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We study the univalence conditions for two integral operators to be univalent in the open unit
disk. Many known univalence conditions are written to prove our main results.

1. Introduction and Preliminaries

Let o denote the class of functions of the form:

f(z)=z+ ianzn, (1.1)
n=2

which are analytic in the open unit disk:

U={zeC:|z|<1}, (1.2)

and satisfy the following usual normalization condition:
£O) = £©)-1=0. (1.3)

We denote by S the subclass of &/ consisting of functions f(z) which are univalent in U.
In [1], for 0 < b < 1, Silverman considered the class:
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Here, in our present investigation, we consider two general families of integral ope-
rators:

1/p

z n . (ai=1)/M;
I(fuee fo gl,-..,gnxz):<ﬁjotﬂ-lfl[(@) <g;<t>>”dt>, (15)

a;, i €C,peC\{0}; fi,gie#, M;>1forallie {1,2,...,n};

; . /(1430 )
J(fi, oo fu g, 8n)(2) = <<1 + Zai> fo H(fi(t))“"(g;(t))yi dt> , (Lo
i-1 i=1

a;, 7 €C; fi,gieAforallie(1,2,...,n}.

Many authors have studied the problem of integral operators which preserve the class
S (see, e.g., [2-5]).

In the present paper, we study the univalence conditions involving the general families
of integral operators defined by (1.5) and (1.6).

In the proof of our main results (Theorem 2.1 and Theorem 3.1), we need the following
univalence criterion. The univalence criterion, asserted by Theorem 1.1, is a generalization of
Ahlfor’s and Becker’s univalence criterion; it was proven by Pescar [6].

Theorem 1.1 (see Pescar [6]). Let p € Cwith Rep > 0,c € Cwith|c| <1, c#£-1.If f € A4
satisfies

e+ (1-122) L3 | oy 17
=+ (- 127) 575 (17)
forall z € U, then the integral operator,
z 1/p
Fy(z) = (pf L (1) dt) , (1.8)
0

is in the class S.

Finally, in the present investigation, one also needs the familiar Schwarz Lemma (see,
for details, [7]).

Lemma 1.2 ((General Schwarz Lemma) (see [7])). Let the function f be reqular in the disk Ug =
{z € C:|z| < R}, with |f(z)| < M for fixed M. If f has one zero with multiplicity order bigger than
m for z = 0, then

M
f@)| < Zmlal" (z€Ug). (19)
The equality can hold only if
f(z) = eiGR—Afnzm, (1.10)

where 0 is constant.
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2. Univalence Conditions for I(fi,..., fu; $1,--.,8n)(2)

Theorem 2.1. Let M; > 1 (i € {1,2,...,n}) and B, a;, yi be complex numbers with Re p > 0 and

B> [3lai — 1]+ |y:| 2b; + )], (2.1)
i=1
and let ¢ € C be such that
1 n
<1 - —— R X . .
lc| <1 Reﬁg[sux, 1]+ |yi| @b + 1)] (2.2)

Ifforallie€ {1,2,...,n}, fi € A satisfy the conditions:

2 7l
fi@)] < Mi (zeD), fo;(zz)) - ‘ < (zew), 23)
and g; € Gy, 0 < b; <1 with
G 24
22 -1l < (zel), (2.4)

then the integral operator I(f1,..., fu; 4, ---,8n)(2) defined by (1.5) is in the class S.

Proof. We begin by setting

(ai=1)/M;
h(z) = H(fl(t)> (gi(t)" dt, (2.5)

0 =1

and then we calculate for h(z) the derivates of the first and second orders.
From (2.5), we obtain

(a;=1)/M;

wa=T1("7) @,

i=1

zh'(z)  &|ai-1(zf{(2) 28/ (2)
H(z) _21:[ M; <fz(z) >+Y’ gi(2) ]

ol B

i=1

-1
(2.6)

zfi(z) 1

fi(z)

[ 28/(2) zg(2) [ 28i(2)
RANTE) gl-<z>”>+”<gi<z> 1>]
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Thus, we have
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@) Z[mi - 1|< zfi(2) 1>
h(z) # M; fi(z)
zg!'(z) zgi(z) zg'/(2)
il - 1+ Il |5 -1
8i(z)  &i(2) 8i(2)
(2.7)
n _ 2 £1 ;
(22 )2 )
g ERAZE fi(2) z
z8i(z) z8i(2) z8;(2)
+|vil | ’ sl == Y|
8i(z) 5i(z) 8i(z)
From the hypothesis (2.3) of Theorem 2.1, we have
lfiz)| <M; (zeU; M; >1),
2.1 o (2.8)
zf’(z)—l gzM’ ! (zeU; M; >1)
f(z) M;
forallie {1,2,...,n}.
By applying the General Schwarz Lemma, we thus obtain
|fi(z)| < Milz| (zeU; ie{l,2,...,n}). (2.9)
Since g; € Gp,, 0 <b; <1foralli € {1,2,...,n}, from (1.4), (2.4), we obtain
Zh'(z)| & 28i(z) zg;(z)
< 3la; — 1| + i bi + |Yi -1
e Zl i =11+ I ‘ «@ | M@
sip3|a,~—1|+|yl»|bi A PR (O
i=1 L 8i(2) 8i(2)
=1 zgi(2) z8i(2)
< 3la; = 1| + ib ! + ibi+ i ! -1 (210)
3 R e R
= gl( )
< 22| 3lai =11+ (lyiloi + i) +[nilby
i=1 |

N

Z[3|al -1+ |yi| (@b + 1)],

N
—_
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which readily shows that

n

<lel+ |Z[3|di—1|+|)’i|(25i+1)]

i=1

clz + (1 |z|2ﬂ> ;71((2))

1 & 211
R—;3|ai—1|+|}fi|(2bi+1)] (2.11)

IA
=

where we have also used the hypothesis (2.2) of Theorem 2.1.

Finally, by applying Theorem 1.1, we conclude that the integral operator I(f,...,
fnig1,--.,8n)(z) defined by (1.5) is in the class .S. This evidently completes the proof of
Theorem 2.1. O

Setting a1 = ap = --- = a, = 1 in Theorem 2.1, we have the following result.

Corollary 2.2. Let M; >1 (i € {1,2, ...,n}) and B, y; be complex numbers with Re p > 0 and

Ref> > [|yi](@bi +1)] (2.12)
i=1
and let ¢ € C be such that
1 n
el <1- @g}[lrimbf +1)]. (2.13)

Ifforallie {1,2,...,n}, g € Gy, 0 <b; <1 with

z8!(z)
-1 <1 (z€l), 2.14
22 (zel) (2.14)
then the integral operator,
z n 1/p
I(fi, o fus & 8n)(2) = <p L T (i) dt> , (2.15)
i=1

is in the class S.
Setting y; = 1 foralli € {1,2,...,n} in Theorem 2.1, we have the following result.
Corollary 2.3. Let M; >1 (i € {1,2,...,n}) and f, a; be complex numbers with Re p > 0 and

Ref > i[3|zx,- =1+ 2b; +1)], (2.16)
i=1
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and let ¢ € C be such that

1 n
el < 1= — " [3la; - 1| + (2b; + 1)].
Rep&

Ifforalli€ {1,2,...,n}, f, € A satisfy the conditions:

22 fl(z) 2M; -1
|fi(z)| <M (z€U), ff(z) - I S0 (zel)
and g; € Gyp,, 0 < b; <1 with
Z;"((ZZ)) “1l<1 (zeU),

then the integral operator

z n ; ¢ (a;=1)/M; 1/p
I(Fireoor e r80)(2) = <ﬂ [(T1(M) o dt>
i=1

is in the class S.
Setting n = 1 in Theorem 2.1, we have the following result.

Corollary 2.4. Let M > 1 and B, a, y be complex numbers with Re p > 0 and

Rep > [Bla—-1|+ |y|(2b+1)],
and let ¢ € C be such that

1
<1-—[3la- )
el <1 g Bl =11+ [yl @b+ 1]

If the function f € A satisfies the conditions:

lf(z)| <M (z€U), Z;fég)— '52]\]4\4_1 (z€el),
and g € Gp, 0 < b <1 with
Zs(’(;;)—l <1 (ze),

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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then the integral operator,

1/p

z (a=1)/M
I(f;8)(z) = <ﬁ fo t‘”(@) (g'(®)" dt> , (2.25)

is in the class S.
3. Univalence Conditions for J(fi,..., f,;, g1,.-.,81)(2)
Theorem 3.1. Let M; > 1 (i € {1,2,...,n}) and p, a;, yi be complex numbers, p = (1 + X7 ai),
Rep > 0and
Ref > D [lai| + |y:| (bi + 1)(2M; + 1) + |yi|bi], (3.1)
i=1
and let ¢ € C be such that

1 n
le] <1- @Z“ad +|yi| (B + 1)(2M; + 1) + |y:|bi]. (3.2)
i=1

Ifforallie {1,2,...,n}, fi € A satisfy the condition:

z}f: ((2‘7;) “1l<1 (zew), (3.3)
and g; € Gp,, 0 < b; <1 with
z2gl(z)
S 1| <1 (zeD), (3.4)
8i (2)
|gi(z)| <M (zeU; iefl,2,...,n}), (3.5)

then the integral operator J(f1,..., fn; &1, ---,Sn)(2) defined by (1.6) is in the class S.

Proof. We begin by observing that the integral operator J(fi,..., fu; §1,...,8n)(2) defined by
(1.6) can be rewritten as follows:

" . /(1432 @)
](fl,...,fn;gl,...,gn)(z) = <<1 +Za,~> IO tzrlaxn(fl(t)> (gl t)))’: dt) ,

i=1 i=1
(3.6)

where f; € # forallie {1,2,...,n}.
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Defining the function h(z) by

= [T1(52) oy a

we take the same steps as in the proof of Theorem 2.1, and we have

Thus, we have

el + (1- |2) zh'(z)

zh"(z)
h'(z)

<

&
(s b |22 -

+ |Yl|b1]

n zfi(z)
< ; |:|“1|‘ fi(2)

pH (2)
L n
[

2°g(2) || &i(2)

g7 (2)

lel +

[+ i+ b

Furthermore, from the hypothesis (3.4) of Theorem 3.1, we have

2gi(2)
8 (2)
|gi(z)| <M; (z€U; ie{l,2,...,n}).

-1

<1l (zel),

By applying the General Schwarz Lemma, we obtain

So, we obtain

<

<

<

IN

lel +

le| +

lel +

clz + (1 _ |z|2ﬂ> zh'(z)

|8i(2)| < Milz| (z€U;ie(1,2,...,n)).

pr'(2)

1 & zzglf(z)
m;[lazh(lnlb +IY1I)<< 20 +1>M,-+1>+|Yi|bl]
1 n
WZ [letil + (Jy:|bi + |7:]) @M + 1) + i |bi]
i=1
LS el + (Il + i) @M+ 1) + o]
Reﬂ

+ 1> + |Yi|bi]-

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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Finally, by applying Theorem 1.1, we conclude that the integral operator J(f,...,
fn:1,-..,8n)(2) defined by (1.6) is in the class S. This evidently completes the proof of
Theorem 3.1. O

Setting a1 = ap = - -+ = a,, = 1 in Theorem 3.1, we have

Corollary 3.2. Let M; > 1 (i € {1,2,...,n}) and B, y; be complex numbers, p = (1+n), Rep >0
and

n

Ref> > [1+|yi|(bi + 1)(2M; + 1) + |yi|bi], (3.13)
i=1
and let ¢ € C be such that
1 n
le| <1- R—Z[l + |y (bi + 1) (2M; + 1) + | y:] bi]. (3.14)
efs

Ifforall i€ {1,2,...,n}, fi € A satisfy the condition:

z}{ ((:;) “1l<1 (zeU), (3.15)

and g; € Gyp,, 0 < b; <1 with

z%¢l(z)
s—-1<1 (zel), |gi(z)] < M; (z€), (3.16)

8 (2)

then the integral operator,
- 1/(1+n)
J(frreoor fus 81, 8n)(2) = <(1 +1) fo TTGFR®) (&m)" dt> , (3.17)
i=1

is in the class S.
Setting y; =1 foralli € {1,2,...,n} in Theorem 3.1, we have the following result.

Corollary 3.3. Let M; > 1 (i € {1,2,...,n}) and B, a; be complex numbers, p = (1 + >\, a;),
Rep > 0and

n

Ref > D [lail + (bi + 1)(2M; +1) + by], (3.18)
i=1
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and let ¢ € C be such that

1 n
le] <1 = 5— D [lail + (bi + 1) (2M; + 1) + b;].
Reﬂg

Ifforallie€ {1,2,...,n}, fi € A satisfy the condition:

i@ 4l zew
~1|l<1 (zeU),
fi(z)
and g; € Gy, 0 < b; <1 with
z2gl(z)
> -1l<1 (z€el), |gi(z)| <M; (z€l),
8 (2)

then the integral operator,

n z n 1/ (A+X5, ai)
s fisrre)@ = (10 5a) [ TTGO" @oya)
i=1 i=1

is in the class S.

Setting n = 1 in Theorem 3.1, we have the following result.

Corollary 3.4. Let M > 1 and f, a, y be complex numbers, p = (1 + a), Rep 2 0 and

Ref > [la + |y|(b+1)2M +1) + |y|b],
and let ¢ € C be such that
1
o] <1- @ [lal + |y|(+1)2M +1) + |y|b].

If one has that the function f € o4 satisfies the condition:

zf'(z)
fy st Eeb)
and g € Gy, 0 < b < 1 with
Z;zg;(zj)_l <1 (ZGU), |g(z)|§M (ZEU),

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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then the integral operator,

z 1/(1+a)
J(f;9)(z) = <(1+a)f (f(t))“(g’(t))Ydt> , (3.27)
0
is in the class S.
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