
introduce the estimate of hypothesis error Ez(f̂ t

β) − Ez(f∗
β) based on Theorem 4.2 in [11] for

sequential greedy approximation.

Proposition 3.5. For a fixed sample z, one has

Ez

(
f̂ t
β

)
− Ez

(
f∗
β

)
≤ 16β2

t
. (3.19)

The desired result in Theorem 2.4 can be derived directly by combining Propositions
3.2–3.5.
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