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This paper is concerned mainly with the existence and iterative approximation of solutions for
a system of nonlinear variational inclusions involving the strongly H},,-monotone operators in
Hilbert spaces. The results presented in this paper extend, improve, and unify many known results
in the literature.

1. Introduction

Recently, a few authors introduced and studied several classes of systems of nonlinear
variational inequalities and inclusions in Hilbert spaces and established the existence of
solutions or the approximate solutions for these systems of nonlinear variational inequalities
and inclusions [1-19]. Using projection methods, Liu et al. [12], Verma [14-17], Rhoades and
Verma [18], and Wu et al. [19] suggested some iterative algorithms for approximating the
solutions of several classes of systems of variational inequalities involving relaxed monotone
operators, strongly monotone operators, relaxed cocoercive operators, and pseudocontractive
operators, respectively. Applying the resolvent operator techniques, Liu et al. [11] and Nie
et al. [13] discussed the existence and uniqueness of solutions and suggested iterative
algorithms for a system of general quasivariational-like inequalities and a system of nonlinear
variational inequalities, respectively, and gave the convergence analysis for the iterative
algorithms. Utilizing the resolvent operator method associated with (H,#)-monotone
operators, Fang et al. [5] investigated the existence and uniqueness of solutions for a class
of system of variational inclusions in Hilbert spaces, constructed an iterative algorithm
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for approximating the solution of this system of variational inclusions, and discussed the
convergence of iterative sequences generated by the algorithm.

Motivated and inspired by the results [1-19], in this paper, we introduce two new
classes of strictly Hj ,-monotone and strongly Hj,,-monotone operators and investigate the
existence and Lipschitz continuity of the resolvent operators with respect to the strictly
Hj, ;-monotone and strongly Hj ,-monotone operators. We introduce also a class of system
of nonlinear variational inclusions involving strongly Hj,,-monotone operators in Hilbert
spaces and suggest two new iterative algorithms for approximating solutions of the system
of nonlinear variational inclusions by using the resolvent operator technique associated with
Hj,;-monotone operators. The convergence criteria of iterative sequences generated by the
algorithms are established. The results presented in this paper extend, improve, and unify
some known results in the literature.

This paper is organized as follows. In Section 2, we recall and introduce some
definitions, notation, and a lemma. In Section 3, we study properties of the resolvent
operators with respect to strictly Hj,-monotone and strongly Hj,,-monotone operators,
respectively, in Hilbert spaces. In Section 4, we introduce a new class of system of nonlinear
variational inclusions in Hilbert spaces and use the resolvent operator technique with respect
to strongly Hj ,-monotone operators to investigate the existence and uniqueness of solution
and suggest two new iterative algorithms for the system of nonlinear variational inclusions.
The convergence criteria of the sequences generated by the iterative algorithms are also given
under certain conditions.

2. Preliminaries and Lemmas

In this section, we recall and introduce some notation, definitions, and a lemma, which will
be used in this paper. Let H be a real Hilbert space endowed with an inner product (,-)
and norm || - ||, respectively. I stands for the identity mapping on H and R = (-0, +0). Let
T : H — 2H be a set-valued operator. The graph of T, denoted by Graph (T), is defined as
follows:

Graph(T) = {(x,y) :x€ H, y € T(x)}. (2.1)

Definition 2.1. Letn: Hx H — H and M : H — 2H be operators. The operator M is said to
be

(1) monotone if

(u-v,x-y)>0, VYx,yeH ueM(x),veM(y); (2.2)

(2) y-monotone if

(u-v,n(x,y)) 20, Vx,yeH, ueM(x),veM(y); (2.3)

(3) strictly monotone if

(u-v,x-y)y>0, Vx,yeH, x#y, ue M(x),ve M(y); (2.4)
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(4) strictly 7-monotone if

(u-v,n(x,y))>0, Vx,yeH, x#y, ue M(x),ve M(y); (2.5)

(5) strongly monotone if there exists a constant r > 0 satisfying

2 Vx,y € H ue M(x), ve M(y); (2.6)

(u-v,x-y)zrlx-y
(6) strongly 7-monotone if there exists a constant r > 0 satisfying

?, Vx,yeH ueM(x),veM(y); 2.7)

(u-v,n(x,y)) 2rlx-y

(7) maximal monotone (resp., maximally strictly monotone, maximally strongly
monotone) if M is monotone (resp., strictly monotone, strongly monotone) and
(I + AM)(H) = H for any A > 0;

(8) maximal 77-monotone (resp., maximally strictly #7-monotone, maximally strongly #-
monotone) if M is r-monotone (resp., strictly 7-monotone, strongly 7-monotone)
and (I + \M)(H) = H for any A > 0;

(9) Hp-monotone (resp., strictly Hp-monotone, strongly Hp-monotone) if M is
monotone (resp., strictly monotone, strongly monotone) and (h + AM)(H) = H

for any A > 0;
(10) Hj,,-monotone (resp., strictly Hj,-monotone, strongly Hj ,-monotone) if M is 7-
monotone (resp., strictly #7-monotone, strongly 7-monotone) and (h+AM)(H) = H

for any A > 0.

Definition 2.2. Let g: H — H and : H x H — H be operators. The operator g is called

(1) Lipschitz continuous if there exists a constant r > 0 satisfying

lg() -gW)ll <rllx-yl, vxyeH; (2.8)
(2) monotone if
(8(x)-g(y),x-y) >0, Vx,yeH; (29)
(3) 7-monotone if
(§(x)-g(y),n(x,y)) 20, Vx,y€H; (2.10)

(4) strongly monotone if there exists a constant r > 0 satisfying

(gx) -g(y) x-y) 2rlx-yll", vxyeH; (211)
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(5) strongly 7-monotone if there exists a constant r > 0 satisfying
(8) -8 e y)) 2rllx-yll, vryeH; (2.12)
(6) relaxed Lipschitz if there exists a constant r > 0 satisfying
(g(x) - g(y), x—y) < -r|lx-y|*>, Vx,yeH. (2.13)

Definition 2.3. Let N : Hx H — H and a,g: H — H be operators. The operator N is said
to be

(1) strongly monotone with respect to a and g in the first argument if there exists a
constant r > 0 satisfying

2 Vx, y,z€ H; (2.14)

(N(a(x),2) - N(a(y),z),8(x) -g)) 2r|lx -y

(2) Lipschitz continuous in the first argument if there exists a constant » > 0 satisfying

IN(x,w) - N(y,w)| <r|lx-y|, VxyweH. (2.15)

Similarly, we could define the strong monotonicity of N with respect to a and g in the
second argument and the Lipschitz continuity of N in the second argument.

Remark 2.4. For h = I, the definition of the Hj-monotone (resp., strictly Hj-monotone,
strongly Hp-monotone) operator reduces to the definition of the maximal monotone (resp.,
maximally strictly monotone, maximally strongly monotone) operator.

Remark 2.5. Notice that M is maximal monotone (resp., maximally strictly monotone,
maximally strongly monotone) if and only if M is monotone (resp., strictly monotone,
strongly monotone) and there is no other monotone (resp., strictly monotone, strongly
monotone) operator whose graph contains strictly the graph Graph(M) of M.

Lemma 2.6 (see [20]). Let {an},50, {Bn}ns0 a1d {yn} 50 be nonnegative sequences satisfying
ap1 £ A= Ap)ay + Pprn+yn, Yn20, (2.16)

where {An},50 C [0,1], X An = 00, limy, o3, = 0 and 372 yn < o0. Then limy, _, et = 0.

3. The Properties of Strictly H; ,~-Monotone Operators and
Strongly H; ,-Monotone Operators

In this section, we discuss some properties of the set-valued strictly H}, ,-monotone operators
and set-valued strongly Hj ,-monotone operators, respectively, dealing with a 7-monotone
operator h in Hilbert spaces.
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Theorem 3.1. Let H be a real Hilbert spaceandleth: H — H,n: HxH — Hand M: H —
2H be operators such that h is n-monotone and M is strictly Hy, ,-monotone. Then

(i) M is maximally strictly n-monotone;

(i) (h+AM)™":H — Hisa single-valued operator for each A > 0.

Proof. (i) Since M is strictly Hj,-monotone, it follows that M is strictly 7-monotone.
Suppose that there exists a strictly 7-monotone set-valued operator A : H — 2H satisfying
Graph(A) 2 Graph(M), that is, there exists (1o, xo) € Graph (A)\Graph (M) such that

(x0 -y, n(uo,v)) >0, V(v,y) € Graph(M) with v # uy. (3.1)

Notice that h(up) + \xg € H = (h + AM)(H) for any A > 0. Thus there exists (vy,yo) €
Graph(M) satisfying

h(vo) + J\yo = h(uo) +Axg, VA>0. (32)
Suppose that 1y = vp. Equation (3.2) means that xy = 1. Therefore,
Graph(M) 3 (vo, yo) = (uo, x0) € Graph(A) \ Graph(M), (3.3)

which is impossible. Suppose that 1 # vy. It follows from (3.1), (3.2), and the 7-monotonicity
of h and strict 77-monotonicity of A that

0 < (xo — Yo, (1o, vo)) = =\ (h(uo) — h(vo), (10, v0)) <0, (3.4)

which is a contradiction. Hence M is maximally strictly 7-monotone.

(ii) Suppose that there exists some u € H such that (h + AM) ™ (1) contains at least
two different elements x and y. Since M is strictly Hj,,-monotone, h is 7-monotone, and
AN u - h(x)) € M(x), A (u - h(y)) € M(y), it follows that

0< (A= h(x) - A (u=h(y)),n(x,y))

= = AN h(x) - h(y), n(x,y)) <0,

(3.5)

which is a contradiction. Consequently, the operator (h + AM)™" is single valued. This
completes the proof. O

Definition 3.2. Let H be a real Hilbert space and leth : H — H,n : Hx H — H and
M : H — 2H be operators such that h is 7-monotone and M is strictly Hj,,-monotone. Then
for each A > 0, the resolvent operator J 1;(4 \ : H — H is defined by

() = (h+AM) ™ (x), Vx € H, (3.6)
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Theorem 3.3. Let H be a real Hilbert space and let ny : H x H — H be Lipschitz continuous with
constant L. Assume that h : H — H is n-monotone and M : H — 2 is strongly Hy, ,-monotone

with constant r. Then for every A > 0, the resolvent operator ]Z’I“A : H — H is Lipschitz continuous
with constant L,/ Ar.

Proof. Since M is strongly Hj,,-monotone with constant r, it follows that M is strictly Hy,,-
monotone. Let x,y be in H. In view of A7 (x - h(]]}z/ﬁ(x))) € M(]]}\lfl(x)) and A 1(y —
h( ];lf)l(y))) € M( ]]}\l/’;?)t(y)) and the strong monotonicity of M, we deduce that

3 x—y, n(Th @ I )
=27 (T @) = (VA W) (T o0, v (1)) )
= (W (= h(Ih 0)) =3 (y = h(Th ) (T G, Tt () )

> el - i)

(3.7)

This leads to
Lyllx =yl |7V o - I )|
> <x -Y n(]i’;'ﬁ(x), ]ff,ﬁ(y)) >
> (h(Tyh ) = (I ) (i 0, T () ) (3.8)
x| - )|

> a7 - )|

which yields that
o - 1) < 2l - vl 39)

This completes the proof. O

Theorem 3.4. Let H be a real Hilbert space and let  : H x H — H be Lipschitz continuous with
constant L. Assume that h : H — H is strongly n-monotone with constant s and M : H — 2H is
strongly Hy,,-monotone with constant r. Then for every A > 0, the resolvent operator ]1;\1/’1”). :H —- H
is Lipschitz continuous with constant Ly /(s + Ar).
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Proof. As in the proof of Theorem 3.3, by the strong monotonicity of h and M, we infer that
forany x,y € H

Ll -yl - 1)
> ||x -y ||71(]1}:/}7,11(x) - ]z;(&?x(y)) "
> (x =y (i@ - T )

> ((7@) - (T @) (T - 1)) o
s o - e )|
> (s + 40| I ) - b ) ||
which means that
im0 - 1 ) < e -l (3.11)
This completes the proof. -

The following example shows that Theorem 3.3 is different from Lemma 2.2 in [5].

Example 3.5. Let H = R with the usual norm. Define single-valued and set-valued operators
h:H— H,n:HxH — Hand M: H — 2H by

h(x)=3x>-2, Vxe€H, n(x,y) =2(x-y), VYx,y€H,

{3x+1} forx<0, (3.12)
M(x) =4 [1,5] for x =0,
{5+4x} forx>0.

It is clear that 7 is Lipschitz continuous with constant 2 and
(h(x) - h(y),n(x,y)) =6(x- y)2<x2 + XY + y2> >0, Vx,yeH, (3.13)

which yields that h is 7-monotone. On the other hand, for any r > 0, there exist (x,,y,) =
(v/r/10,+/r/20) € H x H satistying

2172 r2 2
<h(xr) - h(yr)/ Tl(xr/yr)> = m < m = r(xr - ]/r) ’ (314)

that is, h is not strongly 7-monotone. Now we claim that M is strongly H}, ,-monotone. Let
x,y be in H with y > x. We have to consider the following five cases.
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Case 1. Suppose that x < y < 0. It follows that

(M(x) = M(y),1(x,y)) = 6(x - y)” 2 2(x - y)".
Case 2. Suppose that x < 0 = y. For any z € [1,5], we get that

(M(x) - z,n(x,y)) =2Bx+1-2)(y - x)

=2(y- x)2 +2x(1+2x-2z) =2(x - y)z.
Case 3. Suppose that x < 0 < y. Clearly, we have

(M(x) - M(y),n(x,y)) =2(3x -4 -4y) (x - y)

=8(x —y)2 +2(4+x)(y—x) >2(x —y)z.

Case 4. Suppose that x = 0 < y. For each z € [0, 1], we deduce that

(z=M(y),n(x,y)) = 2(z-5-4y) (x - )
>8(x-y) +26-z-x) >2(x-y)>

Case 5. Suppose that 0 < x < y. It is easy to verify that

(M(x) - M(y),1(x,y)) =8(x-y)" >2(x - y)".

Hence M is strongly 7-monotone with constant 2.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Let A > 0. In order to show that (h + AM)(H) = H, we need only to verify that (h +
AM)(H) 2 H. Assume thatt € [A-2, 5A-2] C H. We know thatt € (h+AM)(0) = [A-2, 5A-2].

Assume that t € (—o0,1 —2) € H. Define a function f : R — R by

f(x)=3x*+3 x+A-2-t, VYxeR.

Notice that the function f is continuous and

f(0)f<-)‘_f"t) =(A-z-t)[-3<)“i_t>3-2(A-2-t)z] <0.

It follows that there exists xp € (=(A =2 —t)/1,0) such that f(x¢) =0, that is,

t=3x) +3\xg + L —2 = (h+AM)(x0).

(3.20)

(3.21)

(3.22)
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Assume that t € (51 - 2,+00) € H. Define g : R — R by

(x) =3x> +4lx+51-2—-t, VYxeR. (3.23)
8

Obviously, g is continuous and
_ _ 3
g(@g(%) :3(5A—2—t)[<¢) +t—5)L+2:| <0, (3.24)

which implies that there exists xo € (0, (f — 51 +2) /1) with g(xg) = 0. Consequently,
t=3x) +4\xg + 50 = 2 = (h+ AM)(xo). (3.25)

Therefore, H C (h+AM)(H). Thus M is strongly Hj, ;,-monotone. It follows from Theorem 3.3

that the resolvent operator ]1}\1/’& is Lipschitz continuous with constant 1/1. However, we
cannot invoke Lemma 2.2 in [5] to prove the Lipschitz continuity of the resolvent operator

]X/ﬁ because F is not strongly #7-monotone.

4. A System of Nonlinear Variational Inclusions

In this section, we investigate a new class of system of nonlinear variational inclusions
involving strongly Hj ,-monotone operators in Hilbert spaces and suggest two new iterative
algorithms for approximating solutions of the system of nonlinear variational inclusions by
using the resolvent operator technique.

Let a;,b;, fi,gi,hi +: H — H,n;, N; : Hx H — H be single-valued operators and
M; : H — 2" set-valued operators and p; € H fori € {1,2}. We now consider the following
system of nonlinear variational inclusions:

find (x,y) € H x H such that

p1 € Ni(a1(x),b1(y)) + M1 (f1(x) — g1(x)),

4.1)
p2 € Na(a2(x),b2(y)) + Ma(f2(y) - £2(v))-

It is easy to see that the system of nonlinear variational inclusions (4.1) includes a lot of
variational inequalities, quasivariational inequalities, variational-like inequalities, variational
inclusions, and systems of variational inequalities, quasivariational inequalities, variational-
like inequalities, and variational inclusions in [1-16] and the references therein as special
cases.

Now we use the resolvent operator technique to establish the equivalence between the
existence of solutions for the system of nonlinear variational inclusions (4.1) and the existence
of fixed points for the single-valued operator Q defined by (4.3) below.

Lemma 4.1. Let H be a real Hilbert space. Let t; € (0,1) and p; > 0 be constants, a;, b;, fi, gi, hi :
H —- Hmn, Ny:HxH — Hand M; : H — 2H pe single-valued and set-valued operators,
respectively, such that h; is ni-monotone and M; is strictly Hy, ,,-monotone for i € {1,2}. Then the
following statements are pairwise equivalent.
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(a) The system of nonlinear variational inclusions (4.1) has a solution (x,y) € H x H.

(b) There exists (x,y) € H x H satisfying

Fix) = g1(0) = Ty (i (fi(x) = 1)) + prpr = N1 (a1 (%), b (1)),

(4.2)
F2(v) = 2(y) = Iay® (ha(f2(y) - 82(y)) + pap2 — p2Na(a2(x), b2 ().
(c) The single-valued operator Q : H x H — H x H defined by
Q(u,v) = (G1(w,v),G2(u,v)), V(u,v) € HxH, (4.3)

where

Gi(u,0) = (1-H)u
+hiu= (i) - gi(w)
I (I (f1(0) = g1(w)) + pipr = pN1 (a1 (), b (0)))], V(u,0) € H x H,
Gy(u,v)=(1-t)v
+h[o - (L) - £2(0))

I (B (fo(0) = 8(0)) + papa = p2Na(a2(w), ba(v))) |, Y, v) € H x H
(4.4)

has a fixed point (x,y) € H x H.

Proof. 1t follows from Theorem 3.1, (4.3), and (4.4) that (x,y) € H x H is a solution of the
system of nonlinear variational inclusions (4.1) if and only if

p1 € Ni(a1(x),bi(y)) + Mi(f1(x) - g1(x)),

p2 € Na(ax(x), b2(y)) + Ma(f2(v) - 82(v))
= hi(fi(x) - g1(x)) + prp1 - p1N1(a1(x), b1 (y)) € (1 + prMa) (f1(x) - g1(x)),
= h(f2(y) - &(y)) + p2p2 = p2N2(a2(x), b2(y)) € (h2 + p2M2) (f2(y) - &2(¥)),
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= filx) - gi(x) = 1\}1";1 (m(fi(x) = &1(x)) + prp1 - pN1(a1(x), b (y))),
= f(y) - 2) = Ik ((H() - $(y)) + pap2 - paNa(ax(x), b2 (v))),
= x=(1-t)x

+hi[x = () - 1)

Tyt (1 (f1(x) = 81(x)) + prip1 = p1Na (@1 (x), by (y)))]
=Gi(xy),

s=y=(1-h)y

+h[y - (L) - &)

it ((f2(y) = (1)) + pap2 = p2Na(a2(x), b2 (1))

=G (xy),

= Q(x,y) = (Gi(x,y),G(x,y)) = (x, ).
(4.5)

This completes the proof. O

Based on Lemma 4.1, we suggest the following new iterative algorithms for the system
of nonlinear variational inclusions (4.1).

Algorithm 4.2 (The Mann iteration method with errors). For any xo,y90 € H, compute
{xn}nZOI {yn}nZO c Hby

Xni1 = (1= 04)xy
+ 0% = (1) = g1(x0))
i, (1 (f1 () = 81Gan))pip1 = PN (a1 (), ba (y)))] + 4, ¥ 20,
Yni1 = (1= 64)Yn
+ 6l yn = (F2(vn) - &2(vm)
vt (B (f2(yn) = 82(yn))pap2 = p2N2 (@2 (%), b2 (yn)))| + & ¥m 20,

(4.6)

where {0,},59 and {6,},5, are sequences in (0,1), {&,},50 and {{,},5 are sequences in H
introduced to take into account possible in inexact computation with > (|[&.]l +[[¢x|l) < +oo.
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Algorithm 4.3 (The implicit Mann iteration method with errors). For any x¢, 19 € H, compute
{x‘rl}nzol {yn}nzo c Hby

Xns1 = (1= 0p)xn
+ 0|1 = (fi(nn) = 1))
]];&1;,;1 (h1 (fi (on41) = g1@ns1)) +p1p1—py N1 (@1 (xn41), b1 (ym)))] +én, Yn20,
Ynir = (L= 06n)Yn
+8a [y = (F(Ynn) — £2(¥ne))

i (2 (f2 ) = 82 W) +p2p2 = p2N2 (82Xt b2 (yna)))| + 4 ¥ 20,
(47)

where {0y}, and {0, },59 are sequences in (0,1), and {¢,},50 and {{,} > are sequences in H
introduced to take into account possible in inexact computation with 37> ([[&x |l +1|¢nll) < +oo.

Now we investigate those conditions under which the approximate solutions
generated by Algorithms 4.2 and 4.3 converge strongly to the exact solutions of the system of
nonlinear variational inclusions (4.1).

Theorem 4.4. Let H be a real Hilbert space and let a;, b;, fi, gi,hi : H — H,n;: HxH — H be
Lipschitz continuous with constants Ly,, Ly, L, Lg,, Ly, Ly,, respectively, hjn;-monotone, f; strongly
monotone with constant a;, g; relaxed Lipschitz with constant p; fori € {1,2}. Let M; : H — 2H
be strongly Hy, ,,-monotone with constant r; for i € {1,2}. Assume that N; : H x H — H is
Lipschitz continuous with constants L, and Ly, in the first and second arquments, respectively, N;
is strongly monotone with constant y; with respect to a; and f; — gi in the first argument for i € {1,2}.
Let

Kl—\/l 2 —p)+ (Lf1+Lgl) + I:(Lf1+Lg1)(1+Lh1)+\/(Lf1+Lgl) -2p1n+L3%, Lm],

K,= \/1 2(az - po) +(Lf2+Lg2 I:(sz +Lg) 1+ L;12)+\/(Lf2 + ng) -2poy + LN22L§2:|

1 1
Vi= r_lLﬂl Lny,Ly,, Vy = T_ZL;DLN21 Lg,.

(4.8)
If the following condition is fulfilled:

Viva < (1-Ky)(1-K3),  max{Ky Kz} <1, (4.9)
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then the system of nonlinear variational inclusions (4.1) has a unique solution (x,y) € H x H.
Moreover, if

sup{l - (1-Ky)on + V26, 1 - (1-K3)6, + Vio, : n 20} <1, (4.10)
then for each xo,yo € H, the sequences {xy},> and {y,},>o generated by Algorithm 4.2 converge
strongly to x and y, respectively.

Proof. First of all we prove that the operator Q defined by (4.3) is a contraction on the Banach
space H x H with norm ||(u, v) |1 = ||u|| + ||7|| for (u,v) € H x H. It follows from (4.9) that

ViV, < (1-Kyp)(1-K2)

= V2 < 1=K
1-K; Vi
Vs 1-K
& there exists t#1 w1th e <t< i 2
& there exist t1,t; € (0,1) with (4.11)
t(1-t) forte(0,1),
t =
! o fort>1,
1+t
1-t forte(0,1),
ty =
z — fort>1
1+t
such that
Vot < (1= Ky)ty, ity
< (1 - Kz)tz (412)

& there exist t,f; € (0,1) satisfying (4.11) and

max{l - (1 - Kl)t1 + tsz, 1- (1 — Kz)tz + t1V1} <1 (413)

Put (u1,v1), (u2,v) € H x H. By the Lipschitz continuity and various monotonicity of
ai, bi, fi, gi, hi, M, N; for i € {1,2}, (4.4) and (4.9), we deduce that

1G1(u1,v1) = G1(u2, 02)||
< (1= 1)l = o] + 11 || — 2 = [fi (1) = g1 (1) = (1 (02) — g1 (u2))] ||

+h ”]h1 n (i (fi(m) = g1(w1)) + p1p1 = p1N1(a1(u1), bi(v1)))
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=T (1 (f1an) = 81(102)) + pipr = p1N (@ (1w2), by (02) |

< [t-n(1-Vi-26-p) + @y L)) -

:’ :11 [ (f1 (1) = g1 (1)) = b (f1(u2) = g1 (u2)) |

+ | fi(u) = g1(u1) = (f1(u2) - g1(w2)) ||

+ | f1(u1) = g1(u1) = (fi(2) - g1(u2))
—p1(N1(a1(u1), b1 (v1)) = Ni(a1(u2), bi(v1))) ||
+p1||N1 (a1 (u2), bi(v1)) = Ni(a1(u2), bi(v2))]]]

< [1 - t1<1 ~V1-2(a - i) + (L + Lg1)2)] [

tle
+ o [(1 +Ly,)(Ly, + Lg,)

2
+ \/(Lfl +L8’1) _2P1Y1+P1 NHL%1:|||u1 u2||

t1L
+ 1
r

LleLln”Ul _UZH
=[1-(1-K)k]llug — uz|| + i Vh||og — 02|,
G2 (u1, v1) — Ga(uz, v2)||
< (1-B)|lor - v2|| + t2||v1 — w2 = [f2(01) = g2(v1) = (f2(v2) — &2(02))] ||

+ t2| ]A/len:,z(hz(fZ(vl) - 9(v1)) + pap2 — p2No(az2(u1), bz (01)))

_]Mz b (h2(f2(v2) = §2(2)) + pap2 — p2Na(a2(2), bz(vz)))H

< [1 - t2<1 —A1-2(ar- o) + (Ly, + Lg,)? ] o1 - v

L
; :22 [”hz(fz(vl) —gz(m)) - hZ(fz('Uz) —gz(vz))||

+ [ f2(01) = g2(v1) = (f2(v2) = g2(v2)) ||

+ | f2(01) = g2(v1) = (f2(v2) = §2(2))

~p2(Na(az (1), b2(1)) = Na(ax (1), ba2(v2))) |
+p2||N2(a2(u1), b2 (v2)) = Na(az2(u2), b2 (v2))]]]
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< [1 - t2<1 - \/1 —2(ax-Po) + (Lp + ng)2>] o1 = o2l

tL,
+ —pzr; [(1 + Lhz)(sz + ng)

2
+ \/(sz +Lg,)" = 2p21> +P§L?V22Liz] o1 =]

tHL
+ 2112 LN21L112 ”ul - u2”

=[1-(1-Kytr]||lvr — o2 + 2 Vallur — us].

(4.14)
In light of (4.3) and (??)—(4.14), we infer that
1Q (w1, v1) — Q(uz, v2)l; = |G1(u1,v1) = Gi(u2, v2) || + [|G2(11, v1) — Ga(u2, v2) ||
<[1-(1-Kph + 1 Va]llur —us|
+ [1 — (1 — Kz)tz + t1V1]||Ul — Uz”
(4.15)
< max{l - (1 - Kl)tl + i’sz, 1- (1 - Kz)tz + t1V1}
x [[lur = w2|| + |lo1 — val]
= K”(ullvl) - (MZIUZ)Hl/
where
K=max{1-(1-K)t +tVo,1-(1-K)t, +tV1} <1, (4.16)

that is, Q is a contraction on (H x H, || - ||1). Therefore, the operator Q has a unique fixed point

(x,y) € H x H, which is the unique solution of the system of nonlinear variational inclusions
(4.1) by Lemma 4.1. It follows that

x=(1-0,)x
+ 0y [x— (ilx) - 51(x))

+ szl/}f,l;l (h(fi(x) = g1(x)) + pip1 = p1N1(a1(x), by (y)))], Vn >0,
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= (1-06n)y
+6u[y - (L) - 2®¥))

i (12 (f2(y) = (1)) + pap2 = p2Na(a2(), b2 ()], ¥ 20,
(4.17)

In view of Algorithm 4.2 and (4.17), we deduce that for any n > 0

|31 = x]|
< (1= on)llxn — x|
+ Onl|xn = x = [f1(20n) = §1(xn) = (f1(x) = g1(x))] |
]ﬁl’l;] (1 (f1(xn) = g1(xn)) + p1p1 = p1N1 (a1 (xn), b1 (Yn)))

Tyt ( (fi(x) = g1(0)) + pip1 = prNi (aa (), bl(y)))||+||§n||

< [1 - on<1 - \/1 -2(m - p1) + (L, + Lgl)z)] lloxn — x|

+ 0y

+ C;nl—LrT (71 (f1(xn) = 81(xn)) = B (f1(x) = g1(x)) ||
+ || f1(en) = g1(xn) = (fi(x) = g1(20) |
+ ]| f1(xn) = g1(x0) = (fr(x) - g1(x))
=p1(N1 (a1 (xn), b1(yn)) = N1(a1(x), b1 (ya))) |
+p1]|N1(a1(x), b1(yn)) = Ni(a1(x), br(y))[|] + &l

< [t-ou(1-Vi-2@-p) + Ly + L))l

oan
1+L L L
+ o [( + hl)( ft gl)

\/(Lfl + Lgl) - 2P1)’1 + sz%\luLzﬂl] ”xn - x”

onL m

LN]ZLbl ||]/n y” + ”én“

=[1- (1 -Ky)ou]llxn — x|l + 0, Vi||yn — y|| + [1ll,
Y1 =yl
< (1 =8n)||yn =yl +6ullyn =y = [f2(yn) = £2(yn) = (f2(v) = 2 (W)]l
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+ 6,

i (B2 (f2(yn) = 82(yn)) + pap2 = p2Na (@2 (xa), ba ()

Ty (h2(f2(x) = 2(3)) + pap2 = p2Na(@2(x), b)) | + 1

< [1 - (1 - K2)6n] ”yn - ]/" + 6nV2||xn - x” + ”Cn“

(4.18)
By virtue of (4.18), we have
%01 = X[ + ||y = y|| £ (1= (A = Ki)on)llxn = x[| + 02 Vi [|yn — Y|
+ (1 - (1 - K2)6n)||]/n - y” + 6nV2||xn - x” + ”‘gn” + ”gn”
< max{l - (1 - Kl)on + V26n/ 1- (1 - K2)6n + Vlon} (419)
* [llxtn = x|l + |ym = w||] + &all + 1Sl
< K*(lloen = Il + lyn = y|) + 1€all + 11all,  ¥r 20,
where
K" =sup{l-(1-Kj)o,+V26,,1-(1-K3)6,+Vio,:n >0} <1 (4.20)

by (4.10). Lemma 2.6 and (4.19) ensure that the sequences {x,},, and {x,},5, generated by
Algorithm 4.2 converge strongly to x and y, respectively. This completes the proof. O

Theorem 4.5. Let H, a;, b, fi, g, hi, i, Mi, Ni, K;, V; for i € {1,2} be as in Theorem 4.4. If (4.9)
is satisfied, then the system of nonlinear variational inclusions (4.1) has a unique solution (x,y) €
H x H. Moreover, if

sup{Kioy, + V26, Vio, + K26, : n >0} <1, (421)
1-on 1 - b6n Vioy, V26,
n2 n> _
SUP{ 1-Kioy' 1-Kab, | = 0} ’ SUP{ 1-Kio, 1-Ks6, - 0} <1 (4.22)

hold, then for each xo,yo € H, the sequences {x,},so and {x,},so generated by Algorithm 4.3
converge strongly to x and y, respectively.

Proof. 1t follows from Theorem 4.4 that the system of nonlinear variational inclusions (4.1)
has a unique solution (x,y) € H x H. Now we prove that Algorithm 4.3 is well defined.



18 Abstract and Applied Analysis

Let n > 0 be a fixed integer. For each (x,,y,) € H x H, define 5;,S, : H x H — H and
S:HxH — HxHby

Si1(w,v) = (1-04)xn
+ 0y, [u - (fi(w) - g1(w))
i (L) - 1) +p1p1 = p1N1 @1 (), by (0))| + &, Va0 € H,
S2(u,v) = (1= 6n)Yn
+ 6= (o) - 22(w)

1}\122'1;2 (h2(f2(w) — g2(w)) +pap2 — p2Na(@2(u), by (U)))] +¢n, YuveH

S(u,v) = (51(u,v),52(u,v)), VYu,veH.
(4.23)

As in the proof of Theorem 4.4, we infer that for any (11, v1), (u2,v2) € H x H

1S1 (w1, 01) = S1(u2, 02) ||

)ul —up — [f1(u1) — g1 (1) — (f1(u2) — g1 (u2))]

< ouf

™ ( (fr(w) = 1)) + pipr = prN1 (a1 (), b (v1)))
(4.24)

- 1}\[/11111;171 (i (fr(u2) = g1(w2)) + prpr = prN1 (a1 (12), b1 (02))) ”}

< Kqou|lun — ug|| + Vion (o1 — 02|,

1S2(u1,01) = Sa(uz, v2)|| £ Ka6ullvr — 02| + Vabullun — 2|,
which yield that

IS(u1,v1) = S(uz, v2)|ly = [|S1(u1,v1) = S1(u2, v2) || + [|S2(u1, v1) — S2(uz, v2)||
< (Ki0y + Vaby)|lur — wa|| + (Vion + K26n) |1 — 02| (4.25)

< max{Kioy + V26, V1o, + Kab, }||(u1, v1) — (U2, v2)|l1-
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(4.21) and (4.25) ensure that S is a contraction on H x H. Thus S has a unique fixed point

(X441, Yne1) € H x H. Consequently, for each (x,, y,) € H x H, there exists a unique element
(Xn+1, Yn+1) € H x H satistying

Xn+l = (1 - O'n)xn

+ 0y [xn+1 = (fi(xni1) — g1(xna1))

K,}El(hl (fi(xns1) = g1(xn41)) + p1p1 = p1N1(a1(xpi1), by (yn+1)))] +&n,

Yne1 = (1 - 6n)yn

+ 0, [yn+1 = (fo(Yn+1) = 22 (ynn1))

]’\1/21211;2 (h2(f2(Yni1) — £2(Yns1)) + pap2 — p2Na (a2 (x411), ba (yn+1)))] +Gn.

(4.26)

+

That is, Algorithm 4.3 is well defined. Next we show the convergence of the sequences {x; },.-

and {x,} 5, generated by Algorithm 4.3. In light of (4.17) and (4.26), we conclude that for any
n>0

%041 — x|
< (1 =on)llxn — x|

+ 0|1 = x = [f1(xni1) = 81(xne1) = (f1(x) - 81(x))] ||

+ 0| Jyi™, (ha (1 (1) = 81 () (4.27)
+p1p1 — p1N1(a1(xn11), b1 (Yni1)))
i (B (f1 () = 81(0)) + pipn = piN (a1 (), by (1)) | + g
< (1 =on)llxn — x|l + K10u|xp41 — x|| + V10n||yn+1 - y” +[1&nll,
which means that
oy, Vio,
Ioen =61 € Tl =6l + i e = Yl + g Wl ¥z 0. (428)

Similarly, we have

65 1
llyne1 - y"_l I<6 llyn - y”+1 5,0, ll%n+1 — x||+m||§n||r Yn>0. (429)
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In view of (4.28) and (4.29), we deduce that

s =+ [[yne1 =~ vl

< max{ 127, 20 1, <+ v - ]
- 1-Kioy 1-Kp8, J 1" "
Vi, Vb (4.30)
max{ 2 2 [ = 2]+ [~ ]
emax{ e Il + gl va20
1—K10‘n’1—K26n " il =
which implies that
2ns1 = x|+ {| g1 =yl
max{(1 - 0,)/(1 = K104), (1= 6,)/(1 = K26,))
< — _
S T max((Vion) /(1= Kion), (Va6 7@ =Koy I =+ llyn = vl
max{1/(1-K;y0,),1/(1 - K26,)}
all + 11 431
T max(Vion /1= Kioy, Vi 71— Kab,) LIenll + 6nl] (431)
a
< 77 e = xll + [lyw - yl]
max{1/(1-Kj),1/(1-K3)}
+ -5 [Iénll + NIGnlll,  ¥m >0,
where
a—su{ 1-on 1-06, 'n>0}
TSP\ 1Ko, 1-K0, 5
(4.32)

Vlo'n Vz(Sn }
= N > .
b Sup{1—1<10n’1—1<26n nz0

Note that (4.22) yields that a/(1 - b) < 1. Consequently, Lemma 2.6 and (4.31) yield that
the sequences {x,},5o and {x,},, generated by Algorithm 4.3 converge strongly to x and y,

respectively. This completes the proof. O
Remark 4.6. Lemma 4.1 and Theorems 4.4 and 4.5 extend, improve, and unify the
corresponding results in [2-5, 11-19].
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