
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 648635, 21 pages
doi:10.1155/2012/648635

Research Article
Existence and Multiplicity of Solutions for
Some Fractional Boundary Value Problem via
Critical Point Theory

Jing Chen1, 2 and X. H. Tang1

1 School of Mathematical Sciences and Computing Technology, Central South University, Changsha,
Hunan 410083, China

2 School of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan,
Hunan 411201, China

Correspondence should be addressed to X. H. Tang, tangxh@mail.csu.edu.cn

Received 18 October 2011; Accepted 27 November 2011

Academic Editor: Kanishka Perera

Copyright q 2012 J. Chen and X. H. Tang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We study the existence and multiplicity of solutions for the following fractional boundary value
problem: (d/dt)((1/2)0D

−β
t (u′(t))+(1/2)tD

−β
T (u′(t)))+∇F(t, u(t)) = 0, a.e. t ∈ [0, T], u(0) = u(T) =

0, where F(t, ·) are superquadratic, asymptotically quadratic, and subquadratic, respectively.
Several examples are presented to illustrate our results.

1. Introduction and Main Results

Consider the fractional boundary value problem (BVP for short) of the following form:

d

dt

(
1
2 0D

−β
t

(
u′(t)
)
+
1
2 tD

−β
T

(
u′(t)
))

+∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

(1.1)

where 0D
−β
t and tD

−β
T are the left and right Riemann-Liouville fractional integrals of order

0 ≤ β < 1, respectively, F : [0, T] × R
N → R satisfies the following assumptions.

(A) F(t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x for

a.e. t ∈ [0, T], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+), such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t), (1.2)
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for all x ∈ R
N and a.e. t ∈ [0, T]. In particular, if β = 0, BVP (1.1) reduces to the standard

second-order boundary value problem of the following form:

u′′(t) +∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0.
(1.3)

Differential equations with fractional order are generalization of ordinary differential
equations to noninteger order. This generalization is not mere mathematical curiosities but
rather has interesting applications in many areas of science and engineering such as in visco-
elasticity, electrical circuits, and neuron modeling. The need for fractional order differential
equations stems in part from the fact that many phenomena cannot bemodeled by differential
equations with integer derivatives. Such differential equations got the attention of many re-
searchers and considerable work has been done in this regard, see the monographs of Kilbas
et al. [1], Miller and Ross [2], Podlubny [3], Samko et al. [4], and the papers [5–20] and the
references therein.

Recently, there are many papers dealing with the existence of solutions (or positive
solutions) of nonlinear initial (or singular and nonsingular boundary) value problems of frac-
tional differential equation by the use of techniques of nonlinear analysis (fixed-point theo-
rems [12–14], Leray-Schauder theory [15, 16], lower and upper solution method, monotone
iterative method [17–19], Adomian decomposition method [20], etc.), see [12–20] and the
references therein.

Variational methods are very powerful techniques in nonlinear analysis and are exten-
sively used in many disciplines of pure and appliedmathematics including ordinary and par-
tial differential equations, mathematical physics, gauge theory, and geometrical analysis. The
existence and multiplicity of solutions for Hamilton systems, Schrödinger equations, and
Dirac equations have been studied extensively via critical point theory, see [21–34].

In [32], Jiao and Zhou obtained the existence of solutions for BVP (1.1) by Mountain
Pass theorem under the Ambrosetti-Rabinowitz condition (denoted by A.R. condition). Un-
der the usual A.R. condition, it is easy to show that the energy functional associated with the
system has the Mountain Pass geometry and satisfies the (PS) condition. However, the A.R.
condition is so strong that many potential functions cannot satisfy it, then the problem be-
comes more delicate and complicated.

In this paper, in order to establish the existence and multiplicity of solutions for BVP
(1.1) under distinct hypotheses on potential function by critical point theory, we introduce
some functional space Eα, where α ∈ (1/2, 1], and divide the problem into the following
three cases.

1.1. The Superquadratic Case

For the superquadratic case, we make the following assumptions.

(A1) lim|x|→ 0F(t, x)/|x|2 = 0, lim inf|x|→∞F(t, x)/|x|2 ≥ L > π2/| cos(πα)|Γ2(2−α)T2α(3−
2α) uniformly for some L > 0 and a.e. t ∈ [0, T].

(A2) lim sup|x|→+∞F(t, x)/|x|r ≤ M < +∞ uniformly for some M > 0 and a.e. t ∈ [0, T].
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(A3) lim inf|x|→+∞((∇F(t, x), x) − 2F(t, x))/|x|μ ≥ Q > 0 uniformly for some Q > 0 and
a.e. t ∈ [0, T],

where r > 2 and μ > r − 2. We state our first existence result as follows.

Theorem 1.1. Assume that (A1)–(A3) hold and that F(t, x) satisfies the condition (A). Then BVP
(1.1) has at least one solution on Eα.

1.2. The Asymptotically Quadratic Case

For the asymptotically quadratic case, we assume the following.

(A2′) lim sup|x|→+∞F(t, x)/|x|2 ≤ M < +∞ uniformly for some M > 0 and a.e. t ∈ [0, T].

(A4) There exists τ(t) ∈ L1(0, T ;R+) such that (∇F(t, x), x)−2F(t, x) ≥ τ(t) for all x ∈ R
N

and a.e. t ∈ [0, T].

(A5) lim|x|→+∞[(∇F(t, x), x) − 2F(t, x)] = +∞ for a.e. t ∈ [0, T].

Our second and third main results read as follows.

Theorem 1.2. Assume that F(t, x) satisfies (A), (A1), (A2’), (A4), and (A5). Then BVP (1.1) has at
least one solution on Eα.

Theorem 1.3. Assume that F(t, x) satisfies (A), (A1), (A2’), and the following conditions:

(A4′) there exists τ(t) ∈ L1(0, T ;R+) such that (∇F(t, x), x) − 2F(t, x) ≤ τ(t) for all x ∈ R
N

and a.e. t ∈ [0, T];

(A5′) lim|x|→+∞[(∇F(t, x), x) − 2F(t, x)] = −∞ for a.e. t ∈ [0, T].

Then BVP (1.1) has at least one solution on Eα.

1.3. The Subquadratic Case

For the subquadratic case, we give the following multiplicity result.

Theorem 1.4. Assume that F(t, x) satisfies the following assumption:

(A6) F(t, x) := a(t)|x|γ , where a(t) ∈ L∞(0, T ;R+) and 1 < γ < 2 is a constant.

Then BVP (1.1) has infinitely many solutions on Eα.

2. Preliminaries

In this section, we recall some background materials in fractional differential equation and
critical point theory. The properties of space Eα are also listed for the convenience of readers.
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Definition 2.1 (see [1]). Let f(t) be a function defined on [a, b] and q > 0. The left and right
Riemann-Liouville fractional integrals of order q for function f(t) denoted by aD

−q
t f(t) and

tD
−q
b
f(t), respectively, are defined by

aD
−q
t f(t) =

1
Γ
(
q
)
∫ t

a

(t − s)q−1f(s)ds,

tD
−q
b f(t) =

1
Γ
(
q
)
∫b

t

(t − s)q−1f(s)ds,

(2.1)

provided the right-hand sides are pointwise defined on [a, b], where Γ is the gamma function.

Definition 2.2 (see [1]). Let f(t) be a function defined on [a, b] and q > 0. The left and right
Riemann-Liouville fractional derivatives of order q for function f(t) denoted by aD

q
t f(t) and

tD
q

b
f(t), respectively, are defined by

aD
q
t f(t) =

dn

dtn
aD

q−n
t f(t) =

1
Γ
(
n − q

) dn

dtn

(∫ t

a

(t − s)n−q−1f(s)ds

)
,

tD
q

b
f(t) = (−1)n dn

dtn
tD

q−n
b

f(t) =
1

Γ
(
n − q

) (−1)n dn

dtn

(∫b

t

(s − t)n−q−1f(s)ds

)
,

(2.2)

where t ∈ [a, b], n − 1 ≤ q < n and n ∈ N.

The left and right Caputo fractional derivatives are defined via the above Riemann-
Liouville fractional derivatives. In particular, they are defined for the function belonging
to the space of absolutely continuous functions, which we denote by AC([a, b],RN).
ACk([a, b],RN) (k = 1, . . .) is the space of functions f such that f ∈ Ck−1([a, b],RN) and
f (k−1) ∈ AC([a, b],RN). In particular, AC([a, b],RN) = AC1([a, b],RN).

Definition 2.3 (see [1]). Let q ≥ 0 and n ∈ N. If q ∈ [n − 1, n) and f(t) ∈ ACn([a, b],RN),
then the left and right Caputo fractional derivative of order q for function f(t) denoted by
c
aD

q
t f(t) and

c
tD

q

b
f(t), respectively, exist almost everywhere on [a, b]. c

aD
q
t f(t) and

c
tD

q

b
f(t)

are represented by

c
aD

q
t f(t)=aD

q−n
t f (n)(t) =

1
Γ
(
n − q

)
(∫ t

a

(t − s)n−q−1f (n)(s)ds

)
, (2.3)

c
tD

q

bf(t) = (−1)ntDq−n
b f (n)(t) =

(−1)n
Γ
(
n − q

)
(∫b

t

(s − t)n−q−1f (n)(s)ds

)
, (2.4)

respectively, where t ∈ [a, b].
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Property 2.4 (see [1]). The left and right Riemann-Liouville fractional integral operators have
the property of a semigroup, that is,

aD
−q1
t

(
aD

−q2
t f(t)

)
=aD

−q1−q2
t f(t), tD

−q1
b

(
tD

−q2
b

f(t)
)
=tD

−q1−q2
b

f(t), ∀q1, q2 > 0. (2.5)

Definition 2.5 (see [32]). Define 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα, p

0
is defined by the closure of C∞

0 ([0, T],RN) with respect to the norm

‖u‖α,p =

(∫T

0
|u(t)|pdt +

∫T

0

∣∣c
0D

α
t u(t)

∣∣pdt
)1/p

, ∀u ∈ E
α,p

0 , (2.6)

where C∞
0 ([0, T],RN) denotes the set of all functions u ∈ C∞([0, T],RN)with u(0) = u(T) = 0.

It is obvious that the fractional derivative space Eα,p

0 is the space of functions u ∈ Lp(0, T ;RN)
having an α-order Caputo fractional derivative c

0D
α
t u ∈ Lp(0, T ;RN) and u(0) = u(T) = 0.

Proposition 2.6 (see [32]). Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p

0 is a
reflexive and separable space.

Proposition 2.7 (see [32]). Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ E
α,p

0 , one has

‖u‖Lp ≤ Tα

Γ(α + 1)

∥∥c
0D

α
t u
∥∥
Lp . (2.7)

Moreover, if α > 1/p and 1/p + 1/q = 1, then

‖u‖∞ ≤ Tα−1/p

Γ(α)
(
(α − 1)q + 1

)1/q
∥∥c
0D

α
t u
∥∥
Lp . (2.8)

According to (2.8), we can consider Eα,p

0 with respect to the norm

‖u‖α,p =
∥∥c
0D

α
t u
∥∥
Lp =

(∫T

0

∣∣c
0D

α
t u(t)

∣∣pdt
)1/p

. (2.9)

Proposition 2.8 (see [32]). Define 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1/p and the
sequence {uk} converges weakly to u in E

α,p

0 , that is, uk ⇀ u. Then uk → u in C([0, T],RN), that
is, ‖u − uk‖∞ → 0, as k → ∞.

Making use of Property 2.4 and Definition 2.3, for any u ∈ AC([0, T],RN), BVP (1.1)
is equivalent to the following problem:

d

dt

(
1
2 0D

α−1
t

(c
0D

α
t u(t)

) − 1
2 tD

α−1
T

(c
tD

α
Tu(t)

))
+∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

(2.10)

where α = 1 − β/2 ∈ (1/2, 1].
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In the following, we will treat BVP (2.10) in the Hilbert space Eα = Eα,2
0 with the corre-

sponding norm ‖u‖α = ‖u‖α,2. The variational structure of BVP (2.10) on the space Eα has
been established.

Lemma 2.9 (see [32]). Let L : [0, T] × R
N × R

N × R
N → R be defined by

L
(
t, x, y, z

)
= −1

2
(
y, z
) − F(t, x), (2.11)

where F : [0, T] × R
N → R satisfies the assumption (A).

If 1/2 < α ≤ 1, then the functional defined by

ϕ(u) =
∫T

0
L
(
t, u(t), c

0D
α
t u(t),

c
tD

α
Tu(t)

)
dt (2.12)

is continuously differentiable on Eα, and ∀u, v ∈ Eα, we have

〈
ϕ′(u), v

〉
=
∫T

0

(
DxL
(
t, u(t), c

0D
α
t u(t),

c
tD

α
Tu(t)

)
, v(t)

)
dt

+
∫T

0

(
DyL
(
t, u(t), c

0D
α
t u(t),

c
tD

α
Tu(t)

)
, c
0D

α
t v(t)

)
dt

+
∫T

0

(
DzL
(
t, u(t), c

0D
α
t u(t),

c
tD

α
Tu(t)

)
, c
tD

α
Tv(t)

)
dt.

(2.13)

Definition 2.10 (see [32]). A function u ∈ AC([0, T],RN) is called a solution of BVP (2.10) if

(i) Dα(u(t)) is derivative for almost every t ∈ [0, T],

(ii) u satisfies (2.10),

where Dα(u(t)) := (1/2) 0D
α−1
t (c0D

α
t u(t)) − (1/2) tD

α−1
T (ctD

α
Tu(t)).

Lemma 2.11 (see [32]). Let 1/2 < α ≤ 1 and ϕ be defined by (2.12). If assumption (A) is satisfied
and u ∈ Eα is a solution of corresponding Euler equation ϕ′(u) = 0, then u is a solution of BVP (2.10)
which corresponding to the solution of BVP (1.1).

By Lemma 2.11, it means that the solutions for BVP (1.1) correspond to the critical
points of the functional ϕ. We need the following estimate and known results for the sequel.

Proposition 2.12 (see [32]). If 1/2 < α ≤ 1, then for any u ∈ Eα, one has

|cos(πα)|‖u‖2α ≤ −
∫T

0

(c
0D

α
t u(t),

c
tD

α
Tu(t)

)
dt ≤ 1

|cos(πα)| ‖u‖
2
α. (2.14)

Lemma 2.13 (see [23]). Let X be a real Banach space, Φ : X → R is differentiable. One says that Φ
satisfies the (PS) condition if any sequence {uk} inX such that {Φ(uk)} is bounded andΦ′(uk) → 0
as k → ∞ contains a convergent subsequence.
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Lemma 2.14 (Mountain Pass theorem [24]). Let X be a real Banach space and Φ : X → R is
differentiable and satisfies the (PS) condition. Suppose that

(i) Φ(0) = 0,

(ii) there exist ρ > 0 and σ > 0 such that Φ(z) ≥ σ for all z ∈ X with ‖z‖ = ρ,

(iii) there exists z1 in X with ‖z1‖ ≥ ρ such that Φ(z1) < σ.

Then Φ possesses a critical value c ≥ σ. Moreover, c can be characterized as

c = inf
g∈Ω

max
z∈g([0,1])

Φ(z), (2.15)

where Ω = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = z1}.

Lemma 2.15 (Clark theorem [24]). Let X be a real Banach space, Φ ∈ C1(X,R) with Φ even,
bounded below, and satisfying the (PS) condition. Suppose Φ(0) = 0, there is a set K ⊂ X such that
K is homeomorphic to Sm−1, m ∈ N, by an odd map, and supKΦ < 0. Then Φ possesses at least m
distinct pairs of critical points.

3. Proof of the Theorems

For u ∈ Eα, where

Eα :=
{
u ∈ L2

(
0, T ;RN

)
: c
0D

α
t u ∈ L2

(
0, T ;RN

)}
(3.1)

is a reflexive Banach space with the norm defined by

‖u‖α =
∥∥c
0D

α
t u
∥∥
L2
,

‖u‖∞ := max
t∈[0,T]

|u(t)|.
(3.2)

It follows from Lemma 2.9 that the functional ϕ on Eα given by

ϕ(u) =
∫T

0

[
−1
2
(c
0D

α
t u(t),

c
tD

α
Tu(t)

) − F(t, u(t))
]
dt (3.3)

is continuously differentiable on Eα. Moreover, we have

〈
ϕ′(u), v

〉
= −
∫T

0

1
2
[(c

0D
α
t u(t),

c
tD

α
Tv(t)

)
+
(c
tD

α
Tu(t),

c
0D

α
t v(t)

)]
dt

−
∫T

0
(∇F(t, u(t)), v(t))dt.

(3.4)

Recall that a sequence {un} ∈ Eα is said to be a (C) sequence of ϕ if ϕ(un) is bounded
and (1 + ‖un‖α)‖ϕ(un)‖α → 0 as n → ∞. The functional ϕ satisfies condition (C) if every (C)
sequence of ϕ has a convergent subsequence. This condition is due to Cerami [21].
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3.1. Proof of Theorem 1.1

We will first establish the following lemma and then give the proof of Theorem 1.1.

Lemma 3.1. Assume (A), (A2), and (A3) hold, then the functional ϕ satisfies condition (C).

Proof of Lemma 3.1. Let {un} ⊂ Eα be a (C) sequence of ϕ, that is, ϕ(un) is bounded and (1 +
‖un‖α)‖ϕ′(un)‖α → 0 as n → ∞. Then there exists M0 such that

∣∣ϕ(un)
∣∣ ≤ M0, (1 + ‖un‖α)

∥∥ϕ′(un)
∥∥
α ≤ M0, (3.5)

for all n ∈ N.
By (A2), there exist positive constants B1 and M1 such that

F(t, x) ≤ B1|x|r , (3.6)

for all |x| ≥ M1 and a.e. t ∈ [0, T].
It follows from (A) that

|F(t, x)| ≤ max
s∈[0,M1]

a(s)b(t), (3.7)

for all |x| ≤ M1 and a.e. t ∈ [0, T]. Therefore, we obtain

F(t, x) ≤ B1|x|r + max
s∈[0,M1]

a(s)b(t), (3.8)

for all x ∈ R
N and a.e. t ∈ [0, T].

Combining (2.14) and (3.8), we get

|cos(πα)|
2

‖un‖2α ≤ ϕ(un) +
∫T

0
F(t, un(t))dt

≤ M0 + max
s∈[0,M1]

a(s)
∫T

0
b(t)dt + B1

∫T

0
|un(t)|rdt.

(3.9)

On the other hand, by (A3), there exist η > 0 and M2 > 0 such that

(∇F(t, x), x) − 2F(t, x) ≥ η|x|μ, (3.10)

for a.e. t ∈ [0, T] and |x| ≥ M2.
By (A), we have

|(∇F(t, x), x) − 2F(t, x)| ≤ (2 +M2) max
s∈[0,M2]

a(s)b(t), (3.11)

for all |x| ≤ M2 and a.e. t ∈ [0, T].
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Therefore, we obtain

(∇F(t, x), x) − 2F(t, x) ≥ η|x|μ − ηM
μ

2 − (2 +M2) max
s∈[0,M2]

a(s)b(t), (3.12)

for all x ∈ R
N and a.e. t ∈ [0, T].

It follows from (3.5) and (3.12) that

3M0 ≥ 2ϕ(un) −
〈
ϕ′(un), un

〉

= 2
∫T

0

[
−1
2
(c
0D

α
t un(t), c

tD
α
Tun(t)

) − F(t, un(t))
]
dt

−
∫T

0

[−(c0Dα
t un(t), ctD

α
Tun(t)

) − (∇F(t, un(t)), un(t))
]
dt

=
∫T

0
[(∇F(t, un(t)), un(t)) − 2F(t, un(t))]dt

≥ η

∫T

0
|un(t)|μdt − (2 +M2) max

s∈[0,M2]
a(s)

∫T

0
b(t)dt − ηM

μ

2T,

(3.13)

thus,
∫T
0 |un(t)|μdt is bounded.
If μ > r, then

∫T

0
|un(t)|rdt ≤ T (μ−r)/μ

(∫T

0
|un(t)|μdt

)r/μ

, (3.14)

which, combining (3.9), implies that ‖un‖α is bounded.
If μ ≤ r, then

∫T

0
|un(t)|rdt ≤ ‖un‖r−μ∞

∫T

0
|un(t)|μdt ≤ C

r−μ
1 ‖un‖r−μα

∫T

0
|un(t)|μdt, (3.15)

where

C1 :=
Tα−1/2

Γ(α)(2α − 1)1/2
, (3.16)

by (2.8).
Since μ > r − 2, it follows from (3.9) that ‖un‖α is bounded too. Thus ‖un‖α is bounded

in Eα.
By Proposition 2.8, the sequence {un} has a subsequence, also denoted by {un}, such

that

un ⇀ u weakly in Eα, un −→ u strongly in C
(
[0, T],RN

)
. (3.17)
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Then we obtain un → u in Eα by use of the same argument of Theorem 5.2 in [32].
The proof of Lemma 3.1 is completed.

Proof of Theorem 1.1. By (A1), there exist ε1 ∈ (0, | cos(πα)|) and δ > 0 such that

F(t, x) ≤ (|cos(πα)| − ε1)
Γ2(α + 1)
2T2α |x|2, (3.18)

for a.e. t ∈ [0, T] and x ∈ R
N with |x| ≤ δ.

Let

ρ =
Γ(α)(2(α − 1) + 1)1/2

Tα−1/2 δ, σ =
ε1ρ

2

2
> 0. (3.19)

Then it follows from (2.8) that

‖u‖∞ ≤ Tα−1/2

Γ(α)(2(α − 1) + 1)1/2
‖u‖α = δ, (3.20)

for all u ∈ Eα with ‖u‖α = ρ.
Therefore, we have

ϕ(u) =
∫T

0

[
−1
2
(c
0D

α
t u(t),

c
tD

α
Tu(t)

) − F(t, u(t))
]
dt

≥ |cos(πα)|
2

‖u‖2α − (|cos(πα)| − ε1)
Γ2(α + 1)
2T2α

∫T

0
|u(t)|2dt

≥ |cos(πα)|
2

‖u‖2α −
|cos(πα)| − ε1

2
‖u‖2α

=
ε1
2
‖u‖2α

= σ,

(3.21)

for all u ∈ Eα with ‖u‖α = ρ. This implies that (ii) in Lemma 2.14 is satisfied.
It is obvious from the definition of ϕ and (A1) that ϕ(0) = 0, and therefore, it suffices

to show that ϕ satisfies (iii) in Lemma 2.14.
By (A1), there exist ε2 > 0 and M3 > 0 such that

F(t, x) >

(
π2

|cos(πα)|Γ2(2 − α)T2α(3 − 2α)
+ ε2

)
|x|2, (3.22)

for all |x| ≥ M3 and a.e. t ∈ [0, T].
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It follows from (A) that

|F(t, x)| ≤ max
s∈[0,M3]

a(s)b(t), (3.23)

for all |x| ≤ M3 and a.e. t ∈ [0, T].
Therefore, we obtain

F(t, x) ≥
(

π2

|cos(πα)|Γ2(2 − α)T2α(3 − 2α)
+ ε2

)(
|x|2 −M2

3

)
− max

s∈[0,M3]
a(s)b(t), (3.24)

for all x ∈ R
N and a.e. t ∈ [0, T].

Choosing u0 = ((T/π) sin(πt/T), 0, . . . , 0) ∈ Eα, then

‖u0‖2L2
=

T3

2π2
, ‖u0‖2α ≤ T3−2α

Γ2(2 − α)(3 − 2α)
. (3.25)

For ς > 0 and noting that (3.24) and (3.25), we have

ϕ(ςu0) =
∫T

0

[
−1
2
(c
0D

α
t ςu0(t), c

tD
α
Tςu0(t)

) − F(t, ςu0(t))
]
dt

≤ ς2

2|cos(πα)| ‖u0‖2α −
(

ς2π2

|cos(πα)|T2αΓ2(2 − α)(3 − 2α)
+ ς2ε2

)∫T

0
|u0(t)|2dt + C2

≤ ς2

2|cos(πα)| ·
T3−2α

Γ2(2 − α)(3 − 2α)
− ς2π2

|cos(πα)|T2αΓ2(2 − α)(3 − 2α)
· T3

2π2

− ς2ε2T
3

2π2
+ C2

−→ −∞,

(3.26)

as ς → ∞, where C2 is a positive constant. Then there exists a sufficiently large ς0 such that
ϕ(ς0u0) ≤ 0. Hence (iii) holds.

Finally, noting that ϕ(0) = 0 while for critical point u, ϕ(u) ≥ σ > 0. Hence u is a
nontrivial solution of BVP (1.1), and this completes the proof.

3.2. Proof of Theorem 1.2

The following lemmata are needed in the proof of Theorem 1.2.
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Lemma 3.2. Assume (A5), then for any ε > 0, there exists a subset Eε ⊂ [0, T] with meas([0, T] \
Eε) < ε such that

lim
|x|→∞

[(∇F(t, x), x) − 2F(t, x)] = +∞, (3.27)

uniformly for t ∈ Eε.

Proof of Lemma 3.2. The proof is similar to that of Lemma 2 in [29] and is omitted.

Lemma 3.3. Assume (A), (A2’), (A4), and (A5), then the functional ϕ satisfies condition (C).

Proof of Lemma 3.3. Suppose that {un} ⊂ Eα is a (C) sequence of ϕ, that is, ϕ(un) is bounded
and (1 + ‖un‖α)‖ϕ′(un)‖α → 0 as n → ∞. Then we have

lim inf
n→∞

[〈
ϕ′(un), un

〉 − 2ϕ(un)
]
> −∞, (3.28)

which implies that

lim sup
n→∞

∫T

0
[(∇F(t, un), un) − 2F(t, un)]dt < +∞. (3.29)

We only need to show that {un} is bounded in Eα. If {un} is unbounded, we may
assume, without loss of generality, that ‖un‖α → ∞ as n → ∞. Put zn = un/‖un‖α, we then
have ‖zn‖α = 1. Going to a sequence if necessary, we assume that zn ⇀ z weakly in Eα,
zn → z strongly in C([0, T],RN) and L2(0, T ;RN).

By (A2), it follows that there exist constants B2 > 0 and M4 > 0 such that

F(t, x) ≤ B2|x|2, (3.30)

for all |x| ≥ M4 and a.e. t ∈ [0, T].
By assumption (A), it follows that

|F(t, x)| ≤ max
s∈[0,M4]

a(s)b(t), (3.31)

for all |x| ≤ M4 and a.e. t ∈ [0, T]. Therefore, we obtain

F(t, x) ≤ B2|x|2 + max
s∈[0,M4]

a(s)b(t) (3.32)

for all x ∈ R
N and a.e. t ∈ [0, T]. Therefore, we have

ϕ(u) =
∫T

0

[
−1
2
(c
0D

α
t u(t),

c
tD

α
Tu(t)

) − F(t, u(t))
]
dt

≥ |cos(πα)|
2

‖u‖2α − B2

∫T

0
|u|2dt − max

s∈[0,M4]
a(s)

∫T

0
b(t)dt,

(3.33)
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from which, it follows that

ϕ(un)

‖un‖2α
≥ |cos(πα)|

2
− B2‖zn‖2L2

− 1

‖un‖2α
max

s∈[0,M4]
a(s)

∫T

0
b(t)dt. (3.34)

Passing to the limit in the last inequality, we get

|cos(πα)|
2

− B2‖z‖2L2
≤ 0, (3.35)

which yields z/= 0. Therefore, there exists a subset E ⊂ [0, T] with meas(E) > 0 such that
z(t)/= 0 on E.

By virtue of Lemma 3.2, for ε = (1/2) meas(E) > 0, we can choose a subset Eε ⊂ [0, T]
with meas([0, T] \ Eε) < ε such that

lim
|x|→∞

[(∇F(t, x), x) − 2F(t, x)] = +∞, (3.36)

uniformly for t ∈ Eε.
We assert that meas(E

⋂
Eε) > 0. If not, meas(E

⋂
Eε) = 0.

Since E = (E
⋂
Eε)
⋃
(E \ Eε), it follows that

0 < meas(E) = meas(E ∩ Eε) +meas(E \ Eε)

≤ meas([0, T] \ Eε)

< ε =
1
2
meas(E),

(3.37)

which leads to a contradiction and establishes the assertion.
By (A4), we obtain thye following:

∫T

0
[(∇F(t, un), un) − 2F(t, un)]dt

=
∫
E
⋂
Eε

[(∇F(t, un), un) − 2F(t, un)]dt +
∫
[0,T]\(E⋂Eε)

[(∇F(t, un), un) − 2F(t, un)]dt

≥
∫
E
⋂
Eε

[(∇F(t, un), un) − 2F(t, un)]dt −
∫T

0
|τ(t)|dt.

(3.38)

By (3.36), (3.38), and Fatou’s lemma, it follows that

lim
n→∞

∫T

0
[(∇F(t, un), un) − 2F(t, un)]dt = +∞, (3.39)
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which contradicts (3.29). This contradiction shows that ‖un‖α is bounded in Eα, and this com-
pletes the proof.

By virtue of Lemmas 3.2 and 3.3, the rest of the proof is similar to Theorem 1.1.
Theorem 1.3 can be proved similarly.

3.3. Proof of Theorem 1.4

The proof of Theorem 1.4 is divided into a sequence of lemma.

Lemma 3.4. The functional ϕ is bounded below on Eα.

Proof of Lemma 3.4. By (2.8) and (2.14), for every u ∈ Eα, we have

ϕ(u) = −
∫T

0

1
2
(c
0D

α
t u(t),

c
tD

α
Tu(t)

)
dt −

∫T

0
F(t, u(t))dt

= −
∫T

0

1
2
(c
0D

α
t u(t),

c
tD

α
Tu(t)

)
dt −

∫T

0
a(t)|u(t)|γdt

≥ |cos(πα)|
2

‖u‖2α − a0‖u‖γ∞T

≥ |cos(πα)|
2

‖u‖2α − a0TC
γ

1‖u‖
γ
α,

(3.40)

where a0 = ess sup{a(t) : t ∈ [0, T]}. The proof of Lemma 3.4 is complete.

Lemma 3.5. The functional ϕ satisfies the (PS) condition.

Proof of Lemma 3.5. Let {un} be a Palais-Smale sequence in Eα, that is,

ϕ(un) is bounded and ϕ′(un) −→ 0 as n −→ +∞. (3.41)

Suppose that {un} is unbounded in Eα, that is, ‖un‖α → +∞ as n → +∞. Since

〈
ϕ′(un), un

〉 − γϕ(un) =
(
−1 + γ

2

)∫T

0

(c
0D

α
t un(t),ctD

α
Tun(t)

)
dt. (3.42)

However, from (3.42), we have

−γϕ(un) ≥
(
1 − γ

2

)
|cos(πα)|‖un‖2α −

∥∥ϕ′(un)
∥∥‖un‖α, (3.43)

thus ‖un‖α is a bounded sequence in Eα. Since Eα is a reflexive space, going, if necessary, to a
subsequence, we can assume that un ⇀ u in Eα, thus we have

〈
ϕ′(un) − ϕ′(u), un − u

〉
=
〈
ϕ′(un), un − u

〉 − 〈ϕ′(u), un − u
〉

≤ ∥∥ϕ′(un)
∥∥
α‖un − u‖α −

〈
ϕ′(u), un − u

〉 −→ 0,
(3.44)
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as n → ∞. Moreover, according to (2.8) and Proposition 2.8, we have that {un} is bounded
in C([0, T],RN) and ‖un − u‖∞ → 0 as n → ∞.

Noting that
〈
ϕ′(un) − ϕ′(u), un − u

〉

= −
∫T

0

(c
0D

α
t (un(t) − u(t)), c

0D
α
T (un(t) − u(t))

)
dt

−
∫T

0
(∇F(t, un(t)) − ∇F(t, u(t)), un(t) − u(t))dt

≥ |cos(πα)|‖un − u‖2α −
∣∣∣∣∣
∫T

0
(∇F(t, un(t)) − ∇F(t, u(t)))dt

∣∣∣∣∣‖un − u‖∞.

(3.45)

Combining (3.44) and (3.45), it is easy to verify that ‖un − u‖α → 0 as n → ∞, and hence
that un → u in Eα. Thus, {un} admits a convergent subsequence. The proof of Lemma 3.5 is
complete.

Lemma 3.6. For any m ∈ N, there exists a set K ⊂ Eα which is homeomorphic to Sm−1 by an odd
map, and supkϕ < 0.

Proof of Lemma 3.6. For every m ∈ N, define

ui(t) =
(
sin

iπt

T
, 0, . . . , 0

)
, i = 1, 2, . . . , m,

Em = span{u1, . . . , um},
Km,β =

{
u ∈ Em : ‖u‖α = β

}
,

(3.46)

where β is a positive number to be chosen later.
For any u ∈ Em, there exist λi ∈ R, i = 1, 2, . . . , m, such that

u =
m∑
i=1

λiui(t),

‖u‖2α =
∫T

0

∣∣ c
0D

α
t u(t)

∣∣2dt

=
∫T

0

( c
0D

α
t u(t),

c
0D

α
t u(t)

)
dt

=
∫T

0

(
λ1

c
0D

α
t u1(t) + · · · + λm

c
0D

α
t um(t), λ1 c

0D
α
t u1(t) + · · · + λm

c
0D

α
t um(t)

)
dt

=
m∑
i=1

m∑
j=1

aijλiλj = F(λ1, . . . , λm),

(3.47)

where aij =
∫T
0 (

c
0D

α
t ui(t), c

0D
α
t uj(t))dt and F(λ1, . . . , λm) is a real quadratic form.
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Since

F(λ1, . . . , λm) =

∥∥∥∥∥
m∑
i=1

λiui(t)

∥∥∥∥∥
2

α

≥ 0, ∀(λ1, . . . , λm)T ∈ R
m,

F(λ1, . . . , λm) = 0 ⇐⇒
m∑
i=1

λiui(t) ≡ 0

⇐⇒ λ1 = λ2 = · · · = λm = 0.

(3.48)

So, F(λ1, . . . , λm) is a real positive definite quadratic form. Then there exist an invertible
matrix C ∈ R

m×m and μi ∈ R, i = 1, 2, . . . , m, such that

(λ1, λ2, . . . , λm)
T = C

(
μ1, μ2, . . . , μm

)T
,

F(λ1, . . . , λm) =
m∑
i=1

μ2
i .

(3.49)

It is easy to prove that the odd mapping Ψ : Km,β → Sm−1 defined by

Ψ(u) = β−1
(
μ1, . . . , μm

)
(3.50)

is a homeomorphism between Km,β and Sm−1.
Since Em ⊂ Eα is a finite dimensional space, there exists ε(m) > 0 such that

meas
{
t ∈ [0, T] : a(t)|u(t)|γ ≥ ε‖u‖γα

}
≥ ε, ∀u ∈ Em \ {0}. (3.51)

Otherwise, for any positive integer n, there exists un ∈ Em \ {0} such that

meas
{
t ∈ [0, T] : a(t)|un(t)|γ ≥ 1

n
‖un‖γα

}
<

1
n
. (3.52)

Set vn(t) := un(t)/‖un‖α ∈ Em \ {0}, then ‖vn‖α = 1 for all n ∈ N and

meas
{
t ∈ [0, T] : a(t)|vn(t)|γ ≥ 1

n

}
<

1
n
. (3.53)

Since dimEm < ∞, it follows from the compactness of the unit sphere of Em that there
exists a subsequence, denoted also by {vn}, such that {vn} converges to some v0 in Em. It is
obvious that ‖v0‖α = 1.

By the equivalence of the norms on the finite dimensional space, we have vn → v0 in
L2(0, T ;RN), that is,

∫T

0
|vn − v0|2dt −→ 0 as n −→ ∞. (3.54)
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By (3.54) and Hölder inequality, we have

∫T

0
a(t)|vn − v0|γdt ≤

(∫T

0
a(t)2/(2−γ)dt

)(2−γ)/2(∫T

0
|vn − v0|2dt

)γ/2

= ‖a‖(2−γ)/2
(∫T

0
|vn − v0|2dt

)γ/2

−→ 0, as n −→ ∞.

(3.55)

Thus, there exist ξ1, ξ2 > 0 such that

meas
{
t ∈ [0, T] : a(t)|v0(t)|γ ≥ ξ1

} ≥ ξ2. (3.56)

In fact, if not, we have

meas
{
t ∈ [0, T] : a(t)|v0(t)|γ ≥ 1

n

}
= 0, (3.57)

for all positive integer n.
It implies that

0 ≤
∫T

0
a(t)|v0|γ+2dt < T

n
‖v0‖2∞ ≤ C2

1T

n
‖v0‖2α −→ 0, (3.58)

as n → ∞. Hence v0 = 0 which contradicts that ‖v0‖α = 1. Therefore, (3.56) holds.
Now let

Ω0 =
{
t ∈ [0, T] : a(t)|v0(t)|γ ≥ ξ1

}
, Ωn =

{
t ∈ [0, T] : a(t)|vn(t)|γ < 1

n

}
, (3.59)

and Ωc
n = [0, T] \Ωn = {t ∈ [0, T] : a(t)|vn(t)|γ ≥ 1/n}.
By (3.53) and (3.56), we have

meas(Ωn ∩Ω0) = meas(Ω0 \ (Ωc
n ∩Ω0))

≥ meas(Ω0) −meas(Ωc
n ∩Ω0)

≥ ξ2 − 1
n
,

(3.60)

for all positive integer n. Let n be large enough such that

ξ2 − 1
n
≥ 1

2
ξ2,

1
2γ−1

ξ1 − 1
n
≥ 1

2γ
ξ1, (3.61)



18 Abstract and Applied Analysis

then we have

∫T

0
a(t)|vn − v0|γdt ≥

∫
Ωn∩Ω0

a(t)|vn − v0|γdt

≥ 1
2γ−1

∫
Ωn∩Ω0

a(t)|v0|γdt −
∫
Ωn∩Ω0

a(t)|vn|γdt

≥
(

1
2γ−1

ξ1 − 1
n

)
meas(Ωn ∩Ω0)

≥ ξ1
2γ

· ξ2
2

=
ξ1ξ2

2γ+1
> 0,

(3.62)

for all large n, which is a contradiction to (3.55). Therefore, (3.51) holds.
For any u ∈ Km,β, we have

ϕ(u) = −
∫T

0

1
2
(c
0D

α
t u(t),

c
tD

α
Tu(t)

)
dt −

∫T

0
F(t, u(t))dt

≤ 1
2|cos(πα)| ‖u‖

2
α −
∫T

0
a(t)|u(t)|γdt

≤ 1
2|cos(πα)| ‖u‖

2
α − ε‖u‖γα meas(Ωu)

≤ 1
2|cos(πα)| ‖u‖

2
α − ε2‖u‖γα,

(3.63)

by (3.51), where Ωu := {t ∈ [0, T] : a(t)|u(t)|γ ≥ ε‖u‖γα}.
Choosing β = (| cos(πα)|ε2)1/(2−γ), we conclude supKm,β

ϕ < −ε2βγ/2 < 0 which com-
pletes the proof.

Now from the assertion of Lemma 2.15, we know that ϕ has at least m distinct pairs
of critical points for every m ∈ N, therefore, BVP (1.1) possesses infinitely many solutions on
Eα. The proof of Theorem 1.4 is completed.

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. In BVP (1.1), let

F(t, x) = ln
(
1 + 2|x|2

)
|x|2 . (4.1)

These show that all conditions of Theorem 1.1 are satisfied, where

r = 2.5, μ = 2. (4.2)

By Theorem 1.1, BVP (1.1) has at least one solution u ∈ Eα.
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Example 4.2. In BVP (1.1), let T = 2π and F(t, x) = κf(x)(2+ sin t) arctan |x|2, where κ > 0 and
f(x)will be specified below.

Let f(x) = |x|2 + ln(1 + |x|2). Noting that 0 ≤ ln(1 + |x|2) ≤ |x|2, we see that (A) and
(A2′) hold. It is also easy to see that (A1) holds for

κ >
(2π)1−2α

|cos(πα)|Γ2(2 − α)(3 − 2α)
. (4.3)

Furthermore, we have

(∇f(x), x
) − 2f(x) =

2|x|2
1 + |x|2

− 2 ln
(
1 + |x|2

)
−→ −∞, (4.4)

as |x| → +∞. Therefore, we have

(∇F(t, x), x) − 2F(t, x) = κ
2|x|2

1 + |x|4
f(x)(2 + sin t) + κ

[(∇f(x), x
) − 2f(x)

]
(2 + sin t) arctan |x|2

−→ −∞,

(4.5)

uniformly for all t ∈ [0, 2π] as |x| → +∞. Thus (A4′) and (A5′) hold. By virtue of
Theorem 1.3, we conclude that BVP (1.1) has at least one solution on Eα.

If f(x) = |x|2 − ln(1 + |x|2), then exactly the same conclusions as above hold true by
Theorem 1.2.

Example 4.3. In BVP (1.1), let F(t, x) = a(t)|x|3/2 where

a(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T, t = 0

2t, 0 < t ≤ T

2

−2(t − T),
T

2
< t < T

T, t = T.

(4.6)

By Theorem 1.4, BVP (1.1) has infinite solutions on Eα.
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[12] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential
equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005.

[13] S. Zhang, “Positive solutions to singular boundary value problem for nonlinear fractional differential
equation,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1300–1309, 2010.

[14] X.-K. Zhao andW. Ge, “Unbounded solutions for a fractional boundary value problems on the infinite
interval,” Acta Applicandae Mathematicae, vol. 109, no. 2, pp. 495–505, 2010.

[15] Y. Zhang and Z. Bai, “Existence of solutions for nonlinear fractional three-point boundary value prob-
lems at resonance,” Journal of Applied Mathematics and Computing, vol. 36, no. 1-2, pp. 417–440, 2011.

[16] W. Jiang, “The existence of solutions to boundary value problems of fractional differential equations
at resonance,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 74, no. 5, pp. 1987–1994, 2011.

[17] S. Zhang, “Existence of a solution for the fractional differential equation with nonlinear boundary
conditions,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 1202–1208, 2011.

[18] S. Liang and J. Zhang, “Positive solutions for boundary value problems of nonlinear fractional differ-
ential equation,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 71, no. 11, pp. 5545–5550,
2009.

[19] Z. Wei, W. Dong, and J. Che, “Periodic boundary value problems for fractional differential equations
involving a Riemann-Liouville fractional derivative,” Nonlinear Analysis: Theory, Methods & Applica-
tions A, vol. 73, no. 10, pp. 3232–3238, 2010.

[20] H. Jafari and V. Daftardar-Gejji, “Positive solutions of nonlinear fractional boundary value problems
using Adomian decomposition method,” Applied Mathematics and Computation, vol. 180, no. 2, pp.
700–706, 2006.

[21] G. Cerami, “An existence criterion for the critical points on unbounded manifolds,” Istituto Lombardo.
Accademia di Scienze e Lettere: Rendiconti A, vol. 112, no. 2, pp. 332–336, 1978 (Italian).

[22] P. H. Rabinowitz, “Periodic solutions of Hamiltonian systems,” Communications on Pure and Applied
Mathematics, vol. 31, no. 2, pp. 157–184, 1978.

[23] J. Mawhin andM.Willem, Critical Point Theory and Hamiltonian Systems, vol. 74 ofApplied Mathematical
Sciences, Springer, New York, NY, USA, 1989.

[24] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,
vol. 65 ofCBMSRegional Conference Series inMathematics, AmericanMathematical Society, Providence,
RI, USA, 1986.

[25] G. Fei, “On periodic solutions of superquadratic Hamiltonian systems,” Electronic Journal of Differential
Equations, vol. 2002, no. 8, pp. 1–12, 2002.

[26] Y. H. Ding and S. X. Luan, “Multiple solutions for a class of nonlinear Schrödinger equations,” Journal
of Differential Equations, vol. 207, no. 2, pp. 423–457, 2004.



Abstract and Applied Analysis 21
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