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We investigate the asymptotic behavior of solutions of a class of degenerate parabolic equations in
a bounded domain Ω ⊂ R

n (n � 2) with a polynomial growth nonlinearity of arbitrary order. The
existence of global attractors is proved in L2(Ω), Lp(Ω), and H1,a

0 (Ω), respectively, when H1,a
0 (Ω)

can be just compactly embedded into Lr(Ω) (r < 2) but not L2(Ω).

1. Introduction

Let us consider the following degenerate parabolic equations:

∂u

∂t
− div(a(x)∇u) + f(u) = g(x) in Ω × R

+,

u = 0 on ∂Ω × R
+,

u(x, 0) = u0 in Ω,

(1.1)

where Ω is a bounded domain in R
n (n � 2), with smooth boundary ∂Ω, a is a given

nonnegative function, and f is a C1 function satisfying

f ′(s) � −l, (1.2)

C1|s|p − C0 � f(s)s � C2|s|p + C0, p � 2, (1.3)

both for all s ∈ R.
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For the long-time behavior problems of the classical evolutionary equations, especially,
the classical reaction-diffusion equation, much has been accomplished in recent years (see,
e.g., [1–9] and the references therein), whereas for degenerated evolutionary equations such
information is by comparison very incomplete. The main feature of the problem (1.1) is that
the differential operator −div(a(x)∇u) is degenerate because of the presence of a nonnegative
diffusion coefficient a(x) which is allowed to vanish somewhere (the physical meaning,
see [10–12]). Actually, in order to handle media which have possibly somewhere “perfect”
insulators (see [10]) the coefficient a is allowed to have “essential” zeroes at some points
or even to be unbounded. In [13], the authors considered the existence of positive solutions
when nonlinearity is superlinear and subcritical function for a semilinear degenerate elliptic
equation under the assumption that a ∈ L1

loc(Ω), for some α ∈ (0, 2], satisfies

lim inf
x→ z

|x − z|−αa(x) > 0, for every z ∈ Ω. (1.4)

Recently, motivated by [13], under the same assumption as in [13], the authors of [11, 12, 14–
20] proved the existence of global attractors of a class of degenerate evolutionary equations
for the case of α ∈ (0, 2).

The present paper is devoted to the case of α = 2 which is essentially different from the
case of α ∈ (0, 2), and which will cause some technical difficulties. In [13], the authors pointed
out that the number 2∗α = 2n/(n − 2 + α) plays the role of critical exponent. It is well known
that some kind of compactness of the semigroup associated with (1.1) is necessary to prove
the existence of the global attractor in L2(Ω). However, there is no corresponding compact
embedding result in this case since H1,a

0 (Ω) is compactly embedded only into Lr(Ω) (r < 2)
but not L2(Ω). Hence, the existence of the global attractor in L2(Ω) cannot be obtained by
usual methods.

In this paper, we assume the weighted function a satisfies the following.

(A1) a ∈ L∞(Ω) and lim infx→ z|x − z|2a(x) > 0 for every z ∈ Ω.

We will firstly obtain the existence and uniqueness of weak global solutions by use of the
singular perturbation then use the asymptotic a priori estimate (see [9]) to verify that the
semigroup associated with our problem is asymptotically compact and establish the existence
of the global attractor in L2(Ω), Lp(Ω) (p � 2) andH1,a

0 (Ω), respectively.

2. Preliminary Results

In this section, we firstly present some notation and preliminary facts on functional spaces
then review some necessary concepts and theorems that will be used to prove compactness
of the semigroup. For convenience, hereafter let ‖ · ‖p be the norm of Lp(Ω) (p � 1), |u| the
modular (or the absolute value) of u, and C an arbitrary positive constant, which may vary
from line to line and even in the same line.
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2.1. Functional Spaces

The appropriate Sobolev space for (1.1) is H1,a
0 (Ω), defined as a completion of C∞

0 (Ω) with
respect to the norm

‖u‖H1,a
0

=
(∫

Ω
a(x)|∇u|2dx

)1/2

. (2.1)

The dual space is denoted byH−1,a(Ω), that is, (H1,a
0 (Ω))∗ = H−1,a(Ω).

The next proposition refers to continuous and compact inclusion ofH1,a
0 (Ω).

Proposition 2.1 (see [13]). Let Ω be bounded domain in R
n (n � 2) and let a ∈ L1

loc(Ω) satisfy
(1.4) for some α ∈ (0, 2]. Then the following embeddings hold:

(i) H1,a
0 (Ω) is continuously embedded inW

1,2n/(n+α)
0 (Ω);

(ii) H1,a
0 (Ω) is continuously embedded in L2∗α(Ω);

(iii) H1,a
0 (Ω) is compactly embedded in Lr(Ω) as 1 � r < 2∗α = 2n/(n − 2 + α).

Remark 2.2. 2∗α � 2 when α ∈ (0, 2), 2∗α = 2 when α = 2, which plays the role of the critical
exponent in the Sobolev embedding.

In this paper we only consider the case of α = 2 when n � 2.

2.2. Some Results on Existence of Global Attractors

In this subsection, we review briefly some basic concepts and results on the existence of global
attractors; see [2, 5, 7, 9] for more details.

Definition 2.3. Let {S(t)}t�0 be a semigroup on Banach space X. {S(t)}t�0 is called asymp-
totically compact if for any bounded sequence {xn}∞n=1 and tn � 0, tn → ∞ as n → ∞, and
{S(tn)xn}∞n=1 has a convergent subsequence in X.

Theorem 2.4. Suppose {S(t)}t�0 is a semigroup on Lp(Ω) (p � 1). Assume further {S(t)}t�0 is a
continuous or weak continuous semigroup on Lq(Ω) for some q � p and possesses a global attractor
in Lq(Ω), whereΩ ⊂ R

n is bounded. Then {S(t)}t�0 possesses a global attractor in Lp(Ω) if and only
if

(i) {S(t)}t�0 has a bounded absorbing set B0 in Lp(Ω), and

(ii) for any ε > 0 and any bounded subset B ⊂ Lp(Ω), there exist positive constants T = T(ε, B)
and M = M(ε, B) such that

∫
Ω(|S(t)u0|�M)

|S(t)u0|pdx < ε for any u0 ∈ B, t � T. (2.2)
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Theorem 2.5. Let {S(t)}t�0 be a semigroup on Lp(Ω) (p � 1) and have a bounded absorbing set in
Lp(Ω). Then for any ε > 0 and any bounded subset B ⊂ Lp(Ω), there exist positive constants T = TB
and M = M(ε) such that

m(Ω(|S(t)u0| � M)) � ε for any t � T, u0 ∈ B, (2.3)

where m(e) (sometimes we also write it as |e|) denotes the Lebesgue measure of e ⊂ Ω and Ω(|u| �
M) � {x ∈ Ω | |u(x)| � M}.

Theorem 2.6. For any ε > 0, the bounded subset B of Lp(Ω) (p � 1) has a finite ε-net in Lp(Ω) if
there exists a positive constant M = M(ε) which depends on ε such that

(i) B has a finite (3M)(q−p)/q(ε/2)p/q-net in Lq(Ω) for some q, q � 1;

(ii)

∫
Ω(|u|�M)

|u|pdx � 2−(2p+2)/pε for any u ∈ B. (2.4)

3. Existence and Uniqueness of the Weak Global Solutions

In this paper, throughout we denote ΩT = Ω × [0, T], V = L2(0, T ;H1,a
0 (Ω)) ∩ Lp(ΩT ) and

V ∗ = L2(0, T ;H−1,a(Ω)) + Lq(ΩT ), respectively, where q is the conjugate exponent of p, that
is, 1/p + 1/q = 1. In addition, we always assume that f satisfies (1.2)-(1.3) and the external
forcing term g belongs only to L2(Ω).

Definition 3.1. A function u(x, t) is called a weak solution of (1.1) on [0, T] if and only if

u ∈ C
(
[0, T];L2(Ω)

)
∩ L2

(
0, T ;H1,a

0 (Ω)
)
∩ Lp(0, T ;Lp(Ω)) (3.1)

and u|t=0 = u0 almost everywhere in Ω such that

∫
ΩT

(
∂u

∂t
ξ + a∇u∇ξ + f(u)ξ

)
=
∫
ΩT

gξ (3.2)

holds for all test functions ξ ∈ V .

The following lemma makes the initial condition in problem (1.1) meaningful.

Lemma 3.2 (see [16]). If u ∈ V and du/dt ∈ V ∗, then u ∈ C([0, T];L2(Ω)).

Theorem 3.3. Assume Ω ⊂ R
n (n � 2) is a bounded open domain with smooth boundary, f satisfies

(1.2)-(1.3), and g ∈ L2(Ω). Then for any u0 ∈ L2(Ω) and T > 0 there exists a unique solution u of
(1.1) which satisfies

u ∈ C
(
[0, T];L2(Ω)

)
∩ L2

(
0, T ;H1,a

0 (Ω)
)
∩ Lp(ΩT ). (3.3)

The mapping u0 �→ u(t) is continuous in L2(Ω).



Abstract and Applied Analysis 5

Proof. For any 0 < ε < 1, we choose uε,0 ∈ C∞
c (Ω) such that ‖uε,0‖L∞(Ω) are uniformly bounded

with respect to ε, and

uε,0 −→ u0 in L2(Ω). (3.4)

Consider the problem

∂uε

∂t
− div(aε(x)∇uε) + f(uε) = g in Ω × R

+,

uε = 0 on ∂Ω × R
+,

uε(x, 0) = uε0 in Ω,

(3.5)

where

aε(x) = a(x) + ε, x ∈ Ω. (3.6)

According to the standard Galerkin methods (see, e.g., [2, 6, 7]), we know the problem
(3.5) admits a unique weak solution uε ∈ C([0, T]; L2(Ω)) ∩ L2(0, T ;H1

0(Ω)) ∩ Lp(0, T ;Lp(Ω)).
Here uε is called a weak solution of the problem (3.5), if, for any ϕ ∈ C∞

0 (ΩT ), we have

∫T

0

∫
Ω

(
∂uε

∂t
ϕ + aε∇uε∇ϕ + f(uε)ϕ

)
dx dt =

∫T

0

∫
Ω
gϕdx dt (3.7)

and uε|t=0 = uε,0 almost everywhere in Ω.
Now we do some estimates on uε in the following.
Multiplying (3.5) by uε and integrating over Ω, we get

1
2
d

dt
‖uε‖22 +

∫
Ω
aε(x)|∇uε|2dx +

∫
Ω
f(uε)uεdx =

∫
Ω
guεdx. (3.8)

By (1.3) and the Hölder’s inequality, we can deduce that

1
2
d

dt
‖uε‖22 +

∫
Ω
aε(x)|∇uε|2dx + C1

∫
Ω
|uε|pdx � C0|Ω| + 1

2C1

∥∥g∥∥2
2 +

C1

2
‖uε‖22, (3.9)

where |Ω| = ∫
Ω 1dx.

Using the Gronwall lemma, for any T > 0, we have the following:

uε is uniformly bounded in L∞
(
0, T ;L2(Ω)

)
with respect to ε. (3.10)



6 Abstract and Applied Analysis

Integrating (3.8) and (3.9), both sides between 0 and T , and using the Young’s
inequality, we may get by a standard procedure (see, e.g., [2, 6, 7]) that

∫
ΩT

a|∇uε|2dx dt �
∫
ΩT

aε|∇uε|2dx dt =
∫
ΩT

a|∇uε|2dx dt + ε

∫
ΩT

|∇uε|2dx dt � C,

∫
ΩT

|uε|pdx dt � C,

(3.11)

with C independent of ε.
Noting that (1.3), we obtain

∥∥f(uε)
∥∥q

Lq(ΩT )
=
∫T

0

(∫
Ω

∣∣f(uε)
∣∣qdx

)
dt

� C

∫T

0

(∫
Ω

(
1 + |uε|p−1

)q
dx

)
dt

� C

∫T

0

(∫
Ω
1 + |uε|q(p−1)dx

)
dt.

(3.12)

So we have the following:

f(uε) is uniformly bounded in Lq(0, T ;Lq(Ω)) with respect to ε. (3.13)

We now extract a weakly convergent subsequence, denoted also by uε for convenience,
with

uε ⇀ u in L2
(
0, T ;H1,a

0 (Ω)
)
,

uε ⇀ u in Lp(0, T ;Lp(Ω)),

f(uε) ⇀ χ in Lq(0, T ;Lq(Ω)),

aε∇uε ⇀ 	ϑ in L2(ΩT ,R
n).

(3.14)

Since f ∈ C(R), it follows that

f(uε) ⇀ f(u) in Lq(0, T ;Lq(Ω)). (3.15)

Now we show that u is a weak solution of Problem (1.1). Multiply (3.5) by ϕ and let
ε → 0+ to derive

∫T

0

∫
Ω

∂u

∂t
ϕ + 	ϑ · ∇ϕ + f(u)ϕdx dt =

∫T

0

∫
Ω
gϕdx dt (3.16)

for ϕ ∈ V .
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Therefore, in order to obtain the existence we need only to prove

∫T

0

∫
Ω

	ϑ · ∇ϕdx dt =
∫T

0

∫
Ω
a∇u∇ϕdx dt, ϕ ∈ C∞

0 (ΩT ) (3.17)

for C∞
0 (ΩT) is dense in V .
From (3.8) we can obtain

∫
ΩT

aε|∇uε|2dx dt = −
∫
ΩT

∂uε

∂t
uεdx dt −

∫
ΩT

f(uε)uεdx dt +
∫
ΩT

guεdx dt. (3.18)

Let v ∈ C([0, T], L2(Ω)) ∩ L2(0, T ;H1
0(Ω)). It is obvious that

∫T

0

∫
Ω
aε(∇uε − ∇v) · (∇uε − ∇v)dx dt � 0. (3.19)

Therefore,

−
∫
ΩT

∂uε

∂t
uεdx dt −

∫
ΩT

aε∇uε∇v dx dt −
∫
ΩT

a∇v(∇uε − ∇v)dx dt

+ ε

∫
ΩT

∇v(∇uε − ∇v)dx dt −
∫
ΩT

f(uε)uεdx dt +
∫
ΩT

guεdx dt � 0.

(3.20)

Taking ε → 0+ in the above inequality and noticing that

ε

∣∣∣∣∣
∫
ΩT

∇v(∇uε − ∇v)dx dt

∣∣∣∣∣ � ε

∫
ΩT

|∇v||∇uε|dx dt + ε

∫
ΩT

|∇v|2dx dt −→ 0 as ε −→ 0+,

(3.21)

we arrive at

−
∫
ΩT

∂u

∂t
u −

∫
ΩT

	ϑ · ∇v −
∫
ΩT

a∇v(∇u − ∇v) −
∫
ΩT

f(u)u +
∫
ΩT

gu � 0. (3.22)

On the other hand, choosing ϕ = u in (3.7) leads to

∫T

0

∫
Ω

	ϑ · ∇udx dt = −
∫
ΩT

∂u

∂t
u −

∫T

0

∫
Ω
f(u)udx dt +

∫T

0

∫
Ω
gudx dt. (3.23)

Then, it follows from (3.22) and (3.23) that

∫T

0

∫
Ω

(
	ϑ − a∇v

)
· (∇u − ∇v)dx dt � 0. (3.24)
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Choosing v = u − λϕwith λ > 0 in the above inequality, we get

∫T

0

∫
Ω

(
	ϑ − a∇(

u − λϕ
)) · ∇ϕdx dt � 0, (3.25)

which implies by letting λ → 0+ that

∫T

0

∫
Ω

(
	ϑ − a∇u

)
· ∇ϕdx dt � 0. (3.26)

If we choose λ < 0, we achieve the inequality with opposite sign. Thus

∫T

0

∫
Ω

(
	ϑ − a∇u

)
· ∇ϕdx dt = 0, (3.27)

which leads to (3.17). Then u ∈ C([0, T];L2(Ω)) follows from Lemma 3.2.
Nowwewill show that u(0) = u0. Choosing some φ ∈ C1([0, T];H1,a

0 (Ω)∩Lp(Ω))with
φ(T) = 0 as a test function and integrating by parts in the t variable we have

∫T

0
−〈u, φ′〉 + 〈

Au, φ
〉
+
〈
f(u), φ

〉
ds =

∫T

0

〈
g, φ

〉
ds +

(
u(0), φ(0)

)
. (3.28)

Doing the approximations as above yields

∫T

0
−〈uε, φ

′〉 + (
Auε, φ

)
+
〈
f(uε(s)), φ

〉
ds =

∫T

0

〈
g, φ

〉
ds +

〈
uε(0), φ(0)

〉
. (3.29)

taking limits to conclude that

∫T

0
−〈u, φ′〉 + 〈

Au, φ
〉
+
〈
f(u), φ

〉
ds =

∫T

0

〈
g, φ

〉
ds +

(
u0, φ(0)

)
, (3.30)

since uε0 → u0. Thus u(0) = u0.
Thanks to (1.2), uniqueness and continuous dependence on initial conditions can

easily be obtained.

We can therefore use these solutions to define a semigroup {S(t)}t�0 on L2(Ω) by
setting

S(t)u0 = u(t), (3.31)

which is continuous on u0 in L2(Ω).
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4. Existence of Global Attractors

In this section, we prove the existence of the global attractors in L2(Ω), Lp(Ω), and H1,a
0 (Ω),

respectively. The following result is the existence of bounded absorbing sets which has been
established in [18].

Theorem 4.1. The semigroup {S(t)}t�0 possesses bounded absorbing sets in L2(Ω), Lp(Ω), and
H1,a

0 (Ω), respectively; that is, for any bounded subset B in L2(Ω), there exists a constant T(‖u0‖2),
such that

‖u(t)‖22 � ρ0,

‖u(t)‖pp +
∫
Ω
a(x)|∇u(t)|2 � ρ1,

(4.1)

for all t � T and u0 ∈ B, where both ρ0 and ρ1 are positive constants independent of B, u(t) = S(t)u0.

In order to obtain the existence of a global attractor in L2(Ω) we need to verify that
{S(t)}t�0 possesses some kind of compactness in L2(Ω), which, however, we cannot obtain
by usual methods for lack of the corresponding Sobolev compact embedding results for this
case. Here, the new method introduced in [9] is used.

Let B0 be the bounded absorbing set in H1,a
0 (Ω), then we can consider our problem

only in B0. ForH
1,a
0 (Ω) is compactly continuous into Lr(Ω) for some 1 � r < 2, we know that

B0 is compact in Lr(Ω), and B0 has a finite ε-net in Lr(Ω).
Firstly, we give the following useful a priori estimate.

Theorem 4.2. For any ε > 0 and bounded subsets B ⊂ L2(Ω), there exist T = T(ε, B) and M =
M(ε) such that

∫
Ω(|u(t)|�M)

|u(t)|2dx < Cε for any u0 ∈ B, t � T. (4.2)

Proof. For any fixed ε > 0, there exists δ > 0 such that for any e ⊂ Ω and m(e) � δ we have

∫
e

∣∣g(x)∣∣2dx < ε. (4.3)

Moreover, from Theorem 2.5, we know that there exist T = T(B, ε) and M1 = M(ε) such that

m(Ω(|u(t)| � M1)) � min{ε, δ} for u0 ∈ B, t � T. (4.4)

In addition, thanks to (1.3), we know f(s) � 0 when s > (C0/C1)
1/p. In the following we

assume M = max{M1, (C0/C1)
1/p} and t � T .

Multiplying (1.1) by (u −M)+ and integrating over Ω, we have

1
2
d

dt
‖(u −M)+‖22 +

∫
Ω
a(x)|∇(u −M)+|2dx +

∫
Ω
f(u)(u −M)+dx =

∫
Ω
(u −M)+dx, (4.5)
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where (u −M)+ denotes the positive part of u −M, that is,

(u −M)+ =

{
u −M, u � M,

0, u � M.
(4.6)

Let Ω1 = Ω(u(t) � M), then

1
2
d

dt
‖(u −M)+‖22 +

∫
Ω1

a(x)|∇u|2dx +
∫
Ω1

f(u)(u −M)dx =
∫
Ω1

g(u −M)dx. (4.7)

By the Cauchy’s and Hölder’s inequality, we deduce that

d

dt
‖(u −M)+‖22 + C

∫
Ω1

(u −M)pdx � C

(∫
Ω1

∣∣g∣∣2dx +
∫
Ω1

|u −M|2dx
)

+ C0|Ω1|. (4.8)

Combining with (4.3)-(4.4) and Lp(Ω) ↪→ L2(Ω)(p � 2), we get

d

dt
‖(u −M)+‖22 + C

∫
Ω1

(u −M)2dx � Cε. (4.9)

We apply the Gronwall lemma to infer

‖(u −M)+‖22 � Cε. (4.10)

Replacing (u −M)+ with (u +M)− and using the same method as above, we obtain

‖(u +M)−‖22 � Cε. (4.11)

Hence, by (4.10) and (4.11), we have (4.2).

According to Theorem 2.6, we know B0 is compact in L2(Ω); hence, Theorem 4.1
implies the existence of an attractor in L2(Ω), immediately.

Theorem 4.3. The semigroup {S(t)}t�0 associated with (1.1) possesses a global attractor A2 in
L2(Ω), that is, A2 is compact and invariant in L2(Ω) and attracts the bounded sets of L2(Ω) in
the topology of L2(Ω).

We now establish the existence of global attractor in Lp(Ω).

Theorem 4.4. The semigroup {S(t)}t�0 associated with (1.1) possesses a global attractor Ap in
Lp(Ω), that is, Ap is compact and invariant in Lp(Ω) and attracts the bounded sets of L2(Ω) in
the topology of Lp(Ω).
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Proof . From Theorems 2.4, 4.1, and 4.3, we need only to verify that for any ε > 0 and bounded
subset B ⊂ L2(Ω) there exist T = T(ε, B) and M = M(ε) such that

∫
Ω(|u(t)|�M)

|u(t)|pdx < Cε for u0 ∈ B, t � T. (4.12)

Letting F(s) =
∫s
0 f(τ)dτ , from (1.3), we deduce that

C̃1|s|p − k � F(s) � k + C̃2|s|p. (4.13)

So,

C̃1

∫
Ω
|u|pdx − k|Ω| �

∫
Ω
F(u)dx � k|Ω| + C̃2

∫
Ω
|u|pdx. (4.14)

On account of the standard Cauchy’s and Hölder’s inequalities, it follows from (4.7)
that

d

dt
‖(u −M)+‖22 + C

(∫
Ω1

a(x)|∇u|2dx +
∫
Ω1

f(u)(u −M)dx

)

� C

(∫
Ω1

|u −M|2dx +
∫
Ω1

∣∣g∣∣2dx
)
.

(4.15)

Taking t � T , integrating the last equality between t and t+1, and combining with (4.2)–(4.4),
we have

∫ t+1

t

(∫
Ω1

a(x)|∇u|2dx +
∫
Ω1

f(u)(u −M)dx

)
ds � Cε. (4.16)

On the other hand, let Ω2 = Ω(u � 2M), multiplying (1.1) by [(u − 2M)+]t and
integrating over Ω, then we have

d

dt

(∫
Ω2

a(x)|∇u|2dx +
∫
Ω2

F(u)dx

)
� Cε. (4.17)

From (4.16) and (4.17) we apply the uniform Gronwall lemma to obtain

∫
Ω2

a(x)|∇u|2dx +
∫
Ω2

F(u)dx � Cε. (4.18)

Hence
∫
Ω2

F(u)dx � Cε. (4.19)
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Replacing (u − M)+ and [(u − 2M)+]t with (u + M)− and [(u + 2M)−]t, respectively,
and repeating the same steps as above we obtain

∫
Ω(u�−2M)

F(u)dx � Cε. (4.20)

Then, from (4.19)-(4.20), we have

∫
Ω(|u(t)|�2M)

F(u)dx � Cε. (4.21)

Thus, by (4.4) and (4.14), (4.21) implies (4.12). The proof is finished.

4.1. Global Attractor in H1,a
0 (Ω)

In order to prove the existence of a global attractor inH1,a
0 (Ω), we need the following lemma.

Lemma 4.5. For any bounded subset B in L2(Ω), there exists a constant T = T(B) such that

‖ut‖22 � M for any u0 ∈ B, s � T, (4.22)

where ut(s) = (d/dt)(S(t)u0)|t=s,M is independent of B.

Proof. Multiplying (1.1) by ut and integrating over Ω, we get

‖ut‖22 +
1
2
d

dt

(∫
Ω
a(x)|∇u|2dx + 2

∫
Ω
F(u)dx

)
=
∫
Ω
gutdx. (4.23)

Let v = ut and differentiate (1.1)with respect to t to get

vt − div(a(x)∇v) + f ′(u)v = 0. (4.24)

Multiplying the above equality by v and integrating over Ω, by (1.2), we obtain

1
2
d

dt
‖v‖22 +

∫
Ω
a(x)|∇v|2dx � l‖v‖22. (4.25)

Taking t � T , integrating (4.23) from t to t + 1, and considering Theorem 4.1, we get

∫ t+1

t

‖v‖22dt � C
(∥∥g∥∥2

2, |Ω|, ρ20
)

(4.26)

as t is large enough.
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Combing with (4.25) and (4.26) and using the uniform Gronwall lemma, we have

‖v(t + 1)‖22 � Cel (4.27)

as t is large enough.

Next, we verify {S(t)}t�0 is asymptotically compact inH1,a
0 (Ω).

Theorem 4.6. The semigroup {S(t)}t�0 is asymptotically compact inH1,a
0 (Ω).

Proof. Let B0 be an absorbing set in H1,a
0 (Ω) obtained in Theorem 4.1, then we need only

to verify that {un(tn)}∞n=1 possesses a convergent subsequence in H1,a
0 (Ω) for any sequence

{u0n}∞n=1 ⊂ B0.
In fact, by Theorems 4.3 and 4.4, we know {un(tn)}∞n=1 is precompact in L2(Ω) and

Lp(Ω). So we can assume that the subsequence {unk(tnk)}∞k=1 is a Cauchy sequence in L2(Ω)
and Lp(Ω). Now we prove that {unk(tnk)}∞k=1 is a Cauchy sequence inH1,a

0 (Ω).
Noticing that the prime operator Aau = −div(a(x)∇u) is strong monotone, that is,

∥∥∥unk(tnk) − unj

(
tnj

)∥∥∥2

H1,a
0 (Ω)

�
〈
Aaunk(tnk) −Aaunj

(
tnj

)
, unk(tnk) − unj

(
tnj

)〉
, (4.28)

we have

∥∥∥unk(tnk) − unj

(
tnj

)∥∥∥
H1,a

0 (Ω)

�
〈
− d

dt
unk(tnk) − f(unk(tnk)) +

d

dt
unj

(
tnj

)
+ f

(
unj

(
tnj

))
, unk(tnk) − unj

(
tnj

)〉

�
∫
Ω

∣∣∣∣ ddtunk(tnk) −
d

dt
unj

(
tnj

)∣∣∣∣
∣∣∣unk(tnk) − unj

(
tnj

)∣∣∣

+
∫
Ω

∣∣∣f(unk(tnk)) − f
(
unj

(
tnj

))∣∣∣
∣∣∣unk(tnk) − unj

(
tnj

)∣∣∣

�
∥∥∥∥ d

dt
unk(tnk) −

d

dt
unj

(
tnj

)∥∥∥∥
2

∥∥∥unk(tnk) − unj

(
tnj

)∥∥∥
2

+ C

(
1 + ‖unk(tnk)‖pp +

∥∥∥unj

(
tnj

)∥∥∥p

p

)∥∥∥unk(tnk) − unj

(
tnj

)∥∥∥
p
,

(4.29)

which, combining with Lemma 4.5, yields the respected result immediately.

In order to establish the existence of global attractor in H1,a
0 (Ω) we need some

continuity of the semigroup to guarantee the invariance of global attractor. However, it
is difficult to obtain the continuity of semigroup in H1,a

0 (Ω) since we do not impose any
restriction on p. Here we use the norm-to-weak continuity instead of the norm-to-norm (or
weak-to-weak) continuity of the semigroup in the usual criterions for the existence of global
attractors.
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Theorem 4.7. The semigroup {S(t)}t�0 possesses a global attractor A in H1,a
0 (Ω), that is, A is

compact and invariant in H1,a
0 (Ω) and attracts every bounded subset of L2(Ω) in the topology of

H1,a
0 (Ω).

Proof. Let B0 be an absorbing set inH1,a
0 (Ω) obtained in Theorem 4.1. Set

A =
⋂
s�0

⋃
t�s

S(t)B0

H1,a
0 (Ω)

. (4.30)

Then from Theorems 4.1 and 4.6 we know that A is nonempty and compact in H1,a
0 (Ω) and

attracts every bounded subset of L2(Ω) in the topology of H1,a
0 (Ω). In addition, it is easy

to obtain the norm-to-weak continuity of the semigroup from Theorem 3.2 in [9] which can
guarantee that A is invariant.

Therefore, the desired claim follows immediately.
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