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The author has studied the existence of periodic solutions of a type of higher order delay functional
differential equations with neutral type by using the theory of coincidence degree, and some new
sufficient conditions for the existence of periodic solutions have been obtained.

1. Introduction and Lemma

With the rapid development of modern science and technology, functional differential equa-
tion with time delay has been widely applied in many areas such as bioengineering, systems
analysis, and dynamics. Functional differential equation with complex deviating argument
is an important type of the above function. Because the property of the solution to this
kind of equation is impossibly estimated, so the literature on the functional differential
equation with complex argument is relatively rare [1]. In recent years, with the maturity
of the theory of nonlinear functional analysis and algebraic topology, we have the powerful
tools of the study on the functional differential equation with complex deviating argument,
so it is possible to study the above equation. Furthermore, the study on the periodic solutions
of functional differential equation is always one of the most important subject that people
concerned for its widespread use. Many results of the study of Duffing-typed functional
differential equation and Liénard-typed functional differential equation have been obtained,
for example, the literatures [2–18]. Hitherto, the literature of the discussion of higher order
functional differential equations has not been found a lot [19]. In this paper I have studied
and derived some sufficient conditions that guarantee the existence of periodic solutions for
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a type of higher order functional differential equations with complex deviating argument as
the following:

m∑

i=1

aix
(i)(t) + f(x(t))ẋ(t) + β(t)g(x(x(t))) = p(t) (ai /= 0), (∗)

and some new results have been obtained.
In order to establish the existence of T -periodic solutions of (∗), we make some

preparations.

Definition 1.1. Let X, Y are Banach spaces, and let Ω be an open and bounded subset in X,
and let L : Dom(L) ⊆ X → Y be linear mapping; the mapping L will be called a Fredholm
mapping of index zero if dim ker L = codim ImL < + ∝ and ImL is closed in Y .

Definition 1.2. Let P : X → ker(L), let Q : Y → Y/ Im(L) be projectors, and let N : Ω → Y

be nonlinear mapping; the mappingN will be called L-compact onΩ ifQN : Ω → Y/ Im(L)
and (L|ker(P))−1(I −Q)N : Ω → X are compact.

Lemma 1.3 (see [20]). Let X, Y be Banach spaces; L : DL ⊂ X → Y is a Fredholm mapping of
index zero P : X → X; Q : X → Y are continuous mapping projectors; Ω is an open bounded set in
X; N : Ω × [0, 1] → Y is L-Compact on Ω, furthermore suppose that:

(a) Lx/=λN(x, λ), for all x ∈ DL ∩ ∂Ω, λ ∈ (0, 1);

(b) QN(x, 0)/= 0, for all x ∈ ker(L) ∩ ∂Ω;

(c) deg(QN(x, 0), ker(L) ∩Ω, 0)/= 0,

then the equation Lx = N(x, 1) has at least one solution on Ω, where deg is Brouwer degree.

2. Main Results and Proof of Theorems

Theorem 2.1. Suppose that f , β, g, p are continuous for their variables, respectively, p(t+T) = p(t),
β(t + T) = β(t) > 0,

∫T
0 p(t)dt = 0, and furthermore suppose that

(a) ∃A > 0, for all x ∈ R, when |x| > A, such that xg(x) > 0;

(b) ∃M > 0, for all x ∈ R, such that |g(x)| ≤ M;

(c) f1 = supx∈R
|f(x)| < (am − k(Tm−1 − Tm−2 − · · · − T))/Tm−1,

where k = max{|ai|}, i = 1, 2, . . . , m− 1 and am > k(Tm−1 + Tm−2 + · · ·+ T), then (∗) has at least one
T -periodic solution.

Proof of Theorem 2.1. In order to use continuation theorem to obtain T -periodic solution of (∗),
we firstly make some required preparations. Let

X =
{
x ∈ cm−1(R,R) | x(t + T) = x(t)

}
, Y =

{
y ∈ C(R,R) | y(t + T) = y(t)

}
, (2.1)

and the norm of X and Y is ‖x‖ = max0≤i≤m−1{|x(i)|∞}, |x(i)|∞ = maxt∈R{|x(i)(t)|}, i = 1, 2,
. . . , m−1, and ‖y‖ = maxt∈R{|y(t)|}, respectively; then theX and Y with this norm are Banach
spaces.
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Firstly, we study the priori bound of T -periodic solution of following equation:

m∑

i=1

aix
(i)(t) + λf(x(t))ẋ(t) + λβ(t)g(x(x(t))) = λ2p(t). (2.2)

Suppose that x = x(t) ∈ X is an arbitrary T -periodic solution of (2.2), put x(t) into,
(2.2) and then integrate both sides of (2.2) on [0, T], so

∫T

0
β(t)g(x(x(t)))dt = 0. (2.3)

For the continuity of β, g, x, there must exist a number t0 ∈ [0, T] such that

β(t0)g(x(x(t0))) = 0, (2.4)

that is,

g(x(x(t0))) = 0. (2.5)

For the condition (a) of Theorem 2.1, we have

|x(x(t0))| ≤ A. (2.6)

Let

x(t0) = nT − t1, n ∈ N, t1 ∈ [0, T], (2.7)

so

|x(t1)| = |x(x(t0))| ≤ A. (2.8)

In view of

∀t ∈ [0, T], x(t) = x(t1) +
∫ t

t1

ẋ(s)ds, (2.9)

we have

|x(t)| =
∣∣∣∣∣x(t1) +

∫ t

t1

ẋ(s)ds

∣∣∣∣∣ ≤ A +
∫ t

t1

|ẋ(s)|ds ≤ A +
∫T

0
|ẋ(t)|dt, (2.10)
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that is,

∣∣∣x(0)
∣∣∣
∞
= |x|∞ ≤ A +

∫T

0
|ẋ(t)|dt. (2.11)

Noting x(t) = x(t + T), so there must exist the number ξi ∈ [0, T] such that x(i)(ξi) = 0,
where i = 1, 2, 3, . . . , m − 1.

For all t ∈ [0, T],

x(i)(t) = x(i)(ξi) +
∫ t

ξi

x(i+1)(s)ds =
∫ t

ξi

x(i+1)(s)ds, (2.12)

we have

∣∣∣x(i)(t)
∣∣∣ =

∣∣∣∣∣

∫ t

ξi

x(i+1)(s)ds

∣∣∣∣∣ ≤
∫T

0

∣∣∣x(i+1)(t)
∣∣∣dt ≤ T

∫T

0

∣∣∣x(i+2)(t)
∣∣∣dt

≤ T2 ·
∫T

0

∣∣∣x(i+3)(t)
∣∣∣dt ≤ · · · ≤ Tm−(i+1)

∫T

0

∣∣∣x(i+m−i)(t)
∣∣∣dt = Tm−(i+1)

∫T

0

∣∣∣x(m)(t)
∣∣∣dt,

(2.13)

that is,

∣∣∣x(i)
∣∣∣
∞
≤ Tm−(i+1)

∫T

0

∣∣∣x(m)(t)
∣∣∣dt, i = 1, 2, . . . , m − 1. (2.14)

Combining (2.11), (2.14), we get

∣∣∣x(0)
∣∣∣
∞
= |x|∞ ≤ A + Tm−1

∫T

0

∣∣∣x(m)(t)
∣∣∣dt. (2.15)

By (2.2), we get

∫T

0
|amx

m(t)|dt ≤
∫T

0

∣∣λf(x(t))ẋ(t)
∣∣dt +

∫T

0

∣∣λβ(t)g(x(x(t)))
∣∣dt +

∫T

0

∣∣∣λ2p(t)
∣∣∣dt

+
∫T

0
|a1ẋ(t)|dt +

∫T

0
|a2ẍ(t)|dt + · · · +

∫T

0

∣∣∣am−3x(m−3)(t)
∣∣∣dt

+
∫T

0

∣∣∣am−2x(m−2)(t)
∣∣∣dt + · · · +

∫T

0

∣∣∣am−1x(m−1)(t)
∣∣∣dt,

(2.16)

where β1 = maxt∈R β(t), p1 = maxt∈R{|p(t)|}, and k = max{|ai|}, i = 1, 2, 3, . . . , m − 1.
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Noting (2.14) and the conditions (b), (c) of Theorem 2.1, we have

∫T

0

∣∣∣amx
(m)(t)

∣∣∣dt ≤ f1T · Tm−2
∫T

0

∣∣∣x(m)(t)
∣∣∣dt + β1TM + p1T

+ kT · Tm−(1+1)
∫T

0

∣∣∣x(m)(t)
∣∣∣dt + kT · Tm−(2+1)

∫T

0

∣∣∣x(m)(t)
∣∣∣dt

+ · · · + kT · Tm−(m−1+1)
∫T

0

∣∣∣x(m)(t)
∣∣∣dt,

(2.17)

so

am

∫T

0

∣∣∣x(m)(t)
∣∣∣dt ≤

(
kTm−1 + kTm−2 + · · · + kT + f1T

m−1
)∫T

0

∣∣∣x(m)(t)
∣∣∣dt + β1TM + p1T,

(2.18)

where am > Tm−1 ∑m
i=1 fi + kTm−1 + kTm−2 + · · · + kT .

Let

β1TM + p1T

a0 −
(
kTm−1 + kTm−2 + · · · + kT + f1Tm−1) � A1, (2.19)

that is,

∫T

0

∣∣∣x(m)(t)
∣∣∣dt ≤ A1. (2.20)

Noting (2.14), (2.15), and (2.20), we have

∣∣∣x(0)
∣∣∣
∞
= |x|∞ ≤ A + Tm−1A1 � ω0,

∣∣∣x(i)
∣∣∣
∞
≤ Tm−(i+1)A1 � ωi, i = 1, 2, . . . , m − 1.

(2.21)

Let ω = max0≤i≤m{ωi + 1}, and let Ω = {x | x ∈ X : ‖x‖ < ω}; then Ω is an open and
bounded set in X.
Let

L : DL ⊂ X −→ Y : x −→ Lx =
m∑

i=1

aix
(i)(t),

N : X × I −→ Y : x −→ N(x, λ) = −f(x(t))ẋ(t) − β(t)g(x(x(t))) + λp(t);

(2.22)

then the corresponding equation of Lx = λN(x, λ) is (2.2).
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Now, we define projection operators as follows;

P : X −→ ker(L) : x −→ Px =
1
T

∫T

0
x(t)dt,

Q : Y −→ Y

Im(L)
: y −→ Qy =

1
T

∫T

0
y(t)dt.

(2.23)

Obviously, P , Q are continuous operators, Im(P) = R = ker(L), ker(Q) = Im(L), and it
is easy to prove that L is a Fredholm mapping of index zero and is L-Compact on Ω.

From the above discussion and the construction ofΩ, we know that for all x ∈ DL∩∂Ω,
λ ∈ (0, 1), Lx/=λN(x, λ), therefore the condition (a) of Lemma 1.3 holds.

For arbitrary x ∈ ker(L) ∩ ∂Ω, ‖x‖ = ω, by the definition of Q,N, we have

QN(x, 0) =
1
T

∫T

0

[−f(x(t))ẋ(t) − β(t)g(x(x(t)))
]
dt

= − 1
T

∫T

0
β(t)g(x(x(t)))dt,

(2.24)

so

xQN(x, 0) = − 1
T
x

∫T

0
β(t)g(x(x(t)))dt

= − 1
T
xg(x)

∫T

0
β(t)dt /= 0,

(2.25)

therefore the condition (b) of Lemma 1.3 holds.
Making a transformation.

H
(
x, μ

)
= −μx +

(
1 − μ

)
QN(x, 0), ∀x ∈ ∂Ω ∩ ker(L), μ ∈ [0, 1], (2.26)

we have

xH
(
x, μ

)
= − μx2 + x

(
1 − μ

)
QN(x, 0)

= − μx2 − (
1 − μ

) 1
T
g(x)x

∫T

0
β(t)dt < 0.

(2.27)

So xH(x, μ)/= 0, that is, H(x, μ)/= 0 is a homotopy, deg(QN(x, 0),ker(L) ∩ Ω, 0) =
deg(−I,ker(L)∩Ω, 0) = deg(−I,R∩Ω, 0)/= 0, where I is an identitymapping, and the condition
(c) of Lemma 1.3 holds.

From above all, the requirements of Lemma 1.3 are all satisfied, so (∗) has at least
one T -periodic solution under the condition of Theorem 2.1, so the proof of Theorem 2.1 is
completed.
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Remark 2.2. In Theorem 2.1, if β(t) < 0 and the condition (a) of Theorem 2.1 is when |x| > A,
xg(x) < 0, and the rest are unchangeable, then (∗) has at least one T -periodic solution.

If the g(x) is not a bounded function, we have the following theorem.

Theorem 2.3. Suppose that f , β, g, p are continuous for their variables, respectively, p(t+T) = p(t),
β(t + T) = β(t) > 0,

∫T
0 p(t)dt = 0, and furthermore suppose following:

(a) ∃A > 0, for all x ∈ R, when |x| > A, such that xg(x) > 0;

(b) ∃M > 0, for all x ∈ R, such that |g(x)| ≤ M|x| + c;

(c) f1 = supx∈R
|f(x)| < (am − kTm−1 − kTm−2 − · · · − kT − β1T

m)/Tm−1,

where k = max{|ai|}, i = 1, 2, . . . , m − 1, and am > kTm−1 + kTm−2 + · · · + kT + β1T
m, then (∗) has

at least one T -periodic solution.

Proof of Theorem 2.3. Banach spaces X, Y and the mappings L, P , Q, and N are the same to
Theorem 2.1, and their property are equal to Theorem 2.1, then the corresponding equation
of Lx = λN(x, λ) is

m∑

i=1

aix
(i)(t) + λf(x(t))ẋ(t) + λβ(t)g(x(x(t))) = λ2p(t). (2.28)

It is similar to Theorem 2.1, there must exist a number t1 ∈ [0, T], such that

|x(t1)| ≤ A, (2.29)

and it is easy to obtain

∣∣∣x(i)
∣∣∣
∞
≤ Tm−(i+1)

∫T

0

∣∣∣x(m)(t)
∣∣∣dt, i = 1, 2, . . . , m − 1,

∣∣∣x(0)
∣∣∣
∞
= |x|∞ ≤ A + Tm−1

∫T

0

∣∣∣x(m)(t)
∣∣∣dt.

(2.30)

Noting (2.28), (2.30) and the conditions (b), (c) of Theorem 2.3, we have

∫T

0

∣∣∣amx
(m)

∣∣∣dt ≤
∫T

0

∣∣λf(x(t))ẋ(t)
∣∣dt +

∫T

0

∣∣λβ(t)g(x(x(t)))
∣∣dt +

∫T

0

∣∣∣λ2p(t)
∣∣∣dt

+ kT · Tm−(1+1)
∫T

0
|xm(t)|dt + kT · Tm−(2+1)

∫T

0
|xm(t)|dt

+ · · · + kT · Tm−(m−1+1)
∫T

0
|xm(t)|dt
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≤ f1T · Tm−2
∫T

0
|xm(t)|dt + β1T[M|x(x(t))| + c] + p1T

+ kT · Tm−(1+1)
∫T

0
|xm(t)|dt + kT · Tm−(2+1)

∫T

0
|xm(t)|dt

+ · · · + kT · Tm−(m−1+1)
∫T

0
|xm(t)|dt.

(2.31)

So

am

∫T

0
|xm(t)|dt ≤

(
kTm−1 + kTm−2 + · · · + kT + f1T

m−1
)∫T

0
|xm(t)|dt

+ β1Tc + β1TM|x|∝ + p1T

≤
(
kTm−1 + kTm−2 + · · · + kT + f1T

m−1
)∫T

0
|xm(t)|dt

+ β1Tc + β1TM

(
A + Tm−1

∫T

0

∣∣∣x(m)(t)
∣∣∣dt

)
+ p1T

≤
(
kTm−1 + kTm−2 + · · · + kT + f1T

m−1 + β1T
m
)∫T

0
|xm(t)|dt

+ β1Tc + β1TMA + p1T,

(2.32)

where k = max{|ai|}, i = 1, 2, 3, . . . , m − 1, and am > kTm−1 + kTm−2 + · · · + kT + f1T
m−1 + β1T

m.
Let

β1Tc + β1TMA + p1T

am − (
kTm−1 + kTm−2 + · · · + kT + f1Tm−1 + β1Tm

) � A1, (2.33)

that is,

∫T

0
|xm(t)|dt ≤ A1. (2.34)

Noting (2.30) and (2.34), we have

∣∣∣x(0)
∣∣∣
∞
= |x|∞ ≤ A + Tm−1A1 � ω0,

∣∣∣x(i)
∣∣∣
∞
≤ Tm−(i+1)A1 � ωi, i = 1, 2, . . . , m − 1.

(2.35)

Let ω = max0≤i≤m{ωi + 1}, and we take Ω = {x | x ∈ X : ‖x‖ < ω}; then Ω is an open
and bounded set in X.
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Similarly to Theorem 2.1, we prove easily that L is a Fredholm mapping of index zero
and N is L-compact on Ω and the conditions (a), (b), and (c) of Lemma 1.3 hold.

From above all, the requirements of Lemma 1.3 are all satisfied, so (∗) has at least one
T -periodic solution under the condition of Theorem 2.3, so far the proof of Theorem 2.3 is
completed.

Remark 2.4. In Theorem 2.3, if β(t) < 0 and the condition (a) of Theorem 2.3 is when |x| > A,
xg(x) < 0, and the rest are unchangeable, then (∗) has at least one T -periodic solution.

If the
∫T
0 p(t)dt /= 0, we have the following theorem.

Theorem 2.5. Suppose that f , β, g, p are continuous for their variables, respectively, β(t + T) =
β(t) > 0, and meet the condition (a) of Theorem 2.1 and furthermore suppose as follows:

(a) lim|x|→+∝|g(x)| = + ∝;

(b) ∃a, b, c > 0, such that |g(x)| ≤ ag(x) + b|x| + c;

(c) f1 = supx∈R
|f(x)| (am − kTm−1 − kTm−2 − · · · − kT − f1T

m−1 − bβ1T
m)/Tm−1,

where k = max{|ai|}, i = 1, 2, . . . , m − 1, and am > kTm−1 + kTm−2 + · · · + kT + f1T
m−1 + bβ1T

m,
then (∗) has at least one T -periodic solution.

Proof of Theorem 2.5. Banach spaces X, Y and the mappings L, P , Q, and N are the same to
Theorem 2.1, and their property are equal to Theorem 2.1, then the corresponding equation
of Lx = λN(x, λ) is

m∑

i=1

aix
(i)(t) + λf(x(t))ẋ(t) + λβ(t)g(x(x(t))) = λ2p(t). (2.36)

Suppose that x = x(t) ∈ X is an arbitrary T -periodic solution of (2.36), put x(t) into
(2.36), and then integrate both sides of (2.36) on [0, T], so

∫T

0
β(t)g(x(x(t)))dt =

∫T

0
λp(t)dt. (2.37)

For the continuity of β, g, x, there must exist a number t1 ∈ [0, T], such that

g(x(x(t1))) =
λ
∫T
0 p(t)dt

∫T
0 β(t)dt

. (2.38)

Combing the condition (a) of Theorem 2.5, there must exist A1 > 0, such that

|x(x(t1))| ≤ A1. (2.39)
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Similarly to Theorem 2.1, we have

∣∣∣x(i)
∣∣∣
∞
≤ Tm−(i+1)

∫T

0

∣∣∣x(m)(t)
∣∣∣dt, i = 1, 2, . . . , m − 1, (2.40)

∣∣∣x(0)
∣∣∣
∞
= |x|∞ ≤ A1 + Tm−1

∫T

0

∣∣∣x(m)(t)
∣∣∣ dt. (2.41)

By (2.36), (2.37), (2.39), and (2.41) and the conditions (b), (c) of Theorem 2.5, we have

∫T

0

∣∣∣amx
(m)

∣∣∣dt ≤
∫T

0

∣∣λf(x(t))ẋ(t)
∣∣dt +

∫T

0

∣∣λβ(t)g(x(x(t)))
∣∣dt +

∫T

0

∣∣∣λ2p(t)
∣∣∣dt

+ kT · Tm−(1+1)
∫T

0
|xm(t)|dt + kT · Tm−(2+1)

∫T

0
|xm(t)|dt

+ · · · + kt · Tm−(m−1+1)
∫T

0
|xm(t)|dt

≤ f1T |ẋ|∝ +
(
kTm−1 + kTm−2 + · · · + am−1T

)∫T

0
|xm(t)|dt

+
∫T

0
aβ(t)g(x(x(t)))dt +

∫T

0
bβ(t)[|x(x(t))| + c]dt + p1T

≤ f1TT
m−2

∫T

0

∣∣∣x(m)(t)
∣∣∣dt +

(
kTm−1 + kTm−2 + · · · + kT

)∫T

0
|xm(t)|dt

+ aβ1Tp1 + bβ1T |x|∝ + bβ1Tc + p1T ≤ f1T
m−1

∫T

0

∣∣∣x(m)(t)
∣∣∣dt

+
(
kTm−1 + kTm−2 + · · · + kT

)∫T

0
|xm(t)|dt

+ bβ1T

(
A1 + Tm−1

∫T

0

∣∣∣x(m)(t)
∣∣∣dt

)
+ aβ1Tp1 + bβ1Tc + p1T

≤
(
kTm−1 + kTm−2 + · · · + kT + f1T

m−1 + bβ1T
m
)∫T

0
|xm(t)|dt

+ bβ1TA1 + aβ1Tp1 + bβ1Tc + p1T.

(2.42)

So

[
am −

(
kTm−1 + kTm−2 + · · · + kT + f1T

m−1 + bβ1T
m
)] ∫T

0
|xm(t)|dt

≤ bβ1TA1 + aβ1Tp1 + bβ1Tc + p1T.

(2.43)
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Let

bβ1TA1 + aβ1Tp1 + bβ1Tc + p1T

am − (
kTm−1 + kTm−2 + · · · + kT + f1Tm−1 + bβ1Tm

) � A2, (2.44)

that is,

∫T

0
|xm(t)|dt ≤ A2. (2.45)

Noting (2.40), (2.41), and (2.45), we have

∣∣∣x(0)
∣∣∣
∞
= |x|∞ ≤ A + Tm−1A2 � ω0,

∣∣∣x(i)
∣∣∣
∞
≤ Tm−(i+1)A2 � ωi, i = 1, 2, . . . , m − 1.

(2.46)

For condition (a), there exist M0 > 0 and A0 > 0, such that |x| > M0, |g(x)| > A0; let
ω = max0≤i≤m{ωi + 1,M0}, and we take Ω = {x | x ∈ X : ‖x‖ < ω}; then Ω is an open and
bounded set in X.

Similarly to Theorem 2.1, we prove easily that L is a Fredholm mapping of index zero
and N is L-compact on Ω and the conditions (a), (b), and (c) of Lemma 1.3 hold.

From above all, the requirements of Lemma 1.3 are all satisfied, so (∗) has at least
one T -periodic solution under the condition of Theorem 2.5, so the proof of Theorem 2.5 is
completed.

Remark 2.6. In Theorem 2.5, if β(t) < 0 and the condition (a) of Theorem 2.1 is when |x| > A,
xg(x) < 0, and the rest are unchangeable, then (∗) has at least one T -periodic solution.
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