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We obtain a unique common triple fixed point theorem for hybrid pair of mappings in metric
spaces. Our result extends the recent results of B. Samet and C. Vetro (2011). We also introduced a
suitable example supporting our result.

1. Introduction

The study of fixed points for multivalued contraction mappings using the Hausdorff metric
was initiated by Nadler [1].

Let (X, d) be a metric space. We denote CB(X) the family of all nonempty closed and
bounded subsets of X and CL(X) the set of all nonempty closed subsets of X. For A,B ∈
CB(X) and x ∈ X, we denote D(x,A) = inf{d(x, a) : a ∈ A}. Let H be the Hausdorff metric
induced by the metric d on X, that is,

H(A,B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d
(
y,A

)}
, (1.1)

for every A,B ∈ CB(X).
It is clear that for A,B ∈ CB(X) and a ∈ A, we have d(a, B) ≤ H(A,B).

Definition 1.1. An element x ∈ X is said to be a fixed point of a set-valued mapping T : X →
CB(X) if and only if x ∈ Tx.
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In 1969, Nadler [1] extended the famous Banach contraction principle [2] from single-
valued mapping to multivalued mapping and proved the following fixed point theorem for
the multivalued contraction.

Theorem 1.2 (see, Nadler [1]). Let (X, d) be a complete metric space and let T be a mapping from
X into CB(X). Assume that there exists c ∈ [0, 1) such that

H
(
Tx, Ty

) ≤ cd
(
x, y

)
, (1.2)

for all x, y ∈ X. Then, T has a fixed point.

Lemma 1.3 (see, Nadler [1]). Let A,B ∈ CB(X) and α > 1. Then for every a ∈ A, there exists
b ∈ B such that d(a, b) ≤ αH(A,B).

Lemma 1.4 (see, Nadler [1]). Let α > 0. If A,B ∈ CB(X) with H(A,B) ≤ α, then for each a ∈ A,
there exists b ∈ B such that d(a, b) ≤ α.

Lemma 1.5 (see, Nadler [1]). Let {An} be a sequence in CB(X) with limn→+∞H(An,A) = 0, for
A ∈ CB(X). If xn ∈ An and limn→+∞d(xn, x) = 0, then x ∈ A.

The existence of fixed points for various multivalued contractive mappings has been
studied by many authors under different conditions. For details, we refer the reader to [1, 3–
11] and the references therein.

The concept of coupled fixed point for multivaluedmapping was introduced by Samet
and Vetro [12], and later several authors, namely, Hussain and Alotaibi [13], Aydi et al. [14],
and Abbas et al. [15], proved coupled coincidence point theorems in partially ordered metric
spaces.

Definition 1.6 (see, Samet and Vetro [12]). Let F : X × X → CL(X) be a given mapping. We
say that (x, y) ∈ X ×X is a coupled fixed point of F if and only if

x ∈ F
(
x, y

)
, y ∈ F

(
y, x

)
. (1.3)

Definition 1.7 (see, Hussain and Alotaibi [13]). Let the mappings F : X × X → CB(X) and
g : X → X be given. An element (x, y) ∈ X ×X is called

(1) a coupled coincidence point of a pair {F, g} if gx ∈ F(x, y) and gy ∈ F(y, x);

(2) a coupled common fixed point of a pair {F, g} if x = gx ∈ F(x, y) and y = gy ∈
F(y, x).

Berinde and Borcut [16] introduced the concept of triple fixed points and obtained a
tripled fixed point theorem for single valued map.

Now we give the following.

Definition 1.8. Let X be a nonempty set, T : X × X × X → 2X (collection of all nonempty
subsets of X). f : X → X.

(i) The point (x, y, z) ∈ X ×X ×X is called a tripled fixed point of T if

x ∈ T
(
x, y, z

)
, y ∈ T

(
y, x, y

)
, z ∈ T

(
z, y, x

)
. (1.4)
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(ii) The point (x, y, z) ∈ X ×X ×X is called a tripled coincident point of T and f if

fx ∈ T
(
x, y, z

)
, fy ∈ T

(
y, x, y

)
, fz ∈ T

(
z, y, x

)
. (1.5)

(iii) The point (x, y, z) ∈ X ×X ×X is called a tripled common fixed point of T and f if

x = fx ∈ T
(
x, y, z

)
, y = fy ∈ T

(
y, x, y

)
, z = fz ∈ T

(
z, y, x

)
. (1.6)

Definition 1.9. Let T : X × X × X → 2X be a multivalued map and f be a self map on X. The
Hybrid pair {T, f} is called w-compatible if f(T(x, y, z)) ⊆ T(fx, fy, fz) whenever (x, y, z)
is a tripled coincidence point of T and f .

2. Main Results

Theorem 2.1. Let (X, d) be a metric space and let T : X × X × X → CB(X) and f : X → X
mappings satisfying

(2.1.1) H(T(x, y, z), T(u, v,w)) ≤ jd(fx, fy) + kd(fy, fv) + ld(fz, fw), for all x, y, z,
u, v,w ∈ X and j, k, l ∈ [0, 1) with j + k + l ≤ h < 1, where h is a fixed number,

(2.1.2) T(X ×X ×X) ⊆ f(X) and f(X) is a complete subspace of X.

Then the maps T and f have a tripled coincidence point.
Further, T and f have a tripled common fixed point if one of the following conditions holds.

(2.1.3) (a) {T, f} is w-compatible, there exist u, v,w ∈ X such that limn→∞fnx = u,
limn→∞fny = v and limn→∞fnz = w, whenever (x, y, z) is a tripled coincidence point
of {T, f} and f is continuous at u, v,w.

(b) There exist u, v,w ∈ X such that limn→∞fnu = x, limn→∞fnv = y and
limn→∞fnw = z whenever (x, y, z) is a tripled coincidence point of {T, f} and f is
continuous at x, y, and z.

Proof. Let x0, y0, z0 ∈ X. From (2.1.2), there exist sequences {xn}, {yn}, and {zn} in X such
that fxn+1 ∈ T(xn, yn, zn), fyn+1 ∈ T(yn, xn, yn) and fzn+1 ∈ T(zn, yn, xn), n = 0, 1, 2, 3, . . ..

For simplification, denote

dx
n = d

(
fxn−1, fxn

)
, d

y
n = d

(
fyn−1, fyn

)
, dz

n = d
(
fzn−1, fzn

)
. (2.1)
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From (2.1.1), we obtain

dx
2 = d

(
fx1, fx2

)
≤ H

(
T
(
x0, y0, z0

)
, T

(
x1, y1, z1

))
+ h

≤ jd
(
fx0, fx1

)
+ kd

(
fy0, fy1

)
+ ld

(
fz0, fz1

)
+ h

= jdx
1 + kd

y

1 + ldz
1 + h,

(i)

d
y

2 = d
(
fy1, fy2

)
≤ H

(
T
(
y0, x0, y0

)
, T

(
y1, x1, y1

))
+ h

≤ jd
(
fy0, fy1

)
+ kd

(
fx0, fx1

)
+ ld

(
fy0, fy1

)
+ h

= kdx
1 +

(
j + l

)
d
y

1 + h,

(ii)

dz
2 = d

(
fz1, fz2

)
≤ H

(
T
(
z0, y0, x0

)
, T

(
z1, y1, x1

))
+ h

≤ jd
(
fz0, fz1

)
+ kd

(
fy0, fy1

)
+ ld

(
fx0, fx1

)
+ h

= ldx
1 + kd

y

1 + jdz
1 + h,

(iii)

dx
3 = d

(
fx2, fx3

)
≤ H

(
T
(
x1, y1, z1

)
, T

(
x2, y2, z2

))
+ h2

≤ jd
(
fx1, fx2

)
+ kd

(
fy1, fy2

)
+ ld

(
fz1, fz2

)
+ h2

= jdx
2 + kd

y

2 + ldz
2 + h2

≤ j
(
jdx

1 + kd
y

1 + ldz
1 + h

)
+ k

(
kdx

1 +
(
j + l

)
d
y

1 + h
)

+ l
(
ldx

1 + kd
y

1 + jdz
1 + h

)
+ h2

=
(
j2 + k2 + l2

)
dx
1 +

(
2jk + 2lk

)
d
y

1 +
(
2jl

)
dz
1 + h2 +

(
j + k + l

)
h

=
(
j2 + k2 + l2

)
dx
1 +

(
2jk + 2lk

)
d
y

1 +
(
2jl

)
dz
1 + 2h2,

(iv)

d
y

3 = d
(
fy2, fy3

)
≤ H

(
T
(
y1, x1, y1

)
, T

(
y2, x2, y2

))
+ h2

≤ jd
(
fy1, fy2

)
+ kd

(
fx1, fx2

)
+ ld

(
fy1, fy2

)
+ h2

= kdx
2 +

(
j + l

)
d
y

2 + h2

≤ k
(
jdx

1 + kd
y

1 + ldz
1 + h

)
+
(
j + l

)(
kdx

1 +
(
j + l

)
d
y

1 + h
)
+ h2

=
(
2jk + lk

)
dx
1 +

[(
j + l

)2 + k2
]
d
y

1 + kldz
1 +

(
j + k + l

)
h + h2

≤ (
2jk + lk

)
dx
1 +

[(
j + l

)2 + k2
]
d
y

1 + kldz
1 + 2h2,

(v)
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dz
3 = d

(
fz2, fz3

)
≤ H

(
T
(
z1, y1, x1

)
, T

(
z2, y2, x2

))
+ h2

≤ jd
(
fz1, fz2

)
+ kd

(
fy1, fy2

)
+ ld

(
fx1, fx2

)
+ h2

= jdz
2 + kd

y

2 + ldx
2 + h2 = ldx

2 + kd
y

2 + jdz
2 + h2

≤ l
(
jdx

1 + kd
y

1 + ldz
1 + h

)
+ k

(
kdx

1 +
(
j + l

)
d
y

1 + h
)

+ j
(
ldx

1 + kd
y

1 + jdz
1 + h

)
+ h2

=
(
2jl + k2

)
dx
1 + 2

[
jk + lk

]
d
y

1 +
(
j2 + l2

)
dz
1 +

(
j + k + l

)
h + h2

≤
(
2jl + k2

)
dx
1 + 2

[
jk + lk

]
d
y

1 +
(
j2 + l2

)
dz
1 + 2h2.

(vi)

Let A =
[

j k l
k j+l 0
l k j

]
denoted by

[
a1 b1 c1
d1 e1 f1
g1 b1 h1

]
.

Clearly, a1 + b1 + c1 = d1 + e1 + f1 = g1 + b1 + h1 = (j + k + l) ≤ h < 1.
Then,

A2 =

⎡
⎢⎣j

2 + k2 + l2 2jk + 2lk 2jl
2jk + lk

(
j + l

)2 + k2 kl
2jl + k2 2jk + 2lk j2 + l2

⎤
⎥⎦ denote A2 by

⎡
⎣a2 b2 c2
d2 e2 f2
g2 b2 h2

⎤
⎦. (2.2)

It is clear that a2 + b2 + c2 = d2 + e2 + f2 = g2 + b2 + h2 = (j + k + l)2 ≤ h2 < 1.
Now we prove by induction that

An =

⎡
⎣an bn cn
dn en fn
gn bn hn

⎤
⎦, (2.3)

where

an + bn + cn = dn + en + fn = gn + bn + hn =
(
j + k + l

)n ≤ hn < 1. (2.4)

Equation (2.3) is true for n = 1, 2.
Assume that (2.3) is true for some n. Consider

An+1 = An ·A =

⎡
⎣an bn cn
dn en fn
gn bn hn

⎤
⎦
⎡
⎣j k l
k j + l 0
l k j

⎤
⎦

=

⎡
⎢⎣
jan + kbn + lcn kan +

(
j + l

)
bn + kcn lan + jcn

jdn + ken + lfn kdn +
(
j + l

)
en + kfn ldn + jfn

jgn + kbn + lhn kgn +
(
j + l

)
bn + khn lgn + jhn

⎤
⎥⎦.

(2.5)
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We have

an+1 + bn+1 + cn+1 =
(
j + k + l

)
(an + bn + cn) =

(
j + k + l

)n+1 ≤ hn+1 < 1. (2.6)

Similarly, we have

dn+1 + en+1 + fn+1 = gn+1 + bn+1 + hn+1 =
(
j + k + l

)n+1 ≤ hn+1 < 1. (2.7)

Thus (2.3) is true for all +ve integer values of n.
Now from (i)–(vi) and continuing this process, we get

⎡
⎢⎢⎢⎢⎣
dx
n+1

d
y

n+1

dz
n+1

⎤
⎥⎥⎥⎥⎦ ≤

⎡
⎣an bn cn
dn en fn
gn bn hn

⎤
⎦
⎡
⎢⎢⎢⎢⎣
dx
1

d
y

1

dz
1

⎤
⎥⎥⎥⎥⎦ +

⎡
⎣nh

n

nhn

nhn

⎤
⎦, (2.8)

for all n = 1, 2, 3, . . .. That is,

dx
n+1 ≤ and

x
1 + bnd

y

1 + cnd
z
1 + nhn,

d
y

n+1 ≤ dnd
x
1 + end

y

1 + fnd
z
1 + nhn,

dz
n+1 ≤ gnd

x
1 + bnd

y

1 + hnd
z
1 + nhn,

∀n = 1, 2, 3, . . . .

(2.9)

For m > n, we have

d
(
fxm, fxn

) ≤ d
(
fxm, fxm−1

)
+ d

(
fxm−1, fxm−2

)
+ · · · + d

(
fxn+2, fxn+1

)
+ d

(
fxn+1, fxn

)
= dx

m + dx
m−1 + · · · + dx

n+2 + dx
n+1

≤ am−1dx
1 + bm−1d

y

1 + cm−1dz
1 + (m − 1)hm−1

+ am−2dx
1 + bm−2d

y

1 + cm−2dz
1 + (m − 2)hm−2

+ · · · + an+1d
x
1 + bn+1d

y

1 + cn+1d
z
1 + (n + 1)hn+1

+ and
x
1 + bnd

y

1 + cnd
z
1 + nhn



Abstract and Applied Analysis 7

≤ (am−1 + am−2 + · · · + an+1 + an)dx
1

+ (bm−1 + bm−2 + · · · + bn+1 + bn)d
y

1

+ (cm−1 + cm−2 + · · · + cn+1 + cn)dz
1

+
[
(m − 1)hm−1 + (m − 2)hm−2 + · · · + (n + 1)hn+1 + nhn

]

≤
(
hm−1 + hm−2 + · · · + hn+1 + hn

)(
dx
1 + d

y

1 + dz
1

)
+

m−1∑
j=n

jhj

≤ hn

1 − h

(
dx
1 + d

y

1 + dz
1

)
+

m−1∑
j=n

jhj −→ 0 as n −→ ∞,

because 0 ≤ h < 1.

(2.10)

Hence {fxn} is a Cauchy. Similarly, we can show that {fyn} and {fzn} are Cauchy.
Suppose f(X) is complete, the sequences {fxn}, {fyn}, and {fzn} are convergent to

some α, β, γ in f(X), respectively. There exist x, y, z ∈ X such that α = fx, β = fy, and γ = fz.
Now, we have

d
(
T
(
x, y, z

)
, α
) ≤ d

(
T
(
x, y, z

)
, fxn+1

)
+ d

(
fxn+1, α

)
≤ H

(
T
(
x, y, z

)
, T

(
xn, yn, zn

))
+ d

(
fxn+1, α

)
≤ jd

(
fx, fxn

)
+ kd

(
fy, fyn

)
+ ld

(
fz, fzn

)
+ d

(
fxn+1, α

)
= jd

(
α, fxn

)
+ kd

(
β, fyn

)
+ ld

(
γ, fzn

)
+ d

(
fxn+1, α

)
.

(2.11)

Letting n → ∞, we get d(T(x, y, z), α) ≤ 0 so that α ∈ T(x, y, z). That is, fx ∈ T(x, y, z).
Similarly, we can show that fy ∈ T(y, x, y) and fz ∈ T(z, y, x). Thus (x, y, z) is a tripled
coincidence point of T and f . Suppose (2.1.3) (a) holds.

Since (x, y, z) is a tripled coincidence point of T and f , there exist u, v,w ∈ X such that
limn→∞fnx = u, limn→∞fny = v and limn→∞fnz = w.

Since f is continuous at u, v and w, we have fu = u, fv = v and fw = w.
Since fx ∈ T(x, y, z), we have f2x ∈ f(T(x, y, z)) ⊆ T(fx, fy, fz).
Since fy ∈ T(y, x, y), we have f2y ∈ f(T(y, x, y)) ⊆ T(fy, fx, fy).
Since fz ∈ T(z, y, x), we have f2z ∈ f(T(z, y, x)) ⊆ T(fz, fy, fx).
Then (fx, fy, fz) is tripled coincidence point of T and f .
Similarly, we can show that (fnx, fny, fnz) is a tripled coincidence point of T and f .
Also it is clear that

fnx ∈ T
(
fn−1x, fn−1y, fn−1z

)
,

fny ∈ T
(
fn−1y, fn−1x, fn−1y

)
,

fnz ∈ T
(
fn−1z, fn−1y, fn−1x

)
.

(2.12)
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From (2.1.1), we have

d
(
fu, T(u, v,w)

) ≤ d
(
fu, fnx

)
+ d

(
fnx, T(u, v,w)

)
≤ d

(
fu, fnx

)
+H

(
T
(
fn−1x, fn−1y, fn−1z

)
, T(u, v,w)

)
≤ d

(
fu, fnx

)
+ jd

(
fnx, fu

)
+ kd

(
fny, fv

)
+ ld

(
fnz, fw

)
.

(2.13)

Letting n → ∞, we obtain

d
(
fu, T(u, v,w)

) ≤ 0, (2.14)

which implies that

fu ∈ T(u, v,w). (2.15)

Thus u = fu ∈ T(u, v,w). Similarly, we can show that v = fv ∈ T(v, u, v) and w = fw ∈
T(w,v, u). Thus (u, v,w) is a tripled common fixed point of T and f . Suppose (2.1.3) (b)
holds.

Since (x, y, z) is a tripled coincidence point of {T, f}, there exist u, v,w ∈ X such that
limn→∞fnu = x, limn→∞fnv = y and limn→∞fnw = z.

Since f is continuous at x, y and z, we have fx = x, fy = y and fz = z. Thus x = fx ∈
T(x, y, z), y = fy ∈ T(y, x, y) and z = fz ∈ T(z, y, x). Hence (x, y, z) is a tripled common
fixed point of {T, f}.

The following example illustrates Theorem 2.1.

Example 2.2. Let X = [0, 1], T : X × X × X → CB(X) and f : X → X defined as T(x, y, z) =
[0, (1/8) sinx + (1/4) siny + (1/3) sin z] and fx = (7/8)x. Then

H
(
T
(
x, y, z

)
, T(u, v,w)

)
=
∣∣∣∣
(
1
8
sinx +

1
4
siny +

1
3
sin z

)

−
(
1
8
sinu +

1
4
sinv +

1
3
sinw

)∣∣∣∣
≤ 1

8
|sinx − sinu| + 1

4
∣∣siny − sinv

∣∣
+
1
3
|sin z − sinw|

≤ 1
8
|x − u| + 1

4
∣∣y − v

∣∣ + 1
3
|z −w|

=
1
7

∣∣∣∣78x − 7
8
u

∣∣∣∣ + 2
7

∣∣∣∣78y − 7
8
v

∣∣∣∣ + 8
21

∣∣∣∣78z − 7
8
w

∣∣∣∣
=

1
7
d
(
fx, fu

)
+
2
7
d
(
fy, fv

)
+

8
21

d
(
fz, fw

)
.

(2.16)
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It is clear that all conditions of Theorem 2.1 are satisfied and (0, 0, 0) is the tripled common
fixed point of T and f .

The following example shows that T and f have no tripled common fixed point if
(2.1.3) (a) or (2.1.3) (b) is not satisfied.

Example 2.3. LetX = [0, 4], T(x, y, z) = [1.5, 2] and fx = 2−(1/2)x. Then (0, 1/2, 1) is a tripled
coincidence point of T and f . Clearly T and f have no tripled common fixed point.
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