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We study the instability of the traveling waves of a sixth-order parabolic equation which arises
naturally as a continuum model for the formation of quantum dots and their faceting. We prove
that some traveling wave solutions are nonlinear unstable under H* perturbations. These traveling
wave solutions converge to a constant as x — oo.

1. Introduction

In this paper, we consider the following sixth-order parabolic equation

g—? =Du+D*(u-u’)+g(u), (x,t)€Rx(0,T), (1.1)

where g(u) = a(1 -u?),a > 0.

Equation (1.1) arises naturally as a continuum model for the formation of quantum
dots and their faceting; see [1]. Here u(x, t) denotes the surface slope. The high-order deri-
vatives are a result of the additional regularization energy which is required to form an edge
between two-plane surfaces with different orientations.

During the past years, only a few works have been devoted to the sixth-order parabolic
equation [2-7]. Barrett et al. [2] considered the above equation with m = 2. A finite element
method is presented which proves to be well posed and convergent. Numerical experiments
illustrate the theory.
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Recently, Jiingel and Milisi¢ [5] studied the sixth-order nonlinear parabolic equation

% = [u(%(u(lnu)xx)xx + %((lnu)xx)2>x] . (1.2)

X

They proved the global-in-time existence of weak nonnegative solutions in one space
dimension with periodic boundary conditions.

Evans et al. [3, 4] considered the sixth-order thin film equation containing an unstable
(backward parabolic) second-order term

ou . n _
5 div [|ul"VA2u] - A<|u|” 1u>, n>0, p>1. (1.3)

By a formal matched expansion technique, they show that, for the first critical exponent p =
po=n+1+4/N forn € (0,5/4), where N is the space dimension, the free-boundary problem
with zero-height, zero-contact-angle, zero-moment, and zero-flux conditions at the interface
admits a countable set of continuous branches of radially symmetric self-similar blow-up
solutions uy(x,t) = (T - t)(_N/("N+6))fk(y), y=x/((T- £)1/N+6)y \where T > 0 is the blow-
up time.
Korzec et al. [8] considered the sixth-order equation

5+ e Uyy) =0. (1.4)

up— vy — (u—u .
New type of stationary solutions is derived by an extension of the method of matched asymp-
totic expansion.

In this paper, we study instability of the traveling waves of (1.1). Our main result is as
follows.

Theorem 1.1. All the traveling waves ¢(x — ct) of (1.1) satisfying ¢ € L®(R), ¢ € L®(R) N
L*(R) (n = 1,2,...,6) are nonlinearly unstable in the space H*(R), where ¢™ denotes nth derivative

of .

The stability and instability of special solutions for the higher-order parabolic equation
are very important in the applied fields. Carlen et al. [9] proved the nonlinear stability
of fronts for the Cahn-Hilliard, under L' perturbations. Gao and Liu [10] prove that it
is nonlinearly unstable under H? perturbations, for some traveling wave solution of the
convective Cahn-Hilliard equation. The relevant equations have also been studied in [11, 12].
The main difficulties for treating (1.1) are caused by the principal part and the lack of the
Lyapunov functional. Our proof is based on the principle of linearization. We invoke a general
theorem that asserts that linearized instability implies nonlinear instability.

This paper is organized as follows. In the next section, we find an exact traveling wave
solution for (1.1). In Section 3, we give the proof of our main result.

2. Exact Traveling Wave Solutions

In this section, we construct an exact traveling wave which satisfies all conditions of
Theorem 1.1.
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If p(x — ct) = ¢(z) is a traveling wave solution of (1.1), then ¢ satisfies the ordinary
differential equation

—cg' = p© + (1-3¢*) W — 369" — 18pp" — 24p¢'p" + a(1 - ¢?). (2.1)

Let ¢' = 0¢/0z = k(1 — ¢?). Then

¢ = (=) =201 4),
¢ = a_az (-2k%p(1-¢%)) =26° (-1 +3¢%) (1- ),
o = a_az (2K (-1+3¢7) (1-¢)) = 2K* (8p - 12°) (1 - ¢?), (22)
o = % (2K (8¢ -12¢%) (1- 7)) = 8K° (1 - 9?) (2- 15¢ + 15¢),
P® = a_az <8k5<1 - ¢?) (2 — 157 + 15<p4>) = 16k6(p<1 - (p2> (60(/)2 — 45" - 17).
Substituting the above equations into (2.1), we have
—ck — a = (360k* — 720k®) ¢ + (960k® — 480k*)¢p> + (136k* — 272k®) . (2.3)

Then comparing the order of ¢, we obtain

—ck =a,

360k* — 720k° = 0,

(2.4)
960k® — 480k* = 0,
136k* — 272k° = 0.
A simple calculation shows that k =1/ V2, ¢ = —+/2a. Hence, we get
¢ = —(1-¢) (2.5)
V2
that is,
1, 1+¢ 1
- ln = —Z’ 2.6
2N, = (2.6)
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that is,
e(1/V2)z _ p=(1/V2)z 1
= =tanh —=z. 2.7
(P(Z) e(l/\ﬁ)z + e—(l/\ﬁ)z fa \/QZ ( )
We easily proved that
Jlim g =1, lim p(=) =1 @9

and ¢(z) satisfies the conditions of the Theorem 1.1.

3. Proof of The Result

To prove the Theorem 1.1, we first consider an evolution equation

ou
- 3.1
; Lu+ F(u), 3.1)

where L is a linear operator that generates a strongly continuous semigroup e’ on a Banach
space X, and F is a strongly continuous operator such that F(0) = 0. In [13], authors
considered the whole problem only on space X, that is, the nonlinear operator maps X to
X. However, many equations posses nonlinear terms that include derivatives and therefore,
F maps into a large Banach space Z. Hence, they again got the following lemma.

Lemma 3.1 (see [14]). Assume the following.

(i) X, Z are two Banach spaces with X C Z and ||ul|z < c1||u||x for u € X.

(ii) L generates a strongly continuous semigroup e't on the space Z, and the semigroup e
maps Z into X for t > 0 and Jé llet|lz - xdt = C4 < 0.

(iii) The spectrum of L on X meets the right half-plane, {ReA > 0}.

(iv) F: X — Zis continuous and 3 py > 0,C3 > 0, > 1 such that ||F(u)||z < Collul|%, for
llullx < po.

Then the zero solution of (3.1) is nonlinearly unstable in the space X.
In this paper, we are going to use Lemma 3.1 for the proof of Theorem 1.1.

Definition 3.2. A traveling wave solution ¢(x — ct) of (1.1) is said to be nonlinearly unstable
in the space X, if there exist positive £y and Cy, a sequence {u,} of solutions of (1.1) and a
sequence of time t, > 0 such that ||u,(0) — ¢(x)||x — 0but ||u,(t,) — (- — ctn)|lx > 0.
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If p(x — ct) € H4(R) is a traveling wave solution of (1.1), then letting w(x, t) = u(x, t) -
(p(x — ct), we have

(w+0), = 8 (w+9)+3t[(w+9) - (w+9)’] +a[l - (w+9)’]
= %w +p© + 0% <w +¢ - w® - - 3w - 3w(p2> (3.2)

+ a<1 - w? - ¢? —2wtp>,

that is,
wr = 05w + 3% (w — w® = Bw?p — Bwy?) + a(-w? - 2wy), (3.3)
that is,
wi — ew — (1 - 3(/)2) Ot + 2409 O w + (36(p(p” + 36tp’2>aiw
+ (249" +72¢'¢" ) 0w + (18(/)"2 +24¢'¢" + 6™ + 2a(p>w (34)
= F(w),
where

F(w) = <3<p(4) - a) wW? + 24¢" wdw + 36¢" (Dxw)* + 72¢' 0, wdw
+36(0,w)>0%w + (24 + 24w) 3w w + 36¢" wdAw (3.5)

2
+ (18¢ + 18w) (a§w> +24¢' wd w + 6pwdtw + 3w diw,

with the initial value
w(x,0) = wo(x) = up(x) — p(x). (3.6)

So the stability of traveling wave solutions of (1.1) is translated into the stability of the zero
solution of (3.4). In order to prove Theorem 1.1, taking Z = L?*(R), X = H*(R), we need to
prove that the four conditions of Lemma 3.1 are satisfied by the associated equation (3.4). The
condition (i) is satisfied by our choice of Z and X.

Denote the linear partial differential operator in (3.4) by L = (85 + 8%) — [3¢*0% +
24p¢'03 + (36¢y" +36¢7)0% + 249y + 72¢'¢")dy + (189" + 24¢ " + 6pp® + 2ap)] = Ly —
[3¢20% + 24033 + (36¢y" + 369'*)02 + (24p¢" + 72¢' ")y + (18¢"* + 244" + 699 + 2ap)]
with Ly = 8% + 0%. Then (3.4) may be rewritten in the form of (3.1)

wi = Lw + F(w). (3.7)



6 Abstract and Applied Analysis

Note the F maps H*(R) into L?(R), using the Sobolev embedding theorem, we have

IF@)ll;2 < Cllewllye, € >0, for J|wllps < 1.

So, the condition (iv) is satisfied.

To prove condition (ii) in Lemma 3.1, we need the following two lemmas.

Lemma 3.3. Let Ly = 8% + 0. Then

tLo g <Yt formeRY, 0<t<oo,

el m

lletll <a(t)=5t77, for0<t<l

12— H*
Proof. We write u(x, t) = e'louy(x). By Fourier transformation
A1) = e Dig(@),
e = [ (1+8) " nrae
- [ () e O Py
sSupeﬂw“ﬁJW’(1+8)mmdafd§

¢eR -0

= e/ g 3.

Hence,

el gn . om < 4

On the other hand, letting s = &2, we have

Jullfy < sul};f(s) [ lao(@)[de,

with f(s) = (1+ s)te 2= 0. Elementary computation shows that

supf(s) < (% + %t—m)e(s/zm_

s>0

(3.8)

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Thus,
4 1 172
It Ol < (5 +55°) el
o (3.15)
4 1
lle™ll 2 s < <§ + gt%) e/t <525, for 0 <t<1,
since e®/2)t < ¢%/27 < 2. Thus, Lemma 3.3 has been proved. O

Lemma 3.4. Let L = (35 + 8%) — [3¢20% + 24¢¢/0% + (36p¢" + 36¢/*) 2 + (24pp" + 72¢/¢")d, +
(18(p"2 +24¢'¢" +6pp™W +2ap)| = Lo—[3¢?d%+24p¢' 03+ (36¢p¢" +36(p’2)6§ + (249" +72¢' ") 05+
(18¢"* + 24¢/ " + 609p® + 2ap)] with Ly = 85 + 8%, ) € L2(R),i = 0,1,2,3,4. Then

lle |2 e SCit?3, for0<t<1, (3.16)

lle™ |l .t SCa<oo, for0<t<1. (3.17)
Proof. Consider the initial value problem

up = Lu = Lou — 3¢*0%u — 24¢¢'0%u — (36(p<p” + 3690’2>aiu
- (24p¢" +72¢'¢") 0xu — (18(;)"2 +24¢'¢" + 6™ + Za(p> u, (3.18)

u(x,0) = up(x).

Then u(x,t) = e'lug(x), t > 0, x € R, thus

t
u(x, t) = eMouy - f etk [3(;)26‘}(11 + 2409 d3u + (36(p(p" + 36(/)'2)63(11
0
+ (24¢9" +72¢'¢")0xu (3.19)

+ <18(,0"2 +24¢'¢" + 60 + 2a(p> u] dr.

Denote A = [|¢l|z=, B = [[¢/ll=, C = ll¢"ll=, D = ll¢" =, E = [l | and

M =3A2% + 24AB + 36AC + 36B2 + 24AD + 72BC + 18C? + 24BD + 6AE + 2aA.  (3.20)
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Then, we have

t
[ [t ot
t
T T T T Y e
t
- 2
o I8t N € P e ] e e

@alloll N9l + 72019 W Ml | ol e B2

H*— H*

t

+f ” e(t=7)Lo
0
t

+f ” e(t=7)Lo
0

2
o (18112 + 240 ]l

v6lloll o], +2allpll,. ) lulade

t
< e g+ M [ (o),
0

where we use u(t) to denote u(-, t).
By iteration,

t T
()l < €2 gl s + Mf e/ 2= [6(4/27)T||u0||H4 + Mf e(4/27)(T_s)||u(5)||H4d5] dr
0 0
t t AT
= 4 ug | e + M f W ug|| ppedt + MP f f 42D u(s) | ppudsdT
0 070
A
< 6(4/27)t||u0||H4 + Mte(4/27)t||u0||H4 + MZI [I 8(4/27)“_5)||u(5)||H4dT] ds
0]/s
t
< e/ g+ Mt ol + M2 [ (o) s
0

t
< 64/27||u0||H4 + Me4/27||u0||H4 + 64/27M2I [u(s)||uds, forO<s<T<t<1.
0

(3.22)

Let v(t) = fé l|lu(s)|| e+ ds. Then

do(t

at < (e + et M) |lug|| s + e MPo(t), for 0<t<1. (3.23)
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_e@/27) pp2y

Multiplying both sides of the above inequality by e , we have

d(ee""Miu(t))

o < e M4 (1 4 M) |lugllys, Where 0 <t < 1. (324)
Integrating the above inequality with respect to t over (0,t), we obtain
e Mty (1) < It e @M 4127 (1 4 M) |luo|| s, (3.25)
0
that is,
o(t) < e TM f e Mg/ 27 (1 4 M)|[ug| e ds. (3.26)
0

Observing that v(t) = fé |lu(s)||prads is bounded and substituting the above inequality into
(3.22), we get

t
l(®)llgzs < €7 luollyzs + Me*' gl o + &4/7 M fo [IOIFE o)

<c<ow, for0<t<1, >0,

thus (3.17) has been proven.
Next, we prove the inequality (3.16). Clearly, we have

otul| dr

12

)l < [|e™ 3ol

t
(t-1)Ly
L2—>H4||u0||L2 +f0 “e 12— H*

t

+ J‘ ”e(t—r)Lo
0
t

N J‘ [t
0
t

+J‘ ||e(t—T)LU
0

Oull dr

12

L2_>H424||(P||L°° ”(P/”LDo

2
oy

o1 (36100971 + 3602 |2t

n

o Aol Nl N e (3.28)

72019 - " | )0l 2w

2
181" [ 1. +24{l"[| - [l o0" I

L2~>H4<

t
N J’ [t
0

+6”‘P”L°°H‘P(4) . +2al|]] . ) lull 2
t

< a(t)||uoll2 + MJ a(t — 7)||u(7)||gsdr,
0

where a(t) is defined in Lemma 3.3, and we use u(t) to denote u(-, t).
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By iteration,

t T
|mmmﬁsMﬂwﬂp+M£fu—ﬂPwm%mﬂmfhaw—wwwmm%ch

= a(t)|luoll> + M L a(t - 7)a(7)|[uol| 2dT (3.29)

[
+ M? f f a(t - t)a(t - s)||u(s)|| ysdsdr.
0/o
The second term on the right of (3.29) is

t t
Mf a(t — 7)a(7)||luoll2dT = M||uo||;2 f 5(t — 1) 2357723 dr
0 0

Z>72/3<T>—2/3dT (3.30)

t
=25M 431 - -
ol | 2(1-3) (3

= 25MCst 3 lugll;.,  O<t<l,

where C3 = f; (1-r) 444y, By exchanging the order of integration, we get from the third
term on the right side of (3.29),

It IT a(t—t)a(t — s)||u(s)|| gudsdr = J‘t I:f at-7)a(r - s)d’r] le(s)|| gads, (3.31)
0Jo 0

S

then

It a(t-7)a(t —s)dr = 25 J‘t (t—1)23(r-s)3dr

s (3.32)
=25C5(t-s)""%, 0<s<t<l.
Therefore (3.28)-(3.32) imply
lu(®)llpzs < [a(t) +25CsME| fuoll
, (3.33)
+ 25c3M2f (t =) u(s)|ljpeds, 0<t<1.
0
From (3.17), we know ||u(t)|| g+ < Co|lug||g, 0 <t < 1. Then
l(®)llpzs < [a(t) + 25CMEY2] o]l 2
(3.34)

75
+ 7C3C2M2||uo||H4t2/3, 0<t<1.
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Therefore, there exists a t*, such that

lu@®)|lgge < C1t723||ugll;., 0<t <t <1, C;>0. (3.35)

So, we proved the inequality (3.16).
Hence (3.17) is proven and proof of Lemma 3.4 is finished. O

By Lemma 3.4, the condition (ii) is proved.
We now proceed to verify condition (iii) of Lemma 3.1. Observing that if u(x,t)
satisfies

ou(x,t)  0°u  o'u ,0u ,0%u " 2\ 02U
5 o o O g 209 g — (30w 3607 53

(3.36)
— (2499" +72¢'¢") S—Z - (1890"2 +24¢'¢" + 69 + 2atp> u,

then u(x, s + t) also satisfies the above equation. By uniqueness of solution, we know that L
generates a strongly continuous semigroup on the Banach space H*(R) (see [15] p.344). By
Fourier transformation, the essential spectrum of Ly on H*(R) is

0(Lo) > {~& +¢* | ¢ €R). (3.37)

The curve A = —¢° + ¢* meets the vertical lines Red = a for —o0 < a < 4/27 because —oo <
g0+t <4/27.
We now prove that the same curve belongs to the essential spectrum of L.

Lemma 3.5. The essential spectrum of L on H*(R) contains that of Ly.

Proof. Let ¢ € Rand let A = P(§) = —¢° + ¢*. Following Schechter [16], A € o(L) if there exists
a sequence {¢,} C H*(R) with

nllrs =1, (L = Déullgs — 0, (3.38)

and {¢,} does not have a strongly convergent subsequence in H*(R). Here we use the
definition A ¢ o(L) if and only if L — A is Fredholm with index zero. Now let & #0 be a
C* function with compact support in (0, o0). Define

cne's*¢o(x/n)
n(x) = —————=, =12,..., 3.39
b = 2 (339)
where ¢, is chosen so that ||¢,||g+ = 1. In fact,
nllrz = calléollz, 1= lnllps < ken, (3.40)

for some positive constant k. Hence ¢, > 1/k > 0. Since ||¢,||r= — 0 but ||&,]|12 is bounded
away from zero, {,} can have no convergent subsequence in L?(R).
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It remains to show that ||[(L — A)¢,||g+ — 0. We write

L= 1= Lo~ [3p%0% + 2499/} + (369" + 369" )52
(3.41)

+(249p¢" +72¢'¢")0x + <18(p"2 +24¢'¢" + 69 + 2a(p>].

A simple calculation shows that

(~i)°PO) ()¢l (x/n)

sln(1/2)+s

7

(Lo~ Dén(x) = cue™ Y

1<s5<6

(~i)° PO @)™ (x/n)

sln(3/2)+s

(Lo = V)én(x) = ié(Lo = 1)&u(x) + cne™ 3

1<s5<6

7

(~i)°P) (@)™ (x/n)

sln(B/2)+s

0* (Lo = M)én(x) = =& (Lo = N)&n(x) +2idcne™ Y

1<s<6

(=i)°PO) (&) (x/n)

7

+ e’ Z

= slp(5/2)+s
_\SD(s) (s+1)

3 _ _ a3 _ a2 ikx (=i)°P¥(&)¢y " (x/n)
0% (Lo — M)&n(x) = —i&% (Lo — V)& (x) — 3¢%cpe KZS% A

sice oite 5 CDPO@G™ (x/n)

+ 3iécue 1§<6 G/

o CPORE (x/n)
+cne Z sl (7/2)+s ’

1<s<6

(=) PO (@)™ (x/n)

S!n(3/2)+s

0* (Lo = V)én(x) = &4 (Lo = 1)én(x) — 4igcpe’™

1<s<6

o (F)TPO @S (x /)
~ 6¢%cpe® Z s!n(5/3)+s

1<s<6

(~)*PO) ()¢ (x/n)

. iéx
+4iécpe 1<Z,S<6 sln(7/2)+s
(=) PO ()& (x/n)

+ c et Z

147(9/2)+s
1<5<6 stn©/2)

(3.42)
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Thus,

(Lo = X)én (x) |z
|P) ()| cnl[&S (x/m)

sln(1/2)+s

12

< (LR RP ") X

1<s<6

1PO@ | ce/m)|
+ (12081 + 3P + 412 ) 1<ZS<6 S/ -
PO ea|85 e/m)| (3:43)
+ <1 +3[g] + 6|§|2> > S!n(50/2)+s -

1<s<6

3
1+4) 3 PO@ e e/,
+(1+
1<5<6 stn(7/2+s
PO eal6™ @/m) .
Y — 0, asn— oo.
1<5<6 sn

Moreover, for any positive integer m, ||0%'¢,||.» — 0,asn — oo, we have

lpvoie|, <|lotel. |3, —o
0 397038 i < ||83¢. ;”3(/)2 i2+ 0t ;||6<ptp’||iz —0,
& poss] |, < o5l |3, + 205 6w I + osea]l |0 + 609, — 0.
RN [3<pzai§n] i < |lo7%¢, ;||3<p2 ;+3 908, ;I|6<p<p’||iz
I e o L e e LR )

o prratel |, < ot oo, + 4loie Insee + 61

e lope I + 60s|low? + 69w,
+ ||0%8x ;nl&p"z+24(p’tp"’+6tp(p(4)“iz 0.

(3.44)

From the assumptions on ¢, we obtain

2
<[jo32] . Iso 2 —o,

2
LZ

2409922,

< 0, iw 244 + 24(p(p"||i2 —0,

2
Ot . 12409 |12 +

2
12

0x 2499032,
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o249 22|, < |22 ot |[249” + 299"

2
12

2
12409'|I7 +2

2
12

+ |03

" 17299 + 249" 2 — 0,

< ’ ||24(p’2 + 240" ’
= L= I

0

2
0%¢&, . ||24(p(,0'||i2 +3

2
LZ

03 [249¢/838,

+3

a4 2 720 0" + 2400 2
x| . 1720°0" + 240" || 12

2 2
o ||72(p"2 +96¢'¢" + 24pp™® ||L2 —0,

<

a%¢, ; ||24(p’2 + 24(p(p"||i2

2
| 12409 |12 + 4

2
12

012409024

2
+6|[02¢, Lm||72(p’(p” +24(,o(,o’"||i2

2 12 1o (4) 2
+4 Lw||72(p +96¢'¢" + 249 |

0l

+ |93

(3.45)

Similarly, we have

| (600" + 360 3¢, ; < |32, ; 360" + 3690’2”; 0,
o.[(36py" + 36922, < |02 ||360w” + 3697
+||62¢. ;”108(;)'(;)" +36p¢" ||7. — 0,
32 [(3609" + 360022, i < ||ote, ;H%gogo" +36(p'2||i2
+ 2|28 1108¢/g" + 3609”1
+ [|e2e. ; [108¢" + 1449/ + 36(p(p(4)||i2 —0,

2
12

03 [(360y" + 360 )02¢,]

2 4 2 ’on |2
,*3]10%6n | .. [1108¢'¢" + 369¢" ||

L

<|loe,|I° ”36 " 4+ 360
< ||0%n )., ||360%" + 36¢

+ 3|82, ; HlOS(p"z +144¢'¢" + 36pp® ||i

2 2
o 2 360973 + 1809/ ™ + 36(p(p(5)”L2 0,
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ot [ (3609 + 3697 ) 324 iz

< |0%¢n

L [osee +366°]

+4

2| 110800” + 3600" ||
2|, 1108¢'¢" + 360¢" || 1.

+6|0%¢, ; ||108(p"2 +144¢'¢" + 36¢pp™ ||i2

2 2
+4 . ||360¢"g" + 180979 + 3695 ||

0

2 2
+ |02 | ||360¢" + 540979 + 2169’9 + 369 ||, — 0,

| 240" +72¢/¢")dudull7> < 10xéallF- |2400" + 724" ||, — 0,

2
102 [(2499" + 729/ 9" 0l 72 < || 02| [12409" + 7291”1

2 ;m 72 (4) 2
+10uallte |69'g" + 729 + 2299 | — 0,

<

2
|| [12409" + 729" I

2
12

0 [(2499" + 72¢'¢") 0xéy ]

2|2 [|osw'e” + 7297 + 209

2
+18.8all2||[2409" " + 120979 + 24990 || — 0,

03[ (249" +72¢'¢") 0xén]

2
LZ

<

2
Ot . l12409" + 720" |1

2
+3

2
aién ., ||96(P,‘PW n 72()0"2 " 24()0(11(4)

12

+3|[62¢, ;”240(,)"(,;"’ +120¢'p + 240 ||i

2
+ 110384l [| 2409 + 36099 + 14499 + 2499 || | — 0,

2
12

0 [(2499" +72¢'¢") 0, ]

S |24(P(PI" + 72(pl(plllli2 + 4 a;lcén im ”96(PI(PI/I + 72(1)"2 + 24(P(P(4) ||i2

2
o

+6 6;1@,1 |240(p"(p"’ + 120()0'()0(4) + 24(p(p(5)

2
12

2
o

2 2
+4 . ||240<p"'2 +3609"p + 14499 + 2499 ||

0

2
+ [18x&u] - [| 8409 9@ + 504¢"p® + 168¢'® + 24490 ||L2 0.

(3.46)
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In addition,

n2 ;oom (4) 2
18¢p"" + 24¢'¢p" + 6¢pp*™ + Za(p”L2 — 0,

2 2
LS llénllzo

” <18(p"2 +24¢'¢" + 6™ + 2a<p> &

2
12

Ox [(18(/)”2 +24¢'¢" + 6(p(p(4) + Zaq)) §n]

2
< 10xall 189" + 249" + 6 + 20

2
+ 12l [[609"¢” + 309’9 + 699 + 20| , — 0,

2
LZ

o2 [(18(/)”2 +24¢'¢" + 60 + Zaq)) §n]

2 2
< ||02¢, . ”18(,0"2 +24¢'¢" + 6™ + Za(p”L2
2
+2]0allz- | 609"0" + 3090 + 609 + 2a¢||
2
+[1&n12 | 60¢" + 904" p® + 360 + 6499 + 2ap" ||L2 —0,

2
12

o [(18(/)”2 +240¢'¢" + 6 + 2a(p> gn]

2 2
< (|83, . ||18(p"2 +24¢'¢" + 6™ + 2a(p”L2

+3)|02¢&, ; ||60(p"(p'" +30¢' ™ + 6¢pp®) + 2a<p'”iZ

2
+ 31105l | 609" + 909" ® + 360" +699® +2ag"|| |

2
+ [|€4]17-- 12109 ® + 126" ) + 42¢/0© + 67 + 2a¢” 2 0,

2
LZ

ot [(18g0”2 +24¢'¢" + 69 + 2atp> §n]

2 2
< ||0%&n L Hl&p”2 +24¢'¢" + 6™ + 2(1(,0||L2

+4

02, [Jo0y"s + 3059 + 6 + 20|,

2 2
+ 6028, . ”60(,0"'2 +90¢" ™ + 360/ + 6¢¢p© + 2(1(;)"“L2

2
+ 4]|0x&nl7-|2109" @ + 126" + 42¢'© + 67 + Za(p'"”L2

2
— 0.

2
210(p)" + 12”9 + 168" 9 + 4890 + 6pp® + 22
12

2
+ [1énllz

(3.47)
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Thus,

397838 + 2409/ 338, + (369" + 3697 )82k, + (2499 + 7299 )3l

+<18(p”2 +24¢'¢" + 6™ + 2a(p>§n o 0, asn— co. 249

So from the estimates above,
(L =X)Eullgr — 0, asn — oo. (3.49)
The proof of Lemma 3.5 is completed. O

Therefore all the four conditions of Lemma 3.1 are satisfied by the linearized equation
(3.4) and Theorem 1.1 has been proved.
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