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A single-step difference scheme for the numerical solution of the nonlocal-boundary value
problem for stochastic parabolic equations is presented. The convergence estimate for the
solution of the difference scheme is established. In application, the convergence estimates for
the solution of the difference scheme are obtained for two nonlocal-boundary value problems.
The theoretical statements for the solution of this difference scheme are supported by numerical
examples.

1. Introduction

It is known that most problems in heat flow, fusion process, model financial instruments
like options, bonds, and interest rates, and other areas which are involved with uncertainty
lead to stochastic differential equation with parabolic type. These equations can be derived
as models of indeterministic systems and considered as methods for solving boundary value
problems.

The method of operators as a tool for investigation of the solution to stochastic partial
differential equations in Hilbert and Banach spaces has been systematically developed by
several authors (see [1-4] and the references therein). Finite difference method for the
solution of initial boundary value problem for stochastic differential equations has been
studied extensively by many researchers (see [5-15] and the references therein). However,
multipoint nonlocal-boundary value problems were not well investigated.
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In the present paper the multipoint nonlocal-boundary value problem
do(t) =-Av(t)dt + f(t)dw;, 0<t<T

J
v(0) = Z“iv()‘f) +p(wy,,...,wy,),
7

J
Dlaj| <1, 0<dy<---<Ay<T, 0<t<T
j=1

(1.1)

for stochastic parabolic differential equations in a Hilbert space H with a self-adjoint positive
definite operator A is considered. Here

(i) wy is a standard Wiener process given on the probability space (2, F, P).

(ii) Forany z € [0,T], f(z) is an element of space M2 ([0,T], Hy), where Hj is subspace
of H.

(iii) @(wy,,...,wy,) is element of space M2 ([0,T],H,) of H,-valued measurable
processes, where H, is a subspace of H.

Here, M2,([0,T], H)[20] denote the space of H-valued measurable processes which
satisfy

(a) ¢(t) is F;y measurable, a.e. in t,
(b) E fj llp(t)llelt < oo,

The main goal of this study is to construct and investigate the difference schemes
for the multipoint nonlocal-boundary value problems (1.1). The outline of the paper is as
follows. In Section 2, the exact single-step difference scheme for the solution of the problem
(1.1) is presented. In Section 3, the 1/2-th order of accuracy Rothe difference scheme is
constructed and investigated for the approximate solution of the problem (1.1). The estimate
of convergence for the solution of this difference scheme is obtained. In applications, the
convergence estimates for the solution of difference schemes for the numerical solution of
two multipoint nonlocal-boundary value problems for stochastic parabolic equations are
obtained. In Section 4, the numerical application for one-dimensional stochastic parabolic
equation is presented.

2. The Exact Single-Step Difference Scheme

Now, let us give some lemmas we need in the sequel. Throughout this paper, let H be a
Hilbert space, let A be a positive definite self-adjoint operator with A > 61, where 6 > 0.

Lemma 2.1. The following estimate holds:

P R
H—H

- (t > 0). (2.1)
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Lemma 2.2. Suppose that assumption

]
Dl <1 (2.2)
k=1
holds. Then, the operator
J
I- Zake‘)‘kA (2.3)
k=1

has an inverse

] -1
Y = <I - Zake_)‘kA> , (2.4)
k=1
and the following estimate is satisfied:
1
IYllg_pg < P <C(6,\). (2.5)

Proof. The proof follows from the triangle inequality, assumption (2.2), and estimate

I -1
<I - Zake‘)‘kA>
k=1

Let us now obtain the formula for the mild solution of problem (1.1). It is clear that under the
assumptions (i)-(ii) and

1
< sup (2.6)

6<p<on |1 — Z£:1 ape Mk

H—H

E|lv(0)||7;, <o, H>CH, (2.7)
the Cauchy problem
do(t) =-Av(t)dt + f(t)dw;, 0<t<T, v(0) is given (2.8)

and has a unique mild solution, which is represented by the following formula:

t

v(t) = e v (0) +f e A1) £ () dw,. (2.9)

0

Then from this formula and the multipoint nonlocal-boundary condition

J
v(0) = Zajv()tj) +o(wy,,. .., wy,), (2.10)
=1
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we get

J J A
v(0) = Z(xje"“fv(o) + Za]-J‘ l e‘A(Af‘S)f(s)dws +p(wy,..., wy,). (2.11)
j=1 =10

By Lemma 2.2 the operator I — Z{Zl aje”*Y has a bounded inverse Y = (I - Z;]'=1 zx]-e‘A)‘i)_l.
Then

I
v(0) = Y{Zaj I e*A()‘f*s>f(s)dws +o(wy,, ... ,Wy,) } (2.12)
j=t 70
Therefore, we have formulas (2.9) and (2.12) for the solution of problem (1.1). O

Now, we will consider the single-step exact difference scheme. On the segment [0, T']
we consider the uniform grid space

[0,T], = {tx =kr, k=0,1,...,N, N7 =T} (2.13)

with step 7 > 0. Here N is a fixed positive integer.

Theorem 2.3. Let v(ty) be the solution of (1.1) at the grid points t = ti. Then {v(tk)}é\] is the
solution of the multipoint nonlocal-boundary value problem for the following difference equation (see

[16]):

v(tk) = v(tk1) + (I N e_TA>U(tk—1) - jtk e 0 f(s)dws, 1<k <N, (2.14)
te1
J 4
(0) = Y{ Sa f e A7) f(s)dws + p(wy,, ..., w01, } (2.15)
=170

Proof. Putting t = t and t = t;_; into the formula (2.9), we can write

t
v(tr) = e " 40(0) + f e~ =4 £ (5)dw,,
0

t (2.16)
k-1
v(tk_1) = e 140 (0) + I e 194 £ () dr,.
0
Hence, we obtain the following relation between v(tx) and v (ti-1):
b
v(ty) = e o(t) + f e~ )4 £ (5)dw,. (2.17)
i1

Last relation and equality (2.14) are equivalent. Theorem 2.3 is proved. O
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Note that problem (2.14) is called the single-step exact difference scheme for the
solution of the problem (1.1).

3. Rothe Difference Scheme

In this section, the 1/2-th order of accuracy Rothe difference scheme is constructed and
investigated for the approximate solution of the problem (1.1). The estimate of convergence
for the solution of this difference scheme is established. In applications, the convergence
estimates for the solution of difference schemes for the numerical solution of two multipoint
nonlocal-boundary value problems for stochastic parabolic equations are obtained.

3.1. 1/2-th Order-of-Accuracy Rothe Difference Scheme
Let us give some lemmas we need in the sequel.

Lemma 3.1. The following estimates hold:

” Aa ( RF _ e—k-rA)

A”‘Rk” <1 1<k<N 0<a<i, (3.1)

H-H~ (k1)*’

274

< — <k< <a< 3.2
”HHH_kl_a, 1<k<N, 0<a<2, (3.2)

where R = (I + TA)™.

Lemma 3.2. Suppose that assumption (2.2) holds. Then, the operator

J
I- a;RM/™ (3.3)
=1

-1
J
Y, = (I - ZajR“’/T]> , (3.4)
=1

and the following estimate is satisfied:

has a bounded inverse

Yellgr— g < C(6, A1) (3.5)

Proof. The proof follows from the triangle inequality, assumption (2.2), and estimate

-1
. 1
I= > iR/ < sup . (36)
< =1 . 55#<°°|1—Z]- 10¥k<1/(1+‘l/£T)[/\k/T]>|

—H =
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From (2.14) it is clear that for the approximate solution of the multipoint nonlocal-boundary
value problem (1.1) it is necessary to approximate the expressions

t
e ™, 1 f e )4 £ (5)dw, (3.7)
T

and multipoint nonlocal-boundary condition
J
v(0) ZZaJ‘U()L]') +(p(wj\1,...,w,\]). (3.8)
j=1

It is possible under stronger assumption than (ii) for f(t). Assume that

mesla™ s O, mesl 4ol <c 39)

Replacing the expressions e™™, e"*94 with R = (I + TA)™", the expression v(\;) with
v([Aj/T]T), and the function f(s) with f(tx-1), we get the implicit Rothe difference scheme:

ug — ugq + TAug = f () (wy, —wy,), 1<k<N,

(3.10)

J
Uy = Zaju[)tj/ﬂ + (p(w;ll,. . .,w)L]).
j=1

Let us now obtain the formula for the solution of problem (3.10). It is clear that the Rothe
difference scheme

Ug — U1 + TAUk = f(t1)(wy, —wy ), 1<k <N, ugis given, (3.11)

for the solution of the Cauchy problem (2.8) has a unique solution, which is represented by
the following formula:

k
ug = Riug + > R f (b)) (wy, —wy,,), 1<k<N. (3.12)

s=1

Then from this formula and the multipoint nonlocal-boundary condition

J
Ug = Zaju[)tj/ﬂ +p(wy,,...,wy,), (3.13)
=1
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we get

[A;/7]
Za RW/7] uo+Za] Z R/ £ (1) (o, — i) +o(wyy, ..., wy). (3.14)
j=1 s=1

-1
By Lemma 3.2 the operator I—Z]]-=1 a;RY/™ has abounded inverse Y, = (I - ij':l a; RN/l
Then

[Aj/7]
Uy = {Za] Z RW/TI=s £k ) (wor, —wr, ) + (wa,, ..., wy,) } (3.15)
=1 s=1

Therefore, we have formulas (3.12) and (3.15) for the solution of problem (3.10). Now, we
will study the convergence of difference scheme (3.10). O

Theorem 3.3. Assume that

2
E”Al/z(p(wh,...,wh)”H <C (3.16)
Then the estimate of convergence
) \1/2 12
max <E||v(tk) - uk||H> < Ci(6,M)T (3.17)

holds. Here C and C1(6, A1) do not depend on .

Proof. Using formulas (2.12) and (3.15), we can write

[y
v(0) —up =(Y = Y)p(wy,, ..., wy,) + YZ“]' f e AN £ (s)dws
i1 0

[4;/7] \/ ) (3.18)
- le] Z RI/TISH £t ) (wy, — )
j=1 s=1

ZPL] + PZ,] + P3J + P4,] + P5,] + P6J + P7,],
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where

Piy= (Y =Y)p(wy, ..., wy), (3.19)
[y
Py = (0T X [ et (s, (3.20)
= o
[y
Pyy =Y, > a j e AN £ (s)dws, (3.21)
j=1 Wj/r]z
;o /Il
Py —YTZa] S f ( -(=9)4 —e-mf/fh-s)f‘) f(s)dws, (3.22)
p=1 7t
] /7] t
Psy=Y:>a; ( (W /TIm=pr)A _ RIA; /7] )I e 94 £ () dws,, (3.23)
j=1 p=1 tp-1

[4;/7] t
Poy=Y Za Z RWi/7l-p < f " e lto)a f(s)dws —fp e ™ f(tp_l)dws>, (3.24)
tp-1 1

] 1 = tp_

] [/7]

Pry=Y:>a Z R/ (74— R) f (£,1) Atoy,. (3.25)
=t p=l

Let us estimate Py j forall k = 1,...,7, separately. We start with P; ;. Using formulas (2.4) and
(3.4), we obtain

Y-Y, =YY, <Za]< R /ﬂ)>, (3.26)

and also the expression in the above sum can be written in the following formula:
1
oAy _ RIN/T _ f d R/ ()10 )
0

1 .
- f 4 RMJ‘/Tl-l(x)i2 + AL RM/T (x) b e 1794 g
0 T 1+x1A)

1 ) (3.27)
= _f R/ (x) g~ (1=) AL, {— I:?j]TA +(1+ XTA)A)t]'}dX
0

1 L
= —I RW/TI () e (1m0 AL { <Aj - [?]] T>A +xTA%); }dx.
0
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Here R(x) = (I + TxA)™". Using formulas (3.26), (3.27), and (3.19), we can write

J
P1J = YYTZC[]'
j=1

1 1L
x <— Io RN/ () g=(1-0)A, { </\j - [?]:I T>A +xTA%); }dx>(p(w)‘l, CWY).

(3.28)

Let us estimate expected value of P; ;. Since

</\]~ - [)ﬁ]r> <7, (3.29)
T

we have that

1/2
EIPuIG) ™ < 0ol

2
] 1
< E Z“f7<f Al/zR[A]‘/T]H(x)e(1x)A*fAl/z(p(wh,...,wlj)dx>
j=1 0
H
1 o\ 172
+A;TE J‘ A3/2RW /7] (x)e*a’x)A)‘fAl/z(p(w)q,- ey w)q)dx .
0 H
(3.30)

In the same manner by using the triangle inequality and estimates (3.2) and (3.1), we get

2 1/2 J
(ElPI2)" < s Sl
=1

! dx
r
JO \ [N/t +1]Tx

x (E”Al/zq,(wh,...,wk,)”;)l/z

/ 1/2 dx
+§H“AMJ‘ T
j=l

0 u—xﬁ”ﬁ”
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s 2\ 1/2
x (E”A / (P(w)‘l"”’w’\’)”H)

J ! dx
+Z|“1|MJ‘ T
j=1 1/

" (E”Al/z‘l’(wh,...,wz\J)||;)1/z>

1/2 J J
< C1(6,M) (E”Al/z(p(w)q,. ., wy,) ”;) z:CzTL + ZC3TL

j=1 Ajoj=t \/)T]
1

J 1/2
< C4(6/ -)Ll)jZlC4T1/2 ./\'1/2 <EHA1/2(P(w)L1/' . /w/\l) ||i1>
- )

2\ 1/2
SC5(6,)Ll)7'1/2(E”Al/zq)(wh,...,wA,)”H) .

(3.31)

Now, let us estimate P, ;. Using formula (3.20), the triangle inequality, and estimates (3.5),
(3.2),and (3.1), we get

2\ 1/2

A
E I e—A()Lj—s)Al/Zf(s)dws

1/2 J
(EIPI3) " < Cs(6,a0)72
=1 0

]
H

. 12 (3.32)
<cs@ (3 [, ds
=170 "

< Co(6, )7 *max | AY2f ()|

Let us estimate P5 ;. Using formula (3.21), the triangle inequality, and estimates (3.5), (3.2),
and (3.1), we get

2 2

[+

H—H H—H

J
1/2 B -
(EIPIR) < ||YT||HHHZ|“]'|<”€ Ay-9)
1

S

o 2 1/2
A f(s)HHds> ,
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1/2

<aemgml( [, | 4ol
_6’1,;“] [ /7T fSHS !

J A 1/2 . ,\ 172
< Cddh)}él“il <1j - [;]T> ggg;(“f\ f(S)||H>
< 6, 1) max| A£G

(3.33)

Next, let us estimate Py ;. Using formula (3.22), the triangle inequality, and estimates (3.5),
(3.2),and (3.1), we get

1/2 /
(BN 11%) ™ <Iellr— i) o]
j=1

1/2
[Ai/T] At
P A 2 G| I TR (T
1/2
/7], 5
< Cy(6, 1) ZTJ |a2f )|, ds
p=1 It
<ol gala @],
(3.34)

Next, let us estimate Ps ;. Using formula (3.23), the triangle inequality, and estimates (3.5),
(3.2), and (3.1), we get

i [4;/7]
2\1/2 ~1/2( ,~([;/T]T-pT) A yr-p\ |12
(EllPs 12, f'”f”HﬁH(%'“f"Zl S G ]
i= p=
t 1/2
P 2 2
xEJ letma| a2 fs)| s
b H—H H

< Cy(6,0))7'? <J‘OT ”Al/zf(s)”;ds>1/2

< Ca(8, )72 max || AV (5)|| .

(3.35)
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Next, let us estimate P ;. Using formula (3.24), the triangle inequality, and estimates (3.5),
(3.2),and (3.1), we get

2 1/2 /
<E||P6,]||H> < ||YT||H—>HZ|aj|
j=1

/el . 1/2
(B LBl ol )

p=1 p-1

1/2
J\./T

J
<Ci6M)Y

j=1

f E||e @4 f(s) - et A £, 1)|| ds
tp-

= C1(6,/\1)i < S ft E” ~(t,-s)A e—(tp—tp-1)A>f(s)
p-1

j=1

1/2
2
+ e OBAf(5) - f(tp1)) ||Hds>

] [A /7]
< C2(6/)‘1)Z f ||A 1/2( ~(t S)A_e (tp tp_1)A>A1/2f(S)||
tp-

j=1

1/2
+||e_(t,,—t,,_1)A (f(s) = f(tpy-)) ”;ds>

] [Aj/7]
< Cs(6,M1) ),

j=1 p=1

tp 1/2
L e|a s + 156 - ftll: )ds>

< 1/2
<

J [4/7] £
sy SE[ (Farrof, < 1ol )as
j=1 p=1 tp1
1/2
1/2 ! 1/2 2 e 2
<Ci( )2 | || f(s)||Hds+fO 1 ) 13ds
0

0<s<T

< 36,207 (ax| 42O, + maxlF Ol )

(3.36)
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Finally, let us estimate P; ;. Using formula (3.25), the triangle inequality, and estimates (3.5),
(3.2),and (3.1), we get

j=
* <[g] ||R[)L]/T]7p||j-1—>H ||A71/2 <67TA - R) ||;—>H||A1/2f(tp_1) ||j‘[
p=

1/2
2
H

[4;/7] 2
< Al>< S el | £ 2w,
p=1

X E”Awtp

1/2
2
H .

(3.37)
Since Awy, is a Wiener process and
2
E”Awtp”H <At =7, (3.38)
we have that
1/2
[4;/7]
) \1/2 ! 2
(EIPsI15) " < c<6,)u>7“2< > ||A”2f(fp—1)||HT>
p=1 (3.39)
1/2 1/2
< Ci(6,M)T &%”A f(S)”H.
Applying estimates for Py j, k = 1,...,7, we get the estimate:
2 \1/2 1/2
(Elloto) — o) < Ca(8,40)7"2, (3.40)
To prove the Theorem 3.3 it suffices to establish the following estimate:
max <E||v(tk) - uk||§{>1/2 < Co(8,11)T2 (3.41)
1<k<N B
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Using formulas (2.9) and (3.12), we can write

k ts
o(t) - u = e A0 (0) + e k4 f e ) f (p)dw,

s=1 ts-
(3.42)
k
—Rkuo - ZRk_S”f(ts)(wts - th) = Pl,k + P2,k + P3,k + P4,k + P5,k,
s=1
where
kTA  pk L Yo 4
P = (e‘ T4 _R )Y Zajf e ()‘f‘s)f(s)dws +¢p(wy,,...,wy) ¢,
[
P,y = R*(v(0) - ),
k-1 ts
Pie=> [e‘("‘s’”* - R"‘S] L e ) £ (p)duw,, (3.43)
s=1 s-1

k ts
Pyp= SRS f AP £ (p)dw, — e f(tor) (wr, — wrL),

s=1 ts-1

k
Psj= 2R [e™ = R|f(ts) (wr, — wr,.).
s=1

Let us estimate Py for all m = 1,...,5, separately. We start with P; . Using the triangle
inequality and estimates (3.5), (3.2), and (3.1), we get

(eai) "< (- -) 7,

o\ 1/2
J A
x E||AY%Y Za,-f e‘A()‘f_S)f(s)dws+(p(w)l],...,w1,)

j=1 70 H

J A

<G5, AT E(YD e JO e AN AV2 £ () duw,
j=1
2\ 172

+ Al/z(p(w)tl,...,w)q)

H
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2
< Ca(6, )T Y gy < <§|a1|> [ el las e
1/2
+ ||A1/2(p(wj\1,...,w)”)”;>

conmn([ sl o)

2 1/2
<Culs, Al>Tl/2<maX 256+ (el >

0<s<T

(3.44)

Now, we estimate P, . Using estimate (3.1), we get
(ENPl )1/2 < ||Rk||2 Ello(©) - wl?, ) < (Ello(0) -~ ol )”2 (3.45)

2kllH = HoH ollH = OllH )
Applying the estimate (3.40), we obtain
1/2

(ENPokll}y) < C(6,A0)72, (3.46)

Now, we estimate P;. Using the triangle inequality and estimates (3.5), (3.2), and (3.1), we
get

2

H—H

<I:“||1’3,1<||i;>1/2 < C(5,\) <§”A—1/z [e—(k—s)m B Rk—s] ”
s=1
2 ts ) 1/2
X ||e—A(ts—p)||H_>HJ;S1 ||A1/2f(P)”HdP>
k-1t R 1/2
ccon (e[ vesol)
5= -1

T 5 1/2
< C<6,A1>r“2<f0 HA“Zf(P>||HdP>

< co P paxlar o],
N (3.47)
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Now, we estimate P . We denote that

ti B
b]. _ J‘/ I (e_TAA—l/Zf/(Z) + Al/ze‘(tf‘sz(s))dz de,
tiq o/t
Y (3.48)

bt =

{b]-, 1<j<k-1,
]

0, otherwise.

Then

k ts
Pus = SR (P f(p) - S 1) oy

s=1 ts-1

Mz LM~ i~

~
Il
—_

RE-s J‘: <<efA(tfp) _ e*TA)f(p) +e ™ (f(p) - f(ts—l))>dwp

s-1

S

t]' S
Al/2Rk=s f ’[ <e—TAA—1/2fI(Z) n Al/Ze*(tj—z)Af(S)>dZ dw, (3.49)
t]',1 tj,1

i Al *
RAY?p;_,

(EIPyly) " = <E

o\ 172
H>

Using the triangle inequality and estimates (3.5), (3.2), and (3.1), we get

1/2
2
)

Sl AL/2 i |2
< (SNAR Y,y ElbL )

N i Al/2
DRA
i=1

(EIPul?)” < <iE”RiA1/2b;_i
i=1

(3.50)
1/2

Since

o\ 1/2

2 1/2 t]’ s
H) =| E f f (eTAAT2f () + AV2e DA (s) ) dz dw,
t tj—l

-1
tj

S J‘
t}',1

bj

<E

H

IS | <€7TAA71/2](,(Z) + Al/Ze’(tj*zA)f(S)> ||j—1dz> 1/st

tjfl
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we have that

(EIPI) "

Finally, we estimat

Therefore,

f J‘ —TAA 1/2 (Z)+A1/2 ~(tji-2)A (S))” d=zds
tio J b

0<s<T

<C(5, /\1)7'3/2<max||A1/2f(s)||H +max||A V2£) ||y )

N oC y\1/2
< 2 (B,
N
SZ;T (6, Al)rs/2<ggsa<>; A2 f)|),, + max Afl/zf’(s)”H)

C1(6, )q)Tl/Z(max”Al/zf(s)”H +max||AV2f'(s)|| )

0<s<T
e Ps5 . We denote that

i = A2 f(tj1) Awy,

[1*_ 0]]/ 1S]Sk_1l
i 0, otherwise.

N
P5,k — ZAl/ZRiA—l <e—TA _ R>qZ,l
i=1

Using the triangle inequality and estimates (3.5), (3.2), and (3.1), we get

(EIPssliy) " <

Since

(Ellglz,) " <

N

S, o R ()

i=1

<27

Z

2 > 2 < Cmax (E”q]”H)UZ.

1<j<N

<E||A1/zf(t]-_1) Awy, ”;) v <Ci(6, 11)71/2(@?;”1‘\1/7(5) ”H,
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(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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we have that

(BNPsiliy) < Ca(6, 407 2max | a2 9)| (357)

Combining estimates Py, Pok, Pk, Py, and Psx, we obtain (3.41). Theorem 3.3 is proved.
O

3.2. Applications

Now, we consider applications of Theorem 3.3. First, let us consider the nonlocal-boundary
value problem for one-dimensional stochastic parabolic equation:

du(t,x) — (a(x)uy), dt + 6u(t,x)dt = f(t,x)dw;, 0<t<T, O0<x<1,

J
u(0,x) = Zaju(lj,x) +p(wy,...,wy,x), 0<x<1,
=
(3.58)

J
Dlaj| <1, 0<hi<--<A)<T, w=vH, ¢(e€N(@1), 0<t<T,
j=1

u(t,0) =u(t,1), uy(t,0) =u,(t,1), 0<t<T,

where 6 >0, a(x) >a>0 (x€(0,1)), p(wy,,...,wi, x) (x €[0,1]) and f(t, x) (t,x € [0,1])
are smooth functions with respect to x.

The discretization of problem (3.58) is carried out in two steps. In the first step, we
define the grid space

[0,1],={x=xp:x,=nh, 0<n <M, Mh=1}. (3.59)

Let us introduce the Hilbert space Ly, = Ly([0,1],) of the grid functions ¢"(x) =
{¢n)1"" defined on [0,1],, equipped with the norm

1/2
||(Ph||L2h - <xe[0/1]h|(P(x)|2h> . (3.60)

To the differential operator A generated by problem (3.58), we assign the difference
operator Ay by the formula

M-1

Arph(x) = {—(a(x)q)y)x,n + 6<pn}1 (3.61)
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acting in the space of grid functions ¢"(x) = {¢,}}" satisfying the conditions ¢y = @1, @1 —

®o = ¢m — ¢pm-1. It is well known that A7 is a self-adjoint positive definite operator in Lyj,.
With the help of A, we arrive at the nonlocal-boundary value problem:

du®(t,x) + Asul(t, x)dt = f"(t, x)dw, 0<t<T, x€[0,1],,

J (3.62)
u"(0,x) = Z(X}'uh(A]’,x) +p(wy,,...,wy,x), x€[0,1],.
=1
In the second step, we replace (3.62) with the difference scheme (3.10):
up(x) —up_ (x) + TATUl (x) = f (x)(wy, —wy ), 1<k<N,
h h
x) = te1,x), tir=kt, 1<k<N, x€]0,1],,

fia(x) = fi(te, x), ke [0, 1]y, (3.63)

J
ull(x) = Z“f”?x,-/r] (x) +p(wy,, ..., wy,x), x€[0,1],
=1

Theorem 3.4. Let T and h be sufficiently small positive numbers. Then, the solutions of difference
scheme (3.63) satisfy the following convergence estimate:

gex (el -}, ) " scon (e ) o0
SKS 2h

where C(6, A1) do not depend on T and h. Here, one puts u(ty) = {u(tx, xn) }(1)\4 as the grid function of
exact solution of problem (3.58) at the grid points t =tx, 0 <k < Nand x = x,, 0<n < M.

Proof. Let us introduce the Banach space C([0,1], H) of abstract mesh functions uj = ”Z (x)
defined on [0, 1], with values in H = Lyj,. Then, difference scheme (3.63) can be reduced to
the abstract difference scheme:

(uk = uk_l) + TAuk = fk/

fr=f(tk1), te=kr, 1<k<N,
(3.65)

J
Uo = Zaju[)‘f/’r] + (P(w)tlf' : -/w/\])/
=

in a Hilbert space Ly, with the operator A = A} by formula (3.62). It is clear that A = A* and
A > 6l in H = Lyy,. Hence, Aj is a self-adjoint positive definite operator in Ly,. Therefore,
Theorem 3.3 applies to this case, and Theorem 3.4 is proved. O
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Second, let Q be the unit open cube in the n-dimensional Euclidean space R” = {x =
(x1,...,x,) :0<x;<1,i=1,...,n} withboundary S, Q = QU S. In [0, T] x Q, the nonlocal
boundary value problem for the multidimensional parabolic equation

du(t,x) - > (ar(X)uy,), dt = f(t,x)dw;, 0<t<T,
r=1

x=(x1,...,x,) €Q,

J _
u(0,x) = Zaju()tj,x) +p(wy,, ..., wy,x), X€EQ, (3.66)
i=1

J
Slaj| <1, 0<h<--<<T, w=vH, ¢(eN(O1), 0<t<T,
j=1

u(t,x)=0, x€S5,0<t<T

with the Dirichlet condition is considered. Here a,(x), (x € Q), ¢(x) (x € Q), and f(t,x) (te
(0,1), x € Q) are given smooth functions with respect to x and a,(x) > a > 0.

The discretization of problem (3.66) is carried out in two steps. In the first step, define
the grid space £~2h ={x =xy = (hhmy,..., hymy,); m = (my,...,my,), 0 <m, < N,, h,N, =
1,r= 1,...,7’[},9;, =§2hﬂ§2, Sy =Qhﬂs.

Let Ly, denote the Hilbert space

1/2
Lo = L2<§2h> =L ph(x) : <Z |(ph(x)|2h1---hn> <o b (3.67)

x€Qy

The differential operator A in (3.66) is replaced with

n

Al (x) ==Y <ar (x)u%) ) (3.68)

—1 Xr,jr

where the difference operator A is defined on those grid functions u"(x) = 0, for all x € Sj,.
It is well known that A7 is a self-adjoint positive definite operator in Lyj.
Using (3.66) and (3.68), we get

du®(t,x) + Asul(t, x)dt = f'(t, x)dwy, 0<t<T, x €Qy,

)i _ (3.69)
u"(0,x) = Zajuh(/\j,x) +p(wy,..., wy,X), x€Q.
=1
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In the second step, we replace (3.69) with the difference scheme (3.10):

ul(x) —ul_ (x) + TATul (x) = I (x)(wy, —wy, ), 1<k<N,

h (x)= fP'(tiq,x), ti=kr, 1<k<N, x€Qy,
feoa(x) = f'(tk-1,%),  t h (3:70)

J ~
ug(x) = Za,-ub/_/r] (x) +@p(wy,,...,wy,X), Xx€Qy.

j=1

Theorem 3.5. Let 7 and |h| = \/h?+ -+ h be sufficiently small positive numbers. Then, the
solution of difference scheme (3.70) satisfies the following convergence estimate:

oy (el -, ) " <coan (), o7

where C(6, 1) do not depend on T and |h|. Here, one puts u(tx) = u(tx, x)|,.q, as the grid function
of exact solution of problem (3.66) at the grid points t = t, 0 < k < N and x € Qj,.

The proof of Theorem 3.5 is based on the abstract Theorem 3.3 and the symmetry
properties of the difference operator A} defined by formula (3.68).

4. Numerical Application

Now, we consider the numerical application of nonlocal boundary value problem:

Adv — vydt = e fsinxdw;, 0<t<1, 0<x<u,

v(0,x,0) = v(1,x,w1) +sinx — e lsinxw; —elsinx, 0<x<u,
(4.1)
v(t,0,w;) =v(t,r,w;) =0, 0<t<1,

w, =V, ¢e€N(0,1), 0<t<1,

for one-dimensional stochastic parabolic equation. For numerical solution of (4.1), we
consider the difference scheme 1/2-th order of accuracy in t and second order of accuracy
in x for the approximate solution of the nonlocal boundary value problem (4.1):

k

_ gk 4k
ko1 Uy —2Uy U

n = n71T=f(tk,xn)T<\/E—\/m>§,

f(tk, xn) =etsinx, ti=kr, xy=nh, 1<k<N,1<n<M-1,

k

Uy

—u

(4.2)
ub=uk, =0, 0<k<N,

u(,)l = unN +sinx, —e 'sinx,w; —e 'sinx, 0<n<M.
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We will write it in the matrix form

Auyp + Buy + Cupy =Dy, 1<n<M-1,

. . (4.3)
U, =0, Up =0.
Here
0 0
@ 0
n -
(Pn = : 7 O = ‘ 7
on 0
Pn (N+1)x1 0 (N+1)x1
(p’,;zf(tk,xn Vit =4/ (k - 1)T> 1<k<N,1<n<M-1,
00 - 10-0 -1
0 a - bc-00
A=1. .. B=1- - .. . ,
00 - 00-c¢c O (4.4)
00 - (N+1)x(N+1) 00-b c (N+1)x(N+1)
T 2T
= <_ﬁ> = (—1), C = <1 + ﬁ) C= A,
10-00 ud
01-00 ul
D = ‘ : 7 uS = : 7
00-10 ulN-1
N
00-00 (N+1)x(N+1) Us' ] (N+1)x()

s=n-1,nn+1.

For the solution of the last matrix equation, we use the modified Gauss elimination
method (see [17]). We seek a solution of the matrix equation by the following form:

Uy = AplUp + ﬁn+1/ n=M-1,...,1, Uump = 6/ (45)

where a;, are (N + 1) x (N + 1) square matrices and f;, are (N + 1) x 1 column matrices and
(j=1,...,M —1) defined by formulas

Ans1 = —(B+Cay,) ' A,
(4.6)
Bui1 = (B+Cay) " (Dp, -CB,), n=1,...,M~-1.
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Table 1: Error analysis.

N/M 10/30 20/60 40/120
Difference scheme (4.2) 0.0929 0.0401 0.0187
Here

00.00

00.00

) = o e e e ’ ﬂ1=0. (47)
00.00
00.00 (N+1)x(N+1)

The error between the exact solution and the solutions derived by difference schemes
is shown in Table 1. To obtain the results we simulated the 1,000 sample paths of Brownian
motion for each level of discretization. The estimate (3.71) in Theorem 3.5 suggests that if we
double the number of nodes, then the error should be decreased by a factor of 1/+/2. The
theoretical statement for the solution of this difference scheme is supported by the results of
the numerical experiment. In fact, we double N and M; the error is even less than half of the
previous error.
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