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This paper further studies the moment stability of pulse-width-modulated (PWM) feedback
system which is subjected to multiplicative and additive random disturbance modeled by the
derivative of Wiener process. Different from the existing investigation, we focus on its critical case.
The linear plant considered herein is assumed to be critically stable; that is, the plant has one and
only one pole at the origin, and the rest of the poles are left half of complex plane. We establish
several globally asymptotically stability criteria for such PWM feedback systems and then propose
an algorithm to calculate the stability bound effectively. Furthermore, we present two numerical
examples to show the effectiveness of the theoretical results.

1. Introduction

Pulse-width modulation has extensively been used in attitude control systems, adaptive
control systems, signal processing, power control systems, modeling of neuron behavior,
and the like (e.g., see [1–5]). In many areas, especially engineering applications, it is always
operated in all kinds of accidental or continued disturbances. It is of prime importance
whether or not keeping the scheduled operation or work of the state. Therefore, there has
been a growing research interest on the stability analysis for PWM feedback systems, and a
set of stability results have been established by a variety of methods [6–20]. By the method
of positive kernels of integral operator, Halanaı̆ in [10] proposed two versions of direct
Lyapunov and Lagrange stability results for PWM feedback system with Hurwitz stable
plant. In [12, 13], the authors studied the stability properties of nonlinear PWM feedback
systems.

There are, however, only a few results concerning the qualitative properties of PWM
feedback system subjected to random disturbance. Gupta and Jury [14] developed a method
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of determining the mean square value of the output of a PWM system with Gaussian random
input. Sun et al. [15] presented a set of theoretical results for mean square exponential
stability, asymptotical mean square stability, and the pth moment exponential stability by
using spectrum technique. Besides, in [16], the authors gave some definitions on the pth
moment stable in mean and established several pth moment globally stability criteria in
mean. Recently, the authors in [17, 18] investigated the dynamical systems subjected to noise
disturbance by linear matrix inequalities (LMIs) and control Lyapunov methods. In [20], the
authors established new Lyapunov and Lagrange stability results for pulse-width-modulated
(PWM) feedback systems subjected to random disturbance. The linear plant considered
therein was assumed to be Hurwitz stable. An optimization procedure was also presented
in [20], which is expected to improve the analysis performance significantly. And then they
have shown that when the parameters of PWM are within a certain computable range, the
PWM feedback system is stable.

To the best of the authors’ knowledge, there are a few (if any) results for the stability
analysis of the critical case of PWM systems with stochastic perturbations. In the present
paper, we try to make the contribution on this issue. It is noted that the linear plant considered
herein is critically stable; that is, the linear plant has one and only one pole at the origin, and
the rest of the poles are left half of complex plane. Obviously, such systems are somewhat
complex in comparison with most of the systems in literature. We will establish several
Lyapunov and Lagrange criteria for the pth moment uniform asymptotical stability in mean
and then present an algorithm to compute the upper bound for the parameters of PWM.
We will characterize the relationship between the parameters of PWM and the coefficients of
state vectors of the feedback systems. It will be shown that when the random disturbance is
sufficiently small, such PWM feedback system is the pth moment globally asymptotically
stable in mean provided that the upper bounds of parameters of pulse-width modulator
are selected properly. We also demonstrate the effectiveness of our results by means of two
numerical examples.

2. Notations and Some Definitions

We let (Ω, F, P) denote the underlying probability space for all the systems that will be
considered, where Ω is the sample space, F is the σ-algebra of subsets of the sample space,
and P is the probability measure. An Rn-valued random variable x with domain X is a
measurable function from Ω to X ⊂ Rn. A family {x(t), t ∈ I} of Rn-valued random variables
with domain X defined on a probability space (Ω, F, P) is called a stochastic process with
index set I and state space (X,Fn).

Definition 2.1. Let (X, d) be a metric space, X ⊂ Rn, A ⊂ X, and let T ⊂ R+. For any fixed a ∈ A
(a is called the initial state), t0 ∈ T , a stochastic process {x(t, ω, a, t0), t ∈ Ta,t0} with domain
X is called a stochastic motion if x(t0, ω, a, t0) = a for all ω ∈ Ω, where Ta,t0 = [t0, t1)∩T, t1 > t0,
and t1 is finite or infinite.

Definition 2.2. Let S be a family of stochastic motions with domain X given by

S ⊂ {x(·, ·, a, t0) : x(t0, ω, a, t0) = a, ω ∈ Ω, a ∈ A, t0 ∈ T}. (2.1)

We call the four-tuple {T,X,A, S} a stochastic dynamical system.
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Definition 2.3. Let {T,X,A, S} be a stochastic dynamical system. A set M ⊂ A is said to be
invariant with respect to system S (or short, (S,M) is invariant) if a ∈ M implies that

P{ω : x(t, ω, a, t0) ∈ M ∀t ∈ Ta,t0} = 1, ∀t0 ∈ T, and all x(·, ·, a, t0) ∈ S. (2.2)

Definition 2.4. x0 ∈ A is called an equilibrium point of a stochastic dynamical system
{T,X,A, S} if the set {x0} is invariant with respect to S.

Definition 2.5. S is said to be the pth moment uniformly bounded if, for every η > 0 and for
every t0 ∈ T , there exists a β = β(η) > 0 such that if d(a, x0) < η, then for all x(·, ·, a, t0) ∈
S, Ed(x(t, ω, a, t0), x0)

p < β for all t ∈ Ta,t0 , where t0 is a fixed point in X. S is said to be the pth
moment uniformly ultimately bounded in mean if there exists B > 0 and if for every δ > 0 and for
every t0 ∈ T there exists a τ = τ(δ) such that for all x(·, ·, a, t0) ∈ S, Ed(x(t, ω, a, t0), x0)

p < β,
for all t > t0 + τ , whenever d(a, x0) < δ, where x0 is a fixed point in X.

Definition 2.6. Let {T,X,A, S} be a stochastic dynamical system, and let d be the metric on
X. A set M ⊂ A is said to be the pth moment stable in mean (i.e., (S,M) is said to be the
pth moment stable in mean) if, for any ε > 0, t0 ∈ T , there exists δ = δ(t0, ε) such that
Ed(x(t, ω, a, t0),M)p < ε for any process x(·, ·, a, t0) ∈ S, whenever d(a,M) < δ, where E
denotes the expectation of a random process. If δ is independent of t0, (S,M) is said to be the
pth moment uniformly stable in mean. (S,M) is said to be the pth moment uniformly asymptotically
stable in mean if it is uniformly stable in the pth mean and if, for any ε > 0, there exists a
δ = δ(ε) > 0 and a τ = τ(ε) such that for any process x(·, ·, a, t0) ∈ S, whenever d(a,M) < δ
implies that Ed(x(t, ω, a, t0),M)p < ε for all t > t0 + τ .

We can similarly define the pth moment asymptotic stability in mean, the pth moment
asymptotic stability in mean in the large, thepth moment uniform asymptotic stability in
mean in the large, the pth moment exponential stability in mean, and the pth moment
exponential stability in mean in the large. When p = 2, we speak of various stability and
bound concepts in the mean square.

3. Stability Analysis of PWM Feedback System: The Critical Case

The PWM feedback system to be considered in this paper is shown in Figure 1.
The pulse-width modulator is described by

u(t) = m(e(t)) =

{
M sgn(e(kT)) t ∈ [kT, kT + Tk),
0 t ∈ [kT + Tk, (k + 1)T),

(3.1)

where e(t) = r(t) − y(t) with r(t) being the external input and y(t) the system output, and,
for k = 0, 1, 2, . . ., the pulse-width Tk and the sign function sign are given, respectively, by

Tk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β|e(kT)|, |e(kT)| ≤ T

β
;

T, |e(kT)| > T

β
,

(3.2)
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Figure 1: Block diagram of PWM feedback systems subjected to multiplicative disturbances [20].

sgn(σ) =

⎧⎪⎪⎨
⎪⎪⎩

1 σ > 0
0 σ = 0
−1 σ < 0.

(3.3)

The sampling period T , the amplitude of the pulse M, and β are all assumed to be constants.
And throughout this paper, we always assume that r(t) ≡ 0. Under these assumptions, the
PWM feedback system with the output function can be described by

dx(t) = Ax(t)dt + Bu(t)dt +Gx(t)dWt,

y(t) = Cx(t),
(3.4)

where x ∈ Rn, y ∈ R, u ∈ R is output of the pulse-width modulator, A, B, C, and G are
matrices of appropriate dimensions, and W(t) is a scalar wiener process.

Furthermore, we assume that the linear plant is critically stable; that is, the matrix A is
stable with one and only one eigenvalue equal to zero. Without loss of generality, we assume
that

A =
(
A1 0
0 0

)
, B =

(
B1

b

)
, C =

[
C1 1

]
, G =

(
G1 0
0 g

)
, (3.5)

where A1 is Hurwitz stable, x1∈ Rn−1 and x2 ∈ R, and system (3.4) can be rewritten as

dx1(t) = A1x1(t)dt + B1u(t)dt +G1x1(t)dWt,

dx2(t) = bu(t)dt + gx2(t)dWt,

y(t) = C1x1(t) + x2(t).

(3.6)

Note that (xT
1 , x2) = (0T , 0) is an equilibrium point of PWM feedback system (3.6).
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Lemma 3.1 (The Itô isometry). Assume that W(t) is a scalar wiener process, and If φ(t, ω) is
bounded and elementary, then

E

⎡
⎣
(∫T

S

φ(t, ω)dWt

)2
⎤
⎦ = E

[∫T
S

φ(t, ω)2dt

]
. (3.7)

Proof. Put ΔWj = Wtj+1 −Wtj , then

E
[
eiejΔWiΔWj

]
=

⎧⎨
⎩

0 if i /= j

E
[
e2
j

](
tj+1 − tj

)
if i = j.

(3.8)

Using that eiejΔWi and ΔWj are independent if i < j. Thus

E

⎡
⎣
(∫T

S

φ(t, ω)dWt

)2
⎤
⎦ =
∑
i,j

E
[
eiejΔWiΔWj

]
=
∑
j

e2
j ·
(
ti − tj

)

= E

[∫T
S

φ(t, ω)2dt

]
.

(3.9)

Theorem 3.2. Assume that the matrix A1 in (3.6) is Hurwitz stable, b > 0, and C1 /= 0. Then the
equilibrium xe = 0 of PWM feedback system (3.6) is the pth moment uniformly asymptotically stable
in mean in the large whenever there exists a positive definite matrix P =

(
P1 0
0 ξ

)
such that Mβ <

infTk∈[0,T](2bξ/(G2(Tk)+b2ξ+max(0, θ(Tk)))), and there exists a δ > 0 (an upper bounded of δ will
be given in the proof ) such that ‖G‖ < δ, where

θ(Tk) = b2ξ2λM
(
CT

1 C1

)
− bξλm

(
U(Tk)C1 + (U(Tk)C1)T

)
+ λM

(
U(Tk)UT (Tk)

)
,

U(Tk) = (P1 − I)

(
I − e−A1Tk

Tk
A−1

1 B

)
,

G2(Tk) =

(
I − e−A1Tk

Tk
A−1

1 B

)T

(P1 − I)

(
I − e−A1Tk

Tk
A−1

1 B

)
.

(3.10)

Proof. Since (E‖X‖p)1/p is nondecreasing in p, the equilibrium xe = 0 is stable (resp.,
asymptotically stable, etc.) and implies that it is the qth moment stable (resp., asymptotically
stable, etc.) in mean for all q < p. Therefore, it suffices to prove the theorem for even integers.

Integrating (3.6), we have

x1(t) = eA1(t−kT)x1(kT) +
∫ t
kT

eA1(t−s)B1u(s)ds +
∫ t
kT

eA1(t−s)G1x1(s)dWs,

x2(t) = x2(kT) +
∫ t
kT

bu(s)ds +
∫ t
kT

gx2(s)dWs.

(3.11)
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Therefore, when t = kT + T ,

x1(kT + T) = eA1T

(
x1(kT) −

∫Tk
0

e−A1sB1M sgn(C1x1(kT) + x2(kT))ds

)

+
∫kT+T
kT

eA1(kT+T−s)G1x1(s) dWs

= eA1T
[(
I −MβW(τk)C1

)
x1(kT) −MβW1(τk)x2(kT)

]

+
∫kT+T
kT

eA1(kT+T−s)G1x1(s)dWs,

(3.12)

x2(kT + T) = x2(kT) −
∫Tk

0
bM sgn(C1x1(kT) + x2(kT))ds +

∫kT+T
kT

gx2(s)dWs

= −Mβb
Tk
τk

C1x1(kT) +
(

1 −Mβb
Tk
τk

)
x2(kT) +

∫kT+T
kT

gx2(s)dWs

(3.13)

with

τk = β|C1x1(kT) + x2(kT)|

=

{
Tk, Tk < T,

≥ T, Tk = T,

W(τk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 τk = 0,

I − e−A1Tk

Tk
A−1

1 B τk < T,

I − e−A1T

τk
A−1

1 B =
T

τk
W(T) τk ≥ T.

(3.14)

To simplify our notations, we let

H =
[
I −MβW(τk) −MβW(τk)

]
,

Z(kT) =
∫kT+T
kT

eA1(kT+T−s)G1x1(s)dWs,
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Z̃(kT) =
∫kT+T
kT

gx2(s)dWs,

ρ(τk) =

⎧⎪⎪⎨
⎪⎪⎩

0, τk = 0,

Tk
τk

, τk ∈ (0,∞),

L(τk) =
[
−Mβb

Tk
τk

C1 1 −Mβb
Tk
τk

]

=
[−Mβbρ(τk)C1 1 −Mβbρ(τk)

]
.

(3.15)

Then (3.12) and (3.13) are reduced to

x1(kT + T) = eA1THx(kT) + Z(kT), (3.16)

x2(kT + T) = L(τk)x(kT) + Z̃(kT). (3.17)

Since A1 is Hurwitz stable, then eA1T is Schur stable. Therefore, there exists a positive
definite matrix P1 = P1

T such that

(
eA1T
)T

P1e
A1T − P1 = −I. (3.18)

Choosing the quadratic Lyapunov function

V : Rn −→ R+, V (x) = xTPx, (3.19)

where

P =
(
P1 0
0 ξ

)
, P1 > 0, ξ > 0. (3.20)

Then,

E[V (x(kT + T))] − E[V (x(kT))]

= E
[
xT (kT + T)Px(kT + T)

]
− E
[
xT (kT)Px(kT)

]

= E
[
xT

1 (kT + T)P1x1(kT + T)
]
+ E
[
xT

2 (kT + T)ξx2(kT + T)
]

− E
[
xT (kT)Px(kT)

]

= E

[(
eA1THx(kT) + Z(kT)

)T
P1

(
eA1THx(kT) + Z(kT)

)]
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+ E

[(
L(τk)x(kT) + Z̃(kT)

)T
ξ
(
L(τk)x(kT) + Z̃(kT)

)]

− E
[
xT (kT)Px(kT)

]

= E
[
xT (kT)

(
HT (P1 − I)H + ξLT (τk)L(τk) − P

)
x(kT)

]

+ 2E
[
ZT (kT)P1e

A1THx1(kT)
]
+ 2E
[
Z̃T (kT)ξx2(kT)

]

+ E
[
ZT (kT)P1Z(kT)

]
+ E
[
Z̃T (kT)ξZ̃(kT)

]

= E
[
xT (kT)

(
HT (P1 − I)H + ξLT (τk)L(τk) − P

)
x(kT)

]

+ 2E
[
hT (kT)Φx(kT)

]
+ E
[
hT (kT)Ph(kT)

]
,

(3.21)

where

x(kT) =
(
x1(kT)
x2(kT)

)
, h(kT) =

(
Z(kT)
Z̃(kT)

)
,

Φ =
(
P1e

A1TH
ξL(τk)

)
=
(
P1e

A1T
(
I −MβW(τk)C1

) −MβP1e
A1TW(τk)

−Mβbρ(τk)ξC1 ξ −Mβbρ(τk)ξ

)
= Φ1 +

(
0 0
0 ξ

)
,

(3.22)

with

Φ1 =
(
P1e

A1T
(
I −MβW1(τk)C1

) −MβP1e
A1TW1(τk)

Mβbρ(τk)ξ −Mβbρ(τk)ξ

)
. (3.23)

Let

Q = HT (P1 − I)H + ξLT (τk)L(τk) − P

=

(
−I −Mβ

(
U(τk)C1 + (U(τk)C1)T

)
+
(
γ + 2Mβbρ(τk)ξ

)
C1C

T
1 D12

DT
12 γ

)
,

(3.24)

where

γ = M2β2
[
G2(τk) + b2ρ2(τk)ξ

]
− 2Mβbρ(τk)ξ,

D12 = −MβU(τk) +
[
γ +Mβbρ(τk)ξ

]
CT

1 ,

(3.25)
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with

U(τk) = (P1 − I)W(τk),

G2(τk) = WT (τk)(P1 − I)W(τk).
(3.26)

Then (3.21) is reduced to

E[V (x(kT + T))] − E[V (x(kT))]

= E
[
xT (kT)Qx(kT)

]
+ 2E
[
hT (kT)Φ1x(kT)

]

+ E
[
hT (kT)Ph(kT)

]
+ 2ξE

[
Z̃(kT)x2(kT)

]
.

(3.27)

By elementary transformation of matrix, we have

Q =

⎛
⎜⎝I

D12

γ

0 1

⎞
⎟⎠D

⎛
⎜⎜⎝

I 0

DT
12

γ
1

⎞
⎟⎟⎠, (3.28)

where

D = −
(
D11 0

0 −γ
)

(3.29)

with

D11 =
1
γ

[
γI +M2β2

(
U(τk)UT (τk) −M2β2bρ(τk)ξ

(
U(τk)C1 + (U(τk)C1)T

))

+M2β2b2ρ2(τk)ξ2CT
1C1

]
.

(3.30)

Let λm(·) and λM(·) denote the minimum and maximum eigenvalues of a matrix, respectively.
It is obvious that D is a negative definite matrix if D11 is positive definite matrix with γ < 0.
Note that, with γ < 0, we have

λm(D11) ≥ 1 +
(
Mβ
)2
γ−1
{
λM
[
U(τk)UT (τk)

]

−bρ(τk)ξλm
[
U(τk)C1 + (U(τk)C1)T

]
+ b2ρ2(τk)ξ2λM

[
CT

1C1

]}
.

(3.31)
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Therefore, the claim that D11 is positive definite is true if

(
Mβ
)(

G2(τk) + b2ρ2(τk)ξ
)
− 2bρ(τk)ξ

+
(
Mβ
){

λM
[
U(τk)UT (τk)

]
− bρ(τk)ξλm

[
U(τk)C1 + (U(τk)C1)T

]

+b2ρ2(τk)ξ2λM
[
CT

1C1

]}
≤ 0

(3.32)

with

Mβ
(
G2(τk) + b2ρ2(τk)ξ

)
− 2bρ(τk)ξ < 0. (3.33)

That is,

Mβ < inf
τk∈[0,∞]

2bρ(τk)ξ
G2(τk) + b2ξ + max(0, θ(τk))

= inf
Tk∈[0,T]

2bξ
G2(Tk) + b2ξ + max(0, θ(Tk))

,

(3.34)

where

θ(τk) = b2ρ2(τk)ξ2λM
(
CT

1C1

)
− bρ(τk)ξλm

(
U(τk)C1 + (U(τk)C1)T

)

+ λM
(
U(τk)UT (τk)

)
,

θ(Tk) = b2ξ2λM
(
CT

1 C1

)
− bξλm

(
U(Tk)C1 + (U(Tk)C1)T

)

+ λM
(
U(Tk)UT (Tk)

)
.

(3.35)

Thus, whenever Mβ satisfies (3.34) for some positive constant ξ, then D is negative
definite matrix, and, therefore, Q is negative definite matrix. By elementary transform of
matrix, one observes that

Φ1 =

⎛
⎝I P1e

A1T
W(τk)
bρ(τk)ξ

0 1

⎞
⎠Φ2

(
I 0
C1 1

)
, (3.36)

where

Φ2 =
(
P1e

A1T 0
0 −Mβρ(τk)bξ

)
. (3.37)

So, we have ‖Φ1‖ ≤ ‖Φ2‖.
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Now we establish an estimate for h(kT). Let μ > 0 be arbitrary. We will show that there
exists δ > 0 such that E‖h(kT)‖2 < μE‖x(kT)‖2 whenever ‖G‖ < δ.

For t ∈ [kT, kT + T], we have

x(t) = x(kT) +
∫ t
kT

(Ax(s) + Bu(s))ds +
∫ t
kT

Gx(s)dWs. (3.38)

Note that

E

(∫ t
kT

‖B‖ |u(s)|ds
)2

≤ M2β2‖B‖2‖C‖2E
[
‖x(kT)‖2

]
. (3.39)

Then,

E
[
‖x(t)‖2

]
4

≤ E
[
‖x(kT)‖2

]
+ E

⎡
⎣
∥∥∥∥∥
∫ t
kT

Ax(s)ds

∥∥∥∥∥
2
⎤
⎦

+ E

⎡
⎣
(∫ t

kT

‖B‖ |u(s)|ds
)2
⎤
⎦ + E

⎡
⎣
(∫ t

kT

Gx(s)dWs

)T(∫ t
kT

Gx(s)dWs

)⎤
⎦.
(3.40)

By Lemma 3.1, one observes that

E

⎡
⎣
(∫ t

kT

Gx(s)dWs

)T(∫ t
kT

Gx(s)dWs

)⎤
⎦ = E

[∫ t
kT

xT (s)GTGx(s)ds

]
. (3.41)

Then (3.40) is reduced to

E
[
‖x(t)‖2

]
4

≤ K0E
[
‖x(kT)‖2

]
+
(
‖A‖2 + ‖G‖2

)∫ t
kT

E
[
‖x(s)‖2

]
ds, (3.42)

where K0 = 1 +M2β2‖B‖2‖C‖2.
By Gronwall inequality, we have

E
[
‖x(t)‖2

]
≤ 4K0e

(‖A‖2+‖G‖2)(t−kT)E
[
‖x(kT)‖2

]

≤ 4K0e
(‖A‖2+‖G‖2)TE

[
‖x(kT)‖2

]
.

(3.43)
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Thus,

E
[
‖h(kT)‖2

]
= E

⎡
⎣
(∫kT+T

kT

eA1(kT+T−s)G1x1(s)dWs

)T(∫kT+T
kT

eA1(kT+T−s)G1x1(s)dWs

)⎤
⎦

+ E

⎡
⎣
(∫kT+T

kT

gx2(s)dWs

)T(∫kT+T
kT

gx2(s)dWs

)⎤
⎦

= E

[∫kT+T
kT

xT
1 (s)G

T
1 e

AT
1 (kT+T−s)eA1(kT+T−s)G1x1(s)ds

]
+ E

[∫kT+T
kT

g2x2
2(s)ds

]

= E

[∫kT+T
kT

xT (s)G̃T G̃x(s)ds

]

≤ K1‖G‖2
∫kT+T
kT

E
[
‖x(s)‖2

]
ds

≤ 4K0K1‖G‖2e(‖A‖2+‖G‖2)TE
[
‖x(kT)‖2

]
,

(3.44)

where

G̃ =
(
eA1(kT+T−s) 0

0 g

)
,

K1 = max
s∈[0,T]

∥∥∥eAT
1 seA1s

∥∥∥, K = 4K0K1e
‖A‖2T .

(3.45)

Thus, there exists a δ > 0 such that K‖G‖2e‖G‖2T < μ whenever ‖G‖ < δ. Choosing
μ > 0, so that c(μ) = 1 − 2(‖Φ2‖ + ξ)√μ − ‖P‖μ > 0. Then, we obtain that

E[V (x(kT + T))] − E[V (x(kT))] ≤ − c
(
μ
)

λM(P)
E[V (x(kT))]. (3.46)

Therefore, E[V (x(kT + T))] − E[V (x(kT))] is negative definite.
If we define M̃ = {0} and S̃ = {x̃ : x̃(t, ã, t0) = E[V (x(t, a, t0))]}, then we have

determined in an unambiguous way a deterministic dynamical system {R+, R+, R+, S},
corresponding to the stochastic dynamical system {R+, Rn, Rn, S(4)} (S(4) is the trivial solution
set of system (3.6)). In this case M is an invariant set for {R+, R+, R+, S}.

In fact, {EV (x(kT)} is uniformly asymptotically stable (see, e.g., [21]). For t ∈ [kT, kT+
T], we have

E[V (x(t))] ≤ λM(P)Ke‖G‖2TE‖x(kT)‖2 ≤ λM(P)
λm(P)

V (x(kT)). (3.47)
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This implies that E[V (x(t))] in the interval [kT, kT + T] is bounded by rEV (x(kT)),
where r > 0 is constant. Therefore, E[V (x(t))] converges to the origin simultaneously with
EV (x(kT)). We conclude that the trivial solution of deterministic system S̃ is asymptotically
stable. Now recall that (S̃, M̃) is uniformly stable if, for every ε > 0, t0 ∈ R+, there exists a
δ = δ(ε) > 0 such that x̃(t, ã, t0) < ε for all t ∈ R+

ã,t0
= R+

a,t0
, and for all x̃(·, ã, t0) ∈ S̃, whenever

ã < δ.
Since x̃(t, ã, t0) = EV (x(t)), thus, (S̃, M̃) is uniformly stable means that, for every ε >

0, t0 ∈ R+, there exists a δ = δ(ε) > 0 such that EV (x(t)) < ε for t ∈ R+
a,t0

and for all x(·, a, t0) ∈
S, whenever EV (a) < δ, since EV (x(t))/λM(P) ≤ E‖x(t)‖2 ≤ EV (x(t))/λm(P); hence, for
every ε > 0, t0 ∈ R+, for any process x(·, ·, a, t0) ∈ S, we have, for t ∈ R+

a,t0
, E‖x(t)‖2 ≤

ε/λm(P), whenever ‖a‖ < δ1, where δ1 = δ/λM(P). This is precisely the definition of uniform
stability in the mean square of the trivial solution xe = 0 of S(4). Therefore, the uniform
stability of (S̃, M̃) is equivalent to the uniform stability in the mean square of (S(4), {xe}).

We can now conclude that the equilibrium xe = 0 of PWM feedback system (3.6) is
uniformly asymptotically stable in mean square.

For p = 2q, q ≥ 1, we have

E
[
V (x(kT + T))q

] − E
[
V (x(kT))q

]
= E
[
(V (x(kT + T)) − V (x(kT))) ×

(
V (x(kT + T))q−1 + · · · + V (x(kT))q−1

)]

≤ E

[(
− 1
λM(P)

V (x(kT)) + 2EhT (kT)Φx(kT) + EhT (kT)Ph(kT)
)

×
(
V (x(kT + T))q−1 + · · · + V (x(kT))q−1

)]

≤ − 1
λM(P)

E
[
V (x(kT))q

]
+ E
[(

2hT (kT)Φx(kT) + 2hT (kT)Φh(kT)
)

×
(
V (x(kT + T))q−1 + · · · + V (x(kT))q−1

)]
.

(3.48)

It can easily be verified that the second expectation in the above inequality can always be
chosen to be less than μEV (x(kT))q for arbitrary μ, when ‖G‖ is sufficiently small. Similarly
as in [22], we can show that EV (x(t))q is bounded by EV (x(kT))q when t ∈ [kT, kT + T],
where a > 0 is a constant.

The rest of the proof of the pth moment uniform asymptotic stability of the trivial
solution of (3.6) with p = 2q proceeds similarly as the proof of uniform asymptotic stability
in the mean square of the trivial solution of (3.6).

Therefore, we have shown that the trivial solution of system (3.6) is the pth moment
uniformly asymptotically stable in mean for even integers, and, hence, we conclude the proof
for all p > 0.

Remark 3.3. The upper bound of Mβ is given by (3.34) that can easily be computed and
optimized. A simple procedure is presented in [20] to accomplish that. We will employ this
procedure in a specific example in Section 4.

Theorem 3.4. Assume that A1 is Hurwitz stable, C1 = 0, and b > 0. Then the trivial solution of
the PWM feedback system (3.6) is the pth moment uniformly asymptotically stable in mean whenever
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Mβ < 2/b, and there exists a δ > 0 (an upper bounded of δ will be given in the proof of Theorem 3.2)
such that ‖G‖ < δ.

Proof. When C1 = 0, we have

D11 =
1
γ

[
γI +M2β2U(τk)UT (τk)

]
. (3.49)

If λm(D11) > 0, D11 is positive definite matrix. And if −γ > 0, then D is positive negative
definite matrix. Therefore, whenever λm(D11) > 0 and γ < 0, it can easily be verified that

(
Mβb2 − 2b

)
ξ + λM

(
U(τk)UT (τk)

)
+G2(τk) > 0. (3.50)

If Mβ < 2/b, there exists ξ such that (3.50) and λ < 0 are true for all Mβ. Hence, whenever
Mβ < 2/b for some positive constant ξ, then Q is negative definite matrix.

The rest of the proof of the uniformly pth moment asymptotic stability in mean of the
trivial solution of (3.6) proceeds similarly as that of Theorem 3.2.

Remark 3.5. From stability results of Theorem 3.4, we can obtain when upper bound of the
parameters of PWM feedback system (Mβ) is sufficiently large, and if we choose that b is
sufficiently small, then the trivial solution of the system (3.6) is the pth moment uniformly
asymptotic stability in mean.

Next, we consider PWM feedback system with additive noise in the plant, described
by equations of the form. We have

dx1(t) = A1x1(t)dt + B1u(t)dt + ε1x1(t)dWt,

dx2(t) = bu(t)dt + ε2x2(t)dWt,

y(t) = C1x1(t) + x2(t),

(3.51)

where ε1 ∈ Rn−1, ε2 ∈ R have positive components. We let ε = (ε1 ε2) ∈ Rn denote the
magnitude of the random noise. A block diagram of system (3.51) is shown in Figure 2.

Theorem 3.6. Assume that A1 is Hurwitz stable, and the solution processes of the PWM feedback
system (3.6) are the pth moment uniformly ultimately bounded provided by b > 0, all Mβ ∈ (0,∞)
(for random disturbance). When b ≤ 0, the solution processes are unbounded.

Proof. The proof of Theorem 3.6 is similar as that of [20].

To end this section, we present an algorithm for computing stability bound.

Stability Bound Algorithm

An upper bound of Mβ that satisfies (3.34) can be computed and optimized in the following
manner.
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A

B C

+
+
+

Output

ε

PWM

White noise

Input

Integrator

∫

Figure 2: Block diagram of PWM feedback systems subjected to additive disturbances.

(S1) Determine the matrix P1 by solving (eA1T )TP1e
A1T − P1 = −I.

(S2) Choose a precision level δ > 0 and a correspondingly dense partition of the interval
[0, T], and say the set {t0 = 0, t1, . . . , tN = T}, where 0 < tj+1 − tj < δ, j =
0, 1, 2, . . . , N − 1.

(S3) For each i, j = 0, 1, 2, . . . , N − 1, calculate

W
(
tj
)
=

I − e−A1tj

tj
A−1

1 B, G2
(
tj
)
= W
(
tj
)T (P1 − I)W

(
tj
)
,

U
(
tj
)
= (P1 − I)W

(
tj
)
.

(3.52)

(S4) Search for the largest Mβ such that

Mβ < inf
tj∈[0,∞]

2bρ
(
tj
)
ξ

G2
(
tj
)
+ b2ξ + max

(
0, θ
(
tj
)) , (3.53)

where

θ
(
tj
)
= b2ξ2λM

(
CT

1 C1

)
− bξλm

(
U
(
tj
)
C1 +

(
U
(
tj
)
C1
)T) + λM

(
U
(
tj
)
UT(tj)). (3.54)

(S5) Repeat steps 1–4, using finer partition of the interval [0, T] until there is no further
significant improvement for Mβopt.

4. Examples

Example 4.1. Consider the system (3.6) with second-order critical stable plant described by
transfer function T(s) = k/s(1 + (s/a)), a > 0. The state space representation of this system
is given by

A =
(−a 0

0 0

)
, B =

(
k
k

)
, C =

[
1 1
]
. (4.1)
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Hence A1 = −a, B1 = k, C1 = 1, and P1, W(Tk), U(Tk) in Theorem 3.2 are calculated in this
case as

P1 =
1

1 − e−2aT
, W(Tk) =

(
eaTk − 1

)
k

aTk
,

U(Tk) =
k
(
eaTk − 1

)
aTk
(
e2aT − 1

) , G2(Tk) =
k2(eaTk − 1

)2

a2T2
k

(
e2aT − 1

) ,

θ(Tk) = k2ξ2 − 2k2(eaTk − 1
)

aTk
(
e2aT − 1

)ξ + k2(eaTk − 1
)2

a2T2
k

(
e2aT − 1

)2

= k2

(
ξ − eaTk − 1

aTk
(
e2aT − 1

)
)2

≥ 0.

(4.2)

Choosing ξ = 1/aT(1 + e−aT), it can be seen that the stability bound is given by

Mβ <
1(((

eaT − 1
)
/aT
(
eaT + 1

))
+ (1/2)

)
k
. (4.3)

Assume that M = 1, and then the condition for uniformly asymptotic stability in pth mean is
given by

1
kβ

>
1
aT

− 2
aT
(
eaT + 1

) + 1
2
. (4.4)

In Example 4.1, we obtain the stability results depicted in Figure 3 (kβopt versus aT).

Example 4.2. Consider PWM feedback system (3.6) with transfer function T(s) = 1/s(1 + s).
The state space representation of this system is given by

A =
(−1 0

0 0

)
, B =

(
1
1

)
, C =

[
1 1
]
. (4.5)

Letting δ = 0.01, and assuming T = 1, we obtain the estimation of the upper bound of Mβ,
that is, Mβ ≤ 1.0394. For Mβ ∈ (0, 1.0394), we compute μmax such that c(μ) = 1 − 2(‖R2‖ +
ξ)√μ − ‖P‖μ > 0 is true for all μ < μmax. Next, we compute δmax such that Kδ2eδ

2T < μmax is
true for all δ < δmax, where K = 4K1(1 +M2β2‖B‖2‖C‖2)e‖A‖2T and K1 = maxs∈[0,T]‖eAT

1 seA1s‖.
In Figure 4, we depict the estimates of the upper bound δmax of ‖G‖ versus Mβ.

We observe that δmax decreases as Mβ increases. When the states are sufficiently far
away from the origin so that Tk = T , and the output of pulse-width modulator is either +M
or −M. Therefore, as M increases (for fixed β), the maximum ‖G‖ allowable to ensure the
pth moment uniform asymptotic stability in mean will decrease; besides, if disturbance of the
feedback system (3.6) is increase (less than δmax), the trivial solution of system (3.6) is the pth
moment uniformly asymptotically stable in mean by decreasing the value of Mβ, as shown
in Figure 4.
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Figure 3: Estimates of upper bounds for kβ for the second-order PWM feedback system of Example 4.1.
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Figure 4: Upper bounds for ‖G‖ when Mβ ∈ (0, 1.0394).

In Figure 5, we plot the sample response of x = (x1 x2)
T with M = 0.2, T = β = 1, G =(

0.02 0
0 0.006

)
and x(0) = (2 0.5)T . We generated 100 sample responses of x(t) and computed the

average ‖x(t)‖ of ‖x(t)‖. Figure 6 shows the average ‖x(t)‖ tending to zero as time t increases.
However, ‖x(t)‖ does not diminish entirely to zero since it is an approximation to the mean
E‖x(t)‖.

5. Conclusions

We studied the critical case of PWM feedback systems with random perturbations and
establish several Lyapunov and Lagrange criteria for the pth moment uniform asymptotical
stability in mean, and then we presented an algorithm to compute the upper bound for the
parameters of PWM and finally gave two numerical examples to verify the effectiveness of
theoretical results. We characterized the relationship between the parameters of PWM and
the coefficients of state vectors of the feedback systems and showed that when the random
disturbance is sufficiently small such that PWM feedback system is the pth moment globally
asymptotically stable in mean provided that the upper bounds of parameters of pulse-width
modulator are selected properly.
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Figure 5: Sample response of PWM feedback system (3.6) in Example 4.2.
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