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The aim of this paper is to present some coincidence and common fixed point results for
generalized weakly G-contractive mappings in the setup of partially ordered G-metric space. We
also provide an example to illustrate the results presented herein. As an application of our results,
periodic points of weakly G-contractive mappings are obtained.

1. Introduction and Mathematical Preliminaries

The concept of a generalized metric space, or a G-metric space, was introduced by Mustafa
et al. [1]. In recent years, many authors have obtained different fixed point theorems for
mappings satisfying various contractive conditions on G-metric spaces. For a survey of fixed
point theory, its applications, comparison of different contractive conditions, and related
topics in G-metric spaces we refer the reader to [1–14] and the references mentioned therein.

Definition 1.1 (G-metric space [1]). Let X be a nonempty set and G : X × X × X → R+ be a
function satisfying the following properties:

(G1) G(x, y, z) = 0 if and only if x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ X with x /=y;
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z/=y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

Then, the function G is called a G-metric on X and the pair (X,G) is called a G-metric
space.

Definition 1.2 (see [1]). Let (X,G) be a G-metric space and let {xn} be a sequence of points of
X. A point x ∈ X is said to be the limit of the sequence {xn} if limn,m→∞G(x, xn, xm) = 0 and
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one says that the sequence {xn} is G-convergent to x. Thus, if xn → x in a G-metric space
(X,G), then for any ε > 0, there exists a positive integer N such that G(x, xn, xm) < ε, for all
n,m ≥N.

Definition 1.3 (see [1]). Let (X,G) be a G-metric space. A sequence {xn} is called G-Cauchy if
for every ε > 0, there is a positive integer N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N,
that is, if G(xn, xm, xl) → 0, as n,m, l → ∞.

Lemma 1.4 (see [1]). Let (X,G) be a G-metric space. Then, the following are equivalent:

(1) {xn} is G-convergent to x.
(2) G(xn, xn, x) → 0, as n → ∞.

(3) G(xn, x, x) → 0, as n → ∞.

(4) G(xm, xn, x) → 0, asm,n → ∞.

Lemma 1.5 (see [15]). If (X,G) is a G-metric space, then {xn} is a G-Cauchy sequence if and only
if for every ε > 0, there exists a positive integerN such that G(xn, xm, xm) < ε, for allm > n ≥N.

Definition 1.6 (see [1]). A G-metric space (X,G) is said to be G-complete (or complete G-
metric space) if every G-Cauchy sequence in (X,G) is convergent in X.

Definition 1.7 (see [1]). Let (X,G) and (X′, G′) be two G-metric spaces. Then a function f :
X → X′ is G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x,
that is, whenever {xn} is G-convergent to x, {f(xn)} is G-convergent to f(x).

The concept of an altering distance function was introduced by Khan et al. [16] as
follows.

Definition 1.8. The function ψ : [0,∞) → [0,∞) is called an altering distance function, if the
following properties are satisfied.

(1) ψ is continuous and nondecreasing.
(2) ψ(t) = 0 if and only if t = 0.

In [5], Aydi et al. established some common fixed point results for two self-mappings
f and g on a generalized metric space X. They presented the following definitions.

Definition 1.9 (see [5]). Let (X,G) be a G-metric space and f, g : X → X be two mappings.
We say that f is a generalized weakly G-contraction mapping of type A with respect to g if
for all x, y, z ∈ X, the following inequality holds:

ψ
(
G
(
fx, fy, fz

)) ≤ ψ

(
G
(
gx, fy, fy

)
+G

(
gy, fz, fz

)
+G

(
gz, fx, fx

)

3

)

− ϕ(G(gx, fy, fy), G(gy, fz, fz), G(gz, fx, fx)),
(1.1)

where
(1) ψ is an altering distance function;
(2) ϕ : [0,∞)3 → [0,∞) is a continuous function with ϕ(t, s, u) = 0 if and only if

t = s = u = 0.
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Definition 1.10 (see [5]). Let (X,G) be a G-metric space and f, g : X → X be given mappings.
We say that f is a generalized weakly G-contraction mapping of type B with respect to g if
for all x, y, z ∈ X, the following inequality holds:

ψ
(
G
(
fx, fy, fz

)) ≤ ψ

(
G
(
gx, gx, fy

)
+G

(
gy, gy, fz

)
+G

(
gz, gz, fx

)

3

)

− ϕ(G(gx, gx, fy), G(gy, gy, fz), G(gz, gz, fx)),
(1.2)

where

(1) ψ is an altering distance function;

(2) ϕ : [0,∞)3 → [0,∞) is a continuous function with ϕ(t, s, u) = 0 if and only if
t = s = u = 0.

Note that the concept of a generalized weakly G-contraction is the extension of the
concept of weakly C-contraction which has been defined by Choudhury in [17]. For more
details on weakly C-contractive mappings we refer the reader to [18, 19].

Definition 1.11 (see [20]). Let (X,�) be a partially ordered set. A mapping f is called a
dominating map on X if x � fx for each x in X.

Example 1.12 (see [20]). Let X = [0, 1] be endowed with the usual ordering. Let f : X → X
be defined by fx = x1/3. Then, x ≤ x1/3 = fx for all x ∈ X. Thus, f is a dominating map.

Example 1.13 (see [20]). Let X = [0,∞) be endowed with the usual ordering. Let f : X → X
be defined by fx = n

√
x for x ∈ [0, 1) and fx = xn for x ∈ [1,∞), for any n ∈ N. Then, for all

x ∈ X, x ≤ fx; that is, f is a dominating map.

A subsetW of a partially ordered setX is said to be well ordered if every two elements
ofW be comparable [20].

The following definition is Definition 2.5 of [21], but in the setup of partially ordered
G-metric spaces.

Definition 1.14. Let (X,�, G) be a partially ordered G-metric space. We say that X is regular if
and only if the following hypothesis holds.

For any nondecreasing sequence {xn} inX such that xn → z as n → ∞, it follows that
xn � z for all n ∈ N.

Jungck in [22] introduced the following definition.

Definition 1.15 (see [22]). Let (X, d) be a metric space and f, g : X → X. The pair (f, g) is said
to be compatible if and only if limn→∞d(fgxn, gfxn) = 0, whenever {xn} is a sequence in X
such that limn→∞fxn = limn→∞gxn = t for some t ∈ X.

Let X be a nonempty set and f : X → X be a given mapping. For every x ∈ X, let
f−1(x) = {u ∈ X | fu = x}.
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Definition 1.16 (see [21]). Let (X,�) be a partially ordered set and f, g, h : X → X are given
mappings such that fX ⊆ hX and gX ⊆ hX. We say that f and g are weakly increasing with
respect to h if and only if for all x ∈ X, we have

fx � gy, ∀y ∈ h−1(fx),

gx � fy, ∀y ∈ h−1(gx).
(1.3)

If f = g, we say that f is weakly increasing with respect to h.

If h = I (the identity mapping on X), then the above definition reduces to the weakly
increasing mapping [23] (also see [21, 24]).

Definition 1.17. Let (X,G) be a G-metric space and f, g : X → X. The pair (f, g) is said to be
compatible if and only if limn→∞G(fgxn, fgxn, gfxn) = 0, whenever {xn} is a sequence in X
such that limn→∞fxn = limn→∞gxn = t for some t ∈ X.

Note that the concept of compatibility in a G-metric space has been defined by Kumar
in [25] (Definition 2.1). In the above definition we only modify his definition, using the fact
that G(x, y, y) ≤ 2G(x, x, y), for all x, y ∈ X.

The aim of this paper is to prove some coincidence and common fixed point theorems
for nonlinear weakly G-contractive mappings in partially ordered G-metric spaces.

2. Main Results

From now, we assume

Φ =
{
ϕ | ϕ : [0,∞)3 −→ [0,∞) is a continuous

function such that ϕ
(
x, y, z

)
= 0 ⇐⇒ x = y = z = 0

}
.

(2.1)

Our first result is the following.

Theorem 2.1. Let (X,�, G) be a partially ordered complete G-metric space. Let f, g : X → X be two
mappings such that f(X) ⊆ g(X); f is weakly increasing with respect to g and

ψ
(
G
(
fx, fy, fz

)) ≤ ψ

(
G
(
gx, fy, fy

)
+G

(
gy, fz, fz

)
+G

(
gz, fx, fx

)

3

)

− ϕ(G(gx, fy, fy), G(gy, fz, fz), G(gz, fx, fx))
(2.2)

for every x, y, z ∈ X such that gx � gy � gz, where ψ : [0,∞) → [0,∞) is an altering distance
function and ϕ ∈ Φ. Then f and g have a coincidence point inX provided that f and g are continuous
and the pair (f, g) is compatible.

Proof. Let x0 ∈ X be an arbitrary point. Since f(X) ⊆ g(X), we can construct a sequence {zn}
defined by: zn = gxn = fxn−1, for all n ≥ 0.
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Now, since x1 ∈ g−1(fx0) and x2 ∈ g−1(fx1), as f is weakly increasing with respect to
g, we obtain

gx1 = fx0 � fx1 = gx2 � fx2 = gx3. (2.3)

Continuing this process, we get:

gx1 � gx2 � gx3 � · · · � gxn � gxn+1 � · · · . (2.4)

We complete the proof in three steps.
Step I. We will prove that limn→∞G(zn, zn+1, zn+1) = 0.

Since gxn−1 � gxn, using (2.2) we obtain that

ψ(G(zn, zn+1, zn+1)) = ψ
(
G
(
fxn−1, fxn, fxn

))

≤ ψ

(
G
(
gxn−1, fxn, fxn

)
+G

(
gxn, fxn, fxn

)
+G

(
gxn, fxn−1, fxn−1

)

3

)

− ϕ(G(gxn−1, fxn, fxn
)
, G

(
gxn, fxn, fxn

)
, G

(
gxn, fxn−1, fxn−1

))

= ψ

(
G(zn−1, zn+1, zn+1) +G(zn, zn+1, zn+1) +G(zn, zn, zn)

3

)

− ϕ(G(zn−1, zn+1, zn+1), G(zn, zn+1, zn+1), G(zn, zn, zn))

≤ ψ

(
G(zn−1, zn, zn) + 2G(zn, zn+1, zn+1)

3

)

− ϕ(G(zn−1, zn+1, zn+1), G(zn, zn+1, zn+1), G(zn, zn, zn))

≤ ψ

(
G(zn−1, zn, zn) + 2G(zn, zn+1, zn+1)

3

)
.

(2.5)

Since ψ is a nondecreasing function, from (2.5), we have

G(zn, zn+1, zn+1) ≤ G(zn−1, zn+1, zn+1) +G(zn, zn+1, zn+1)
3

≤ G(zn−1, zn, zn) + 2G(zn, zn+1, zn+1)
3

.

(2.6)

Hence, we conclude that {G(zn, zn+1, zn+1)} is a nondecreasing sequence of nonnega-
tive real numbers. Thus, there is an r ≥ 0 such that

lim
n→∞

G(zn, zn+1, zn+1) = r. (2.7)
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Letting n → ∞ in (2.6), we get that

r ≤ limn→∞G(zn−1, zn+1, zn+1) + r
3

≤ r, (2.8)

that is,

lim
n→∞

G(zn−1, zn+1, zn+1) = 2r. (2.9)

Again, from (2.5)we have

ψ(G(zn, zn+1, zn+1)) = ψ

(
G(zn−1, zn+1, zn+1) +G(zn, zn+1, zn+1) +G(zn, zn, zn)

3

)

− ϕ(G(zn−1, zn+1, zn+1), G(zn, zn+1, zn+1), G(zn, zn, zn)).
(2.10)

Letting n → ∞ and using (2.7), (2.9), and the continuities of ψ and ϕ, we get ψ(r) ≤
ψ((2r + r + 0)/3) − ϕ(2r, r, 0), and hence ϕ(2r, r, 0) = 0. This gives us that

lim
n→∞

G(zn, zn+1, zn+1) = 0, (2.11)

from our assumptions about ϕ.
Step II. We will show that {zn} is a G-Cauchy sequences in X. So, we will show that for every
ε > 0, there exists k ∈ N such that for allm,n ≥ k,

G(zm, zn, zn) < ε. (2.12)

Suppose the above statement is false. Then, there exists ε > 0 for which we can find
subsequences {zm(k)} and {zn(k)} of {zn} such that n(k) > m(k) > k and

G
(
zm(k), zn(k), zn(k)

) ≥ ε, (2.13)

where n(k) is the smallest index with this property, that is,

G
(
zm(k), zn(k)−1, zn(k)−1

)
< ε. (2.14)

From rectangle inequality,

G
(
zm(k), zn(k), zn(k)

) ≤ G(zm(k), zn(k)−1, zn(k)−1
)
+G

(
zn(k)−1, zn(k), zn(k)

)
. (2.15)

Making k → ∞ in (2.15), from (2.11), (2.13), and (2.14) we conclude that

lim
k→∞

G
(
zm(k), zn(k), zn(k)

)
= ε. (2.16)
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Again, from rectangle inequality,

G
(
zm(k), zn(k), zn(k)+1

) ≤ G(zm(k), zn(k), zn(k)
)
+G

(
zn(k), zn(k), zn(k)+1

)

≤ G(zm(k), zn(k), zn(k)
)
+ 2G

(
zn(k), zn(k)+1, zn(k)+1

)
,

G
(
zn(k), zn(k), zm(k)

) ≤ G(zn(k), zm(k), zn(k)+1
)
.

(2.17)

Hence in (2.17), if k → ∞, using (2.11), and (2.16), we have

lim
k→∞

G
(
zm(k), zn(k), zn(k)+1

)
= ε. (2.18)

On the other hand,

G
(
zm(k), zn(k)+1, zn(k)+1

) ≤ G(zm(k), zn(k), zn(k)
)
+G

(
zn(k), zn(k)+1, zn(k)+1

)
, (2.19)

and

G
(
zn(k), zn(k)+1, zm(k)

) ≤ G(zn(k), zn(k)+1, zn(k)+1
)
+G

(
zn(k)+1, zn(k)+1, zm(k)

)
. (2.20)

Hence in (2.19) and (2.20), if k → ∞, from (2.11), (2.16) and (2.18) we have

lim
k→∞

G
(
zm(k), zn(k)+1, zn(k)+1

)
= ε. (2.21)

In a similar way, we have

G
(
zm(k)+1, zn(k), zn(k)+1

) ≤ G(zm(k)+1, zm(k), zm(k)
)
+G

(
zm(k), zn(k), zn(k)+1

)

≤ 2G
(
zm(k), zm(k)+1, zm(k)+1

)
+G

(
zm(k), zn(k), zn(k)+1

)
,

G
(
zm(k), zn(k), zn(k)+1

) ≤ G(zm(k), zm(k)+1, zm(k)+1
)
+G

(
zm(k)+1, zn(k), zn(k)+1

)
,

(2.22)

and therefore, from (2.22) by taking limit when k → ∞, using (2.11) and (2.18), we get that

lim
k→∞

G
(
zm(k)+1, zn(k), zn(k)+1

)
= ε. (2.23)

Also,

G
(
zm(k)+1, zn(k)+1, zn(k)+1

) ≤ G(zm(k)+1, zn(k)+1, zn(k)
)
,

G
(
zm(k)+1, zn(k), zn(k)+1

) ≤ G(zm(k)+1, zn(k)+1, zn(k)+1
)
+G

(
zn(k)+1, zn(k)+1, zn(k)

)
.

(2.24)

So, from (2.11), (2.23), and (2.24), we have

lim
k→∞

G
(
zm(k)+1, zn(k)+1, zn(k)+1

)
= ε. (2.25)
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Finally,

G
(
zn(k), zm(k)+1, zm(k)+1

) ≤ G(zn(k), zn(k)+1, zn(k)+1
)
+G

(
zn(k)+1, zm(k)+1, zm(k)+1

)
,

G
(
zn(k)+1, zm(k)+1, zm(k)+1

) ≤ G(zn(k)+1, zn(k), zn(k)
)
+G

(
zn(k), zm(k)+1, zm(k)+1

)

≤ G(zn(k), zn(k)+1, zn(k)+1
)
+G

(
zn(k), zm(k)+1, zm(k)+1

)
.

(2.26)

Hence in (2.26), if k → ∞ and using (2.11) and (2.25), we have

lim
k→∞

G
(
zm(k), zn(k)+1, zn(k)+1

)
= ε. (2.27)

Since gxm(k) � gxn(k) � gxn(k), putting x = xm(k), y = xn(k), and z = xn(k) in (2.2), for all
k ≥ 0, we have

ψ
(
G
(
zm(k)+1, zn(k)+1, zn(k)+1

))

= ψ
(
G
(
fxm(k), fxn(k), fxn(k)

))

≤ ψ
(
G
(
gxm(k), fxn(k), fxn(k)

)
+G

(
gxn(k), fxn(k), fxn(k)

)
+G

(
gxn(k), fxm(k), fxm(k)

)

3

)

− ϕ(G(gxm(k), fxn(k), fxn(k)
)
, G

(
gxn(k), fxn(k), fxn(k)

)
, G

(
gxn(k), fxm(k), fxm(k)

))

≤ ψ
(
G
(
zm(k), zn(k)+1, zn(k)+1

)
+G

(
zn(k), zn(k)+1, zn(k)+1

)
+G

(
zn(k), zm(k)+1, zm(k)+1

)

3

)

− ϕ(G(zm(k), zn(k)+1, zn(k)+1
)
, G

(
zn(k), zn(k)+1, zn(k)+1

)
, G

(
zn(k), zm(k)+1, zm(k)+1

))
.

(2.28)

Now, if k → ∞ in (2.28), from (2.11), (2.21), (2.25), and (2.27), we have

ψ(ε) ≤ ψ
(
2ε
3

)
− ϕ(ε, 0, ε). (2.29)

Hence, ε = 0 which is a contradiction. Consequently, {zn} is G-Cauchy.
Step III. We will show that f and g have a coincidence point.

Since {gxn} is a G-Cauchy sequence in the complete G-metric space X, there exists
z ∈ X such that

lim
n→∞

G(zn, zn, z) = lim
n→∞

G
(
gxn, gxn, z

)
= lim

n→∞
G
(
fxn, fxn, z

)
= 0. (2.30)

From (2.30) and the continuity of g, we get

lim
n→∞

G
(
gzn, gzn, gz

)
= lim

n→∞
G
(
g
(
gxn

)
, g

(
gxn

)
, gz

)
= 0. (2.31)
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By the rectangle inequality, we have

G
(
gz, fz, fz

) ≤ G(gz, ggxn+1, ggxn+1
)
+G

(
gfxn, fz, fz

)

≤ G(gz, ggxn+1, ggxn+1
)
+G

(
gfxn, fgxn, fgxn

)
+G

(
fgxn, fz, fz

)
.

(2.32)

From (2.30), as n → ∞, we have

gxn −→ z, fxn −→ z. (2.33)

Since the pair (f, g) is compatible, this implies that

lim
n→∞

G
(
gfxn, fgxn, fgxn

)
= 0. (2.34)

Now, from the continuity of f and (2.30), we have

lim
n→∞

G
(
fzn, fz, fz

)
= 0. (2.35)

Combining (2.31), (2.32), and (2.34) and letting n → ∞ in (2.35), we obtain

G
(
gz, fz, fz

) ≤ 0, (2.36)

which implies that fz = gz, that is, z is a coincidence point of f and g.

In the following theorem, we will omit the continuity of f and g, and the compatibility
of the pair (f, g).

Theorem 2.2. Let (X,�, G) be a partially orderedG-metric space. Let f, g : X → X be two mappings
such that f(X) ⊆ g(X); f is weakly increasing with respect to g and

ψ
(
G
(
fx, fy, fz

)) ≤ ψ

(
G
(
gx, fy, fy

)
+G

(
gy, fz, fz

)
+G

(
gz, fx, fx

)

3

)

− ϕ(G(gx, fy, fy), G(gy, fz, fz), G(gz, fx, fx)),
(2.37)

for every x, y, z ∈ X such that gx � gy � gz, where ψ : [0,∞) → [0,∞) is an altering distance
function and ϕ ∈ Φ. Then, f and g have a coincidence point in X if X is regular and g(X) is a
G-complete subset of (X,G).

Proof. Following the proof of Theorem 2.1, there exists z ∈ X such that

lim
n→∞

G(zn, zn, z) = lim
n→∞

G
(
gxn, gxn, z

)
= lim

n→∞
G
(
fxn, fxn, z

)
= 0. (2.38)
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Since g(X) is G-complete and {zn} ⊆ g(X), we have z ∈ g(X) and hence there exists
u ∈ X such that z = gu and

lim
n→∞

G
(
zn, zn, gu

)
= lim

n→∞
G
(
gxn, gxn, gu

)
= lim

n→∞
G
(
fxn, fxn, gu

)
= 0. (2.39)

Now, we will prove that u is a coincidence point of f and g.
We know that {gxn} is a nondecreasing sequence in X. Regularity of X yields that

gxn � z = gu. So, from (2.2) we have

ψ
(
G
(
zn+1, zn+1, fu

))
= ψ

(
G
(
fxn, fxn, fu

))

≤ ψ

(
G
(
gxn, fxn, fxn

)
+G

(
gxn, fu, fu

)
+G

(
gu, fxn, fxn

)

3

)

− ϕ(G(gxn, fxn, fxn
)
, G

(
gxn, fu, fu

)
, G

(
gu, fxn, fxn

))

= ψ

(
G(zn, zn+1, zn+1) +G

(
zn, fu, fu

)
+G

(
gu, zn+1, zn+1

)

3

)

− ϕ(G(zn, zn+1, zn+1) +G
(
zn, fu, fu

)
+G

(
gu, zn+1, zn+1

))
.

(2.40)

Letting n → ∞ in (2.40), from the continuity of ψ and ϕ, we get

ψ
(
G
(
z, z, fu

)) ≤ ψ
(
G
(
z, fu, fu

)

3

)

− ϕ(0, G(z, fu, fu), 0). (2.41)

As G(z, fu, fu) ≤ 2G(z, z, fu), we have

ψ
(
G
(
z, z, fu

)) ≤ ψ
(

2G
(
z, z, fu

)

3

)

− ϕ(0, G(z, fu, fu), 0). (2.42)

Hence, ϕ(0, G(z, fu, fu), 0) ≤ ψ(2G(z, z, fu)/3)−ψ(G(z, z, fu)) ≤ 0. So, G(z, fu, fu) =
0 and hence, gu = z = fu. This means that g and f have a coincidence point.

Taking g = IX (the identity mapping on X) and ψ = I[0,∞) in the above theorems, we
obtain the following fixed point result.

Corollary 2.3. Let (X,�, G) be a partially ordered complete G-metric space. Let f : X → X be a
mapping such that fx � f(fx), for all x ∈ X and

G
(
fx, fy, fz

) ≤ G
(
x, fy, fy

)
+G

(
y, fz, fz

)
+G

(
z, fx, fx

)

3
− ϕ(G(x, fy, fy), G(y, fz, fz), G(z, fx, fx)),

(2.43)

for every x, y, z ∈ X such that x � y � z, where ψ : [0,∞) → [0,∞) is an altering distance function
and ϕ ∈ Φ. Then, f has a fixed point inX provided that one of the following two conditions is satisfied:

(a) f is continuous, or,
(b) X is regular.
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Taking ϕ(x, y, z) = (1/3 − α)(x + y + z), where α ∈ [0, 1/3), in the above corollary, we
obtain the following result.

Corollary 2.4. Let (X,�, G) be a partially ordered complete G-metric space. Let f : X → X be a
mapping such that fx � f(fx), for all x ∈ X and

G
(
fx, fy, fz

) ≤ α(G(x, fx, fx) +G(y, fy, fy) +G(z, fz, fz)), (2.44)

for every x, y, z ∈ X such that x � y � z, where α ∈ [0, 1/3). Then, f has a fixed point in X if one of
the following two conditions is satisfied:

(a) f is continuous, or,

(b) X is regular.

Theorem 2.5. Under the hypotheses of Theorem 2.1, f and g have a common fixed point in X if g is
a nondecreasing dominating map.

Moreover, the set of common fixed points of f and g is well ordered if and only if f and g have
one and only one common fixed point.

Proof. Following the proof of the Theorem 2.1 we obtain that the sequence {zn} is G-
convergent to z and fz = gz. Since f and g are weakly compatible (since the pair (f, g)
is compatible), we have fgz = gfz. Let w = gz = fz. Therefore, we have

fw = gw. (2.45)

As g is a nondecreasing dominating map,

z � gz � ggz = gw. (2.46)

If z = w, then z is a common fixed point. If z/=w, then, since from (2.46) gz � gw,
from (2.2)we have

ψ
(
G
(
fz, fz, fw

)) ≤ ψ

(
G
(
gz, fz, fz

)
+G

(
gz, fw, fw

)
+G

(
gw, fz, fz

)

3

)

− ϕ(G(gz, fz, fz), G(gz, fw, fw)
, G

(
gw, fz, fz

))

≤ ψ

(
G
(
fz, fz, fz

)
+G

(
fz, fw, fw

)
+G

(
fw, fz, fz

)

3

)

− ϕ(G(fz, fz, fz), G(fz, fw, fw)
, G

(
fw, fz, fz

))

≤ ψ

(
2G

(
fz, fz, fw

)
+G

(
fz, fz, fw

)

3

)

− ϕ(0, G(fz, fw, fw)
, G

(
fw, fz, fz

))
.

(2.47)
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Therefore, ϕ(0, G(fz, fw, fw), G(fw, fz, fz)) = 0. So, fz = fw. Now, since w = gz =
fz and fw = gw, we have w = gw = fw. This completes the proof.

Suppose that the set of common fixed points of f and g is well ordered. We claim
that common fixed point of f and g is unique. Assume on contrary that, fu = gu = u and
fv = gv = v, and u/=v. Without any loss of generality, we may assume that gu = u � v = gv.
Using (2.2), we obtain

ψ(G(u, u, v)) = ψ
(
G
(
fu, fu, fv

))

≤ ψ

(
G
(
gu, fu, fu

)
+G

(
gu, fv, fv

)
+G

(
gv, fu, fu

)

3

)

− ϕ(G(gu, fu, fu), G(gu, fv, fv), G(gv, fu, fu))

≤ ψ

(
2G(v, u, u) +G(v, u, u)

3

)

− ϕ(0, G(u, v, v), G(v, u, u)).

(2.48)

Therefore, u = v, a contradiction. Conversely, if f and g have only one common fixed
point then, clearly, the set of common fixed points of f and g is well ordered.

Theorem 2.6. Under the hypotheses of Theorem 2.2, f and g have a common fixed point inX provided
that f and g are weakly compatible and g is a nondecreasing dominating map.

Moreover, the set of common fixed points of f and g is well ordered if and only if f and g have
one and only one common fixed point.

Proof. The proof is done as in Theorem 2.5.

Following arguments similar to those given in the proof of Theorems 2.1 and 2.2, we
have the following results for a generalized weakly G-contractive mapping of type B.

Theorem 2.7. Let (X,�, G) be a partially ordered complete G-metric space. Let f, g : X → X be two
mappings such that f(X) ⊆ g(X)f is weakly increasing with respect to g and

ψ
(
G
(
fx, fy, fz

)) ≤ ψ

(
G
(
gx, gx, fy

)
+G

(
gy, gy, fz

)
+G

(
gz, gz, fx

)

3

)

− ϕ(G(gx, gx, fy), G(gy, gy, fz), G(gz, gz, fx)),
(2.49)

for every x, y, z ∈ X such that gx � gy � gz, where ψ : [0,∞) → [0,∞) is an altering distance
function and ϕ ∈ Φ. Then f and g have a coincidence point in X provided that f and g are continuous
and the pair (f, g) is compatible.

Moreover, f and g have a common fixed point in X if g is a nondecreasing dominating map.
Also, the set of common fixed points of f and g is well ordered if and only if f and g have one

and only one common fixed point.
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Theorem 2.8. Let (X,�, G) be a partially orderedG-metric space. Let f, g : X → X be two mappings
such that f(X) ⊆ g(X)f is weakly increasing with respect to g and

ψ
(
G
(
fx, fy, fz

)) ≤ ψ

(
G
(
gx, gx, fy

)
+G

(
gy, gy, fz

)
+G

(
gz, gz, fx

)

3

)

− ϕ(G(gx, gx, fy), G(gy, gy, fz), G(gz, gz, fx)),
(2.50)

for every x, y, z ∈ X such that gx � gy � gz, where ψ : [0,∞) → [0,∞) is an altering distance
function and ϕ ∈ Φ. Then f and g have a coincidence point in X provided that X is regular and g(X)
is a G-complete subset of (X,G).

Moreover, f and g have a common fixed point in X if f and g are weakly compatible and g is
a nondecreasing dominating map.

Also, the set of common fixed points of f and g is well ordered if and only if f and g have one
and only one common fixed point.

The following corollary is an immediate consequence of the above theorems.

Corollary 2.9. Let (X,�, G) be a partially ordered complete G-metric space. Let f : X → X be a
mapping such that fx � f(fx), for all x ∈ X and

G
(
fx, fy, fz

) ≤ G
(
x, x, fy

)
+G

(
y, y, fz

)
+G

(
z, z, fx

)

3

− ϕ(G(x, x, fy), G(y, y, fz), G(z, z, fx)),
(2.51)

for every x, y, z ∈ X such that x � y � z, where ψ : [0,∞) → [0,∞) is an altering distance function
and ϕ ∈ Φ. Then f has a fixed point inX provided that one of the following two conditions is satisfied:

(a) f is continuous, or,

(b) X is regular.

Example 2.10. Let X = [0,∞) be endowed with the usual order in R and G on X be given as

G
(
x, y, z

)
= max

{∣∣x − y∣∣, ∣∣y − z∣∣, |z − x|}. (2.52)

Define f, g : X → X as

f(x) = 1,

g(x) =

{
2 − x2, if 0 ≤ x ≤ √

2
0, if x >

√
2,

(2.53)

for all x ∈ X.
Define ψ : [0,∞) → [0,∞) by ψ(t) = (1/4)t2 and ϕ : [0,∞)3 → [0,∞) by ϕ(s, t, u) =

(1/100)(s + t + u)2.
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Let 0 ≤ x ≤ y ≤ z ≤ √
2. Now, we have

ψ
(
G
(
fx, fy, fz

))
= 0 ≤ 1

4

(∣
∣x2 − 1

∣
∣ +

∣
∣y2 − 1

∣
∣ +

∣
∣z2 − 1

∣
∣

3

)2

− 1
100

(∣∣
∣x2 − 1

∣
∣
∣ +

∣
∣
∣y2 − 1

∣
∣
∣ +

∣
∣
∣z2 − 1

∣
∣
∣
)2

≤ 1
4

(
3 − x2 − y2 − z2

3

)2

− 1
100

(
3 − x2 − y2 − z2

)2

= ψ

(
1
3
(
G
(
gx, fx, fx

)
+G

(
gy, fy, fy

)
+G

(
gz, fz, fz

))
)

− ϕ(G(gx, fx, fx), G(gy, fy, fy), G(gz, fz, fz)).

(2.54)

There are other 3 cases as follows:

(1) 0 ≤ x ≤ y ≤ 1 and
√
2 < z.

(2) 0 ≤ x ≤ √
2 and

√
2 < y ≤ z.

(3)
√
2 < x ≤ y ≤ z.

By a careful calculation for the remained cases above, we see that all the conditions of
Theorems 2.1 and 2.5 are satisfied. Moreover, (1) is the unique common fixed point of f and
g.

Denote by Λ the set of all functions μ : [0,+∞) → [0,+∞) verifying the following
conditions:

(I) μ is a positive Lebesgue integrable mapping on each compact subset of [0,+∞).

(II) for all ε > 0,
∫ε
0 μ(t)dt > 0.

Other consequences of the main theorems are the following results for mappings
satisfying a contraction of integral type.

Corollary 2.11. Replace the contractive condition (2.2) of Theorem 2.1 by the following condition.
There exists a μ ∈ Λ such that

∫ψ(G(fx,fy,fz))

0
μ(t)dt ≤

∫ψ((G(gx,fy,fy)+G(gy,fz,fz)+G(gz,fx,fx))/3)

0
μ(t)dt

−
∫ϕ(G(gx,fy,fy),G(gy,fz,fz),G(gz,fx,fx))

0
μ(t)dt.

(2.55)

Then, f and g have a coincidence point, if the other conditions of Theorem 2.1 are satisfied.



Abstract and Applied Analysis 15

Proof. Consider the function Γ(x) =
∫x
0 μ(t)dt. Then, (2.55) becomes

Γ
(
ψ
(
G
(
fx, fy, fz

))) ≤ Γ

(

ψ

(
G
(
gx, fy, fy

)
+G

(
gy, fz, fz

)
+G

(
gz, fx, fx

)

3

))

− Γ
(
ϕ
(
G
(
gx, fy, fy

)
, G

(
gy, fz, fz

)
, G

(
gz, fx, fx

)))
.

(2.56)

Taking ψ1 = Γ ◦ ψ and ϕ1 = Γ ◦ ϕ and applying Theorem 2.1, we obtain the proof (it is
easy to verify that ψ1 is an altering distance function and ϕ1 ∈ Φ).

Similar to [21], let N ∈ N∗ be fixed. Let {μi}1≤i≤N be a family of N functions which
belong to Λ. For all t ≥ 0, we define

I1(t) =
∫ t

0
μ1(s)ds,

I2(t) =
∫ I1t

0
μ2(s)ds =

∫∫ t
0 μ1(s)ds

0
μ2(s)ds,

I3(t) =
∫ I2t

0
μ3(s)ds =

∫∫∫t0 μ1(s)ds
0 μ2(s)ds

0
μ3(s)ds,

...

IN(t) =
∫ I(N−1)t

0
μN(s)ds.

(2.57)

We have the following result.

Corollary 2.12. Replace the inequality (2.2) of Theorem 2.1 by the following condition:

IN
(
ψ
(
G
(
fx, fy, fz

))) ≤ IN

(

ψ

(
G
(
gx, fy, fy

)
+G

(
gy, fz, fz

)
+G

(
gz, fx, fx

)

3

))

− IN
(
ϕ
(
G
(
gx, fy, fy

)
, G

(
gy, fz, fz

)
, G

(
gz, fx, fx

)))
.

(2.58)

Then, f and g have a coincidence point if the other conditions of Theorem 2.1 are satisfied.

Proof. Consider Ψ̂ = IN ◦ ψ and Φ̂ = IN ◦ ϕ.

3. Periodic Point Results

Let F(f) = {x ∈ X : fx = x}, the fixed point set of f .
Clearly, a fixed point of f is also a fixed point of fn for every n ∈ N; that is,

F(f) ⊂ F(fn). However, the converse is false. For example, the mapping f : N → N, defined
by fx = 1/2 − x has the unique fixed point 1/4, but every x ∈ N is a fixed point of f2.
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If F(f) = F(fn) for every n ∈ N, then f is said to have property P . For more details, we refer
the reader to [6, 26–28] and the references mentioned therein.

Theorem 3.1. LetX and f be as in Corollary 2.3. If f is a dominating map onX, then f has property
P .

Proof. From Corollary 2.3, F(f)/= ∅. Let u ∈ F(fn) for some n > 1. We will show that u =
fu. Since f is dominating on X, we have u � fu, which implies that fn−1u � fnu, as f is
nondecreasing. Using (2.2), we obtain that

G
(
u, fu, fu

)
= G

(
fnu, fn+1u, fn+1u

)

= G
(
ffn−1u, ffnu, ffnu

)

≤ 1
3

(
G
(
fn−1u, fn+1u, fn+1u

)
+G

(
fnu, fn+1u, fn+1u

)
+G

(
fnu, fnu, fnu

))

− ϕ
(
G
(
fn−1u, fn+1u, fn+1u

)
, G

(
fnu, fn+1u, fn+1u

)
, G

(
fnu, fnu, fnu

))

≤ 1
3

(
G
(
fn−1u, fnu, fnu

)
+ 2G

(
fnu, fn+1u, fn+1u

)
+ 0

)

− ϕ
(
G
(
fn−1u, fn+1u, fn+1u

)
, G

(
fnu, fn+1u, fn+1u

)
, 0
)
,

(3.1)

that is,

G
(
u, fu, fu

)
= G

(
fnu, fn+1u, fn+1u

)

≤ G
(
fn−1u, fnu, fnu

)

− 3ϕ
(
G
(
fn−1u, fn+1u, fn+1u

)
, G

(
fnu, fn+1u, fn+1u

)
, 0
)
.

(3.2)

Repeating the above process, we get

G
(
fn−(i)u, fn−(i−1)u, fn−(i−1)u

)

≤ G
(
fn−(i+1)u, fn−(i)u, fn−(i)u

)

− 3ϕ
(
G
(
fn−(i+1)u, fn−(i−1)u, fn−(i−1)u

)
G
(
fn−(i)u, fn−(i−1)u, fn−(i−1)u

)
, 0
)
.

(3.3)

From the above inequalities, we have

G
(
u, fu, fu

) ≤ G
(
u, fu, fu

)

− 3
n−1∑

i=0

ϕ
(
G
(
fn−(i+1)u, fn−(i−1)u, fn−(i−1)u

)
, G

(
fn−(i)u, fn−(i−1)u, fn−(i−1)u

)
, 0
)
.

(3.4)
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Therefore,

n−1∑

i=0

ϕ
(
G
(
fn−(i+1)u, fn−(i−1)u, fn−(i−1)u

)
, G

(
fn−(i)u, fn−(i−1)u, fn−(i−1)u

)
, 0
)
= 0, (3.5)

which from our assumptions about ϕ implies that

G
(
fn−(i+1)u, fn−(i−1)u, fn−(i−1)u

)
= G

(
fn−(i)u, fn−(i−1)u, fn−(i−1)u

)
= 0 (3.6)

for all 0 ≤ i ≤ n − 1. Now, taking i = n − 1, we have u = fu.

Analogously, we have the following theorem.

Theorem 3.2. LetX and f be as in Corollary 2.12. If f is a dominating map onX, then f has property
P .
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