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This paper further studies the pth moment exponential stability of stochastic pulse-width-
modulated (PWM) feedback systems with distributed time-varying delays. We establish several
globally exponential stability criteria for such PWM feedback systems by using Lyapunov-
Krasovskii functional and then present an upper bound of the parameter of PWM when the
system is stable and such system has stronger anti-interference performance than the system
without time-varying delays. Furthermore, we present two examples to show the effectiveness
and conservativeness of the theoretical results.

1. Introduction

Pulse-width modulation has extensively been used in attitude control systems, adaptive
control systems, signal processing, power control systems, modeling of neuron behavior, and
the like (e.g., see [1–5]). In many areas, especially engineering applications, how to keep
the scheduled operation or work of the state counts for much. Therefore, there has been a
growing research interest on the stability analysis for PWM feedback systems, and a set of
stability results have been established by a variety of methods [6–22]. In the actual process,
however, it is always operated in all kinds of accidental or continued disturbances. Time delay
will inevitably occur in electronic neural networks owing to the unavoidable finite switching
speed of amplifiers. In recent years, the stability analysis of stochastic systems, especially the
systems with time delay, is interesting to many investigators, and many results of stability
criteria of these systems have been reported [15–22].

There are, however, only a few results concerning the qualitative properties of
stochastic impulsive systems with time-varying delays. In [15], the authors investigated
robust exponential stability and delayed-state-feedback stabilization of uncertain impulsive
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stochastic systems with time-varying delays. Besides, Sun and Cao [17] give some definitions
on the pthmoment exponential stability inmean and established several pthmoment globally
stability criteria in mean. In [12, 13], Hou and Michel established new Lyapunov and
Lagrange stability results for pulse-width-modulation (PWM) feedback systems subjected
to random disturbance.

To the best of the authors’ knowledge, there are few (if any) results for the stability
analysis of stochastic PWM systems with time-varying delays. Based on the pulse-width-
modulation feedback system uniqueness, obviously, such system subjected to random
disturbance and time-varying delays is somewhat complex in comparison with most of
the systems in the literature. It is noted that the linear plant considered herein is Hurwitz
stable, that is, all the eigenvalues of the linear plant are in the left side of the complex
plane. In the present paper, we try to make the contribution on this issue. By choosing
reasonable Lyapunov-Krasovskii functional, combined with linear matrix inequalities and Itô
integrationmethod, wewill establish several Lyapunov and Lagrange criteria for pthmoment
exponential stability in mean and then present an algorithm to compute the upper bound for
the parameters of PWM.Wewill characterize the relationship among the parameters of pulse-
width modulation, time-varying delays, and the coefficient of state vectors of the feedback
systems. It will be shown that when the random disturbance is sufficiently small such PWM
feedback system is pth moment exponentially stable in mean provided that the upper bounds
of parameters of pulse-width modulator are selected properly. We also demonstrate that such
system has the stronger anti-interference performance and tending to the equilibrium point
speed more quickly by means of two numerical examples.

2. Notations and Some Definitions

Let (Ω, F, P) denote the underlying probability space for all the systems that will be
considered, where Ω is the sample space, F is the σ-algebra of subsets of the sample space,
and P is the probability measure. An Rn-valued random variable x with domain X is a
measurable function fromΩ to X ⊂ Rn. A family {x(t), t ∈ I} of Rn valued random variables
with domain X defined on a probability space (Ω, F, P) is called a stochastic process with
index set I and state space (X,Fn).

Definition 2.1. Let (X, d) be a metric space,X ⊂ Rn,A ⊂ X, and let T ⊂ R+. For any fixed a ∈ A
(a is called the initial state), t0 ∈ T , a stochastic process {x(t, ω, a, t0), t ∈ Ta,t0} with domain
X is called a stochastic motion if x(t0, ω, a, t0) = a for all ω ∈ Ω, where Ta,t0 = [t0, t1) ∩ T , t1 > t0,
and t1 is finite or infinite.

Definition 2.2. Let S be a family of stochastic motions with domain X given by

S ⊂ {x(·, ·, a, t0) : x(t0, ω, a, t0) = a, ω ∈ Ω, a ∈ A, t0 ∈ T}. (2.1)

We call the four-tuple {T,X,A, S} a stochastic dynamical system.

Definition 2.3. Let {T,X,A, S} be a stochastic dynamical system. A set M ⊂ A is said to be
invariant with respect to system S (or short, (S,M) is invariant) if a ∈ M implies that P{ω :
x(t, ω, a, t0) ∈M for all t ∈ Ta,t0} = 1, for all t0 ∈ T and all x(·, ·, a, t0) ∈ S.
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Figure 1: Block diagram of stochastic PWM feedback systems with time-varying delays.

Definition 2.4. x0∈A is called an equilibrium point of a stochastic dynamical system {T,X,A, S}
if the set {x0} is invariant with respect to S.

Definition 2.5. Let {T,X,A, S} be a stochastic dynamical system, and let d be the metric on X.
A setM ⊂ A is said to be the pth moment exponentially stable in mean (i.e., (S,M) is said to
be the pth moment exponentially stable in mean) if for any t0 ∈ T , there exists a δ = δ(t0, ε)
and constants β > 0, k > 1 such that E[d(x(t, ω, a, t0),M)p] < k‖a‖pe−β(t−t0) for any process
x(·, ·, a, t0) ∈ S, whenever d(a,M) < δ, where a is called the initial state and E[·] denotes
the expectation of a random process. If δ is independent of t0, (S,M) is said to be the pth
moment uniformly exponentially stable in mean. (S,M) is said to be the pth moment uniformly
asymptotically exponentially stable in mean if it is uniformly stable in the pth mean and if there
exists δ > 0, τ > 0 and constants β > 0, k > 1 such that for any process x(·, ·, a, t0) ∈ S,
whenever d(a,M) < δ implies that E[d(x(t, ω, a, t0),M)p] < k‖a‖pe−β(t−t0) for all t > t0 + τ .

3. Main Results

The PWM feedback system to be considered in this paper is shown in Figure 1.
The pulse-width modulator is described by

u(t) = m(e(t)) =

{

M sgn(e(kT)) t ∈ [kT, kT + Tk),
0 t ∈ [kT + Tk, kT + T),

(3.1)

where e(t) = r(t) − y(t) with r(t) being the external input and y(t) the system output, and,
for k = 0, 1, 2, . . ., the pulse-width Tk and the sign function sgn are given, respectively, by

Tk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

β|e(kT)|, |e(kT)| ≤ T

β
,

T, |e(kT)| > T

β
,

sgn(σ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 σ > 0,
0 σ = 0,
−1 σ < 0.

(3.2)
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The sampling period T , the amplitude of the pulseM, and β are all assumed to be constants.
And throughout this paper, we always assume that r(t) ≡ 0. Under these assumptions, the
PWM feedback system with the output function can be described by

dx(t) = Ax(t)dt +Adx(t − d)dt + Bu(t)dt +Gx(t)dWt,

y(t) = C1x(t) + C2x(t − d),
(3.3)

where x ∈ Rn, y ∈ R, u ∈ R, is output of the pulse-width modulator, A, Ad, B, C1, C2, and
G are matrices of appropriate dimensions, d = (di) ∈ Rn, 0 < di ≤ T − Tk, i = 1, 2, . . . , n, and
W(t) is a scalar wiener process.

Note that (xT1 , x2) = (0T , 0)T is an equilibrium point of PWM feedback system (3.3).

Lemma 3.1 (Schur complement). Given the matrix S =
(

S11 S12
S21 S22

)

. Then S < 0 is equivalent to any
one of the following conditions:

(i) S11 < 0, S22 − S21S
−1
11S12 < 0,

(ii) S22 < 0, S11 − S12S
−1
22S21 < 0.

Lemma 3.2 (the Itô isometry). Assume W(t) is a scalar wiener process. If φ(t, ω) is bounded and
elementary, then

E

⎡

⎣

(

∫T

S

φ(t, ω)dWt

)2
⎤

⎦ = E

[

∫T

S

φ(t, ω)2dt

]

. (3.4)

Proof. Put ΔWj =Wtj+1 −Wtj , then

E
[

eiejΔWiΔWj

]

=

⎧

⎨

⎩

0 if i /= j,

E
[

e2j

]

(

tj+1 − tj
)

if i = j,
(3.5)

using that eiejΔWi and ΔWj are independent if i < j. Thus

E

⎡

⎣

(

∫T

S

φ(t, ω)dWt

)2
⎤

⎦ =
∑

i,j

E
[

eiejΔWiΔWj

]

=
∑

j

e2j ·
(

ti − tj
)

= E

[

∫T

S

φ(t, ω)2dt

]

.

(3.6)

Theorem 3.3. Assume that the matrix A in (3.3) is Hurwitz stable. Then the equilibrium xe = 0 of
PWM feedback system (3.3) is the pth (p ∈ Z+) moment uniformly exponentially stable in mean in
the large provided that the following conditions are satisfied:
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(i)

Mβ < inf
τk∈[0,∞)

λm(Γ1) +
√

λ2m(Γ1) + 4λM(Γ2)

2λM(Γ2)
, (3.7)

where

Γ1 = U1(τk)C1 + (U1(τk)C1)T ,

Γ2 = CT
1 (G1(τk) +G2(τk))C1

(3.8)

with

Gi(Tk) =W(Tk)T (Pi − I)W(Tk)

Ui(Tk) = (Pi − I)W(Tk), i = 1, 2,
(3.9)

(ii)

ϕ22 − ϕ12ϕ
−1
11ϕ

T
12 < 0, (3.10)

where

ϕ11 = −I −MβΓ1 +M2β2Γ2,

ϕ12 = −Mβ
[

U1(τk)C2 + (U2(τk)C1)TeAd
]

+M2β2CT
1 (G1(τk) +G2(τk))C2,

ϕ22 =
(

eAT
)T
P2e

AT − P2 −Mβ

[

(U2(τk)C2)TeAd +
(

eAd
)T
U2(τk)C2

]

+M2β2CT
2 (G1(τk) +G2(τk))C2,

(3.11)

(iii) there exists a constant δ > 0, such that, whenever ‖G‖ < δ,

max
{

‖Ad‖2, ‖G‖2
}

· e(‖Ad‖2+‖G‖2)T < μ, (3.12)

where μ is scalar satisfying

c
(

μ
)

= 1 − 2‖Φ‖√μ − 4‖P‖μ > 0 (3.13)
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with

Φ =

⎛

⎝

P1e
AT
(

I −MβW(τk)C1
) −MβP1e

ATW(τk)C2

−MβP2e
A(T−d)W(τk)C1 P2e

A(T−d)(eAd −MβW(τk)C2
)

⎞

⎠, (3.14)

where P1 = PT1 > 0, P2 = PT2 > 0 satisfying

(

eAT
)T
P1e

AT − P1 = −I,
(

eA(T−d)
)T
P2e

A(T−d) − P2 = −I.
(3.15)

Proof. Since (E‖X‖p)1/p is nondecreasing in p, the equilibrium xe = 0 is stable (resp.,
asymptotically stable, etc.) implying that it is the qth moment stable (resp., asymptotically
stable, etc.) in mean for all q < p. Firstly, we will provide to prove the theorem for even
integers.

Integrating (3.3), we have

x(t) = eA(t−kT)x(kT) +
∫ t

kT

eA(t−s)Adx(s − d)ds

+
∫ t

kT

eA(t−s)Bu(s)ds +
∫ t

kT

eA(t−s)Gx(s)dWs.

(3.16)

Therefore, when t = kT + T ,

x(kT + T) = eATx(kT) +
∫kT+T

kT

eA(kT+T−s)Bu(s)ds

+
∫kT+T

kT

eA(kT+T−s)Adx(s − d)ds +
∫kT+T

kT

eA(kT+T−s)Gx(s)dWs

= eATx(kT) −
∫kT+Tk

kT

eA(kT+T−s)BM sgn(C1x(kT) + C2x(kT − d))ds

+
∫kT+T

kT

eA(kT+T−s)Adx(s − d)ds +
∫kT+T

kT

eA(kT+T−s)Gx(s)dWs

= eAT
[(

I −MβW(τk)C1
)

x(kT) −MβW(τk)C2x(kT − d)]

+
∫kT+T−d

kT−d
eA(kT+T−d−s)Adx(s)ds +

∫kT+T

kT

eA(kT+T−s)Gx(s)dWs.

(3.17)
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For t = kT + T − d, we have

x(kT + T − d) = eATx(kT − d) +
∫kT+T−d

kT−d
eA(kT+T−d−s)Bu(s)ds

+
∫kT+T−d

kT−d
eA(kT+T−d−s)Adx(s − d)ds +

∫kT+T−d

kT−d
eA(kT+T−d−s)Gx(s)dWs

= eATx(kT − d) −
∫kT+Tk

kT

eA(kT+T−d−s)BM sgn(C1x(kT) + C2x(kT − d))ds

+
∫kT+T−d

kT−d
eA(kT+T−d−s)Adx(s − d)ds +

∫kT+T−d

kT−d
eA(kT+T−d−s)Gx(s)dWs

= eA(T−d)
[

−MβW(τk)C1x(kT) +
(

eAd −MβW(τk)C2

)

x(kT − d)
]

+
∫kT+T−d

kT−d
eA(kT+T−d−s)Adx(s − d)ds +

∫kT+T

kT

eA(kT+T−s)Gx(s − d)dWs

(3.18)

with

τk = β|C1x(kT) + C2x(kT − d)|

=

{

Tk, Tk < T,

≥ T, Tk = T,

W(τk) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, τk = 0,
I − e−ATk

Tk
A−1B, τk < T,

I − e−AT
τk

A−1B =
T

τk
W(T), τk ≥ T.

(3.19)

To simplify our notations, let

H1 =
[

I −MβW(τk)C1 −MβW(τk)C2
]

,

H2 =
[−MβW(τk)C1 eAd −MβW(τk)C2

]

,

h(kT) =
∫kT+T−d

kT−d
eA(kT+T−d−s)Adx(s)ds,

h(kT − d) =
∫kT+T−d

kT−d
eA(kT+T−d−s)Adx(s − d)ds,
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˜h(kT) =
∫kT+T

kT

eA(kT+T−s)Gx(s)dWs,

˜h(kT − d) =
∫kT+T

kT

eA(kT+T−s)Gx(s − d)dWs,

X(kT) =
[

xT (kT), xT (kT − d)]T .
(3.20)

Then, (3.17) and (3.18) are reduced to

x(kT + T) = eATH1X(kT) + h(kT) + ˜h(kT),

x(kT + T − d) = eA(T−d)H2X(kT − d) + h(kT − d) + ˜h(kT − d).
(3.21)

Choosing the quadratic Lyapunov-Krasovskii functional V : Rn → R+,

V (x) = xT (t)P1x(t) + xT (t − d)P2x(t − d). (3.22)

Then,

∇E[V (x)] = E[V (x(kT + T))] − E[V (x(kT))]

− E[V (x(kT))] − E[V (x(kT − d))]

= E
[

xT (kT + T)P1x(kT + T)
]

+ E
[

xT (kT + T − d)P2x(kT + T − d)
]

− E
[

xT (kT)P1x(kT)
]

− E[x(kT − d)P2x(kT − d)]

= E
[

XT (kT)
(

HT
1 (P1 − I)H1 +HT

2 (P2 − I)H2 − P
)

X(kT)
]

+ 2E
[

(

h(kT) + ˜h(kT)
)T
P1e

ATH1X(kT)
]

+ 2E
[

(

h(kT − d) + ˜h(kT − d)
)T
P2e

A(T−d)H2X(kT)
]

+ E
[

(

h(kT) + ˜h(kT)
)T
P1
(

h(kT) + ˜h(kT)
)

]

+ E
[

(

h(kT − d) + ˜h(kT − d)
)T
P2
(

h(kT − d) + ˜h(kT − d)
)

]

= E
[

XT (kT)
(

HT
1 (P1 − I)H1 +HT

2 (P2 − I)H2 − P
)

X(kT)
]

+ 2E
[

ZT (kT)ΦX(kT)
]

+ 2E
[

˜ZT (kT)ΦX(kT)
]

+ E
[

ZT (kT)PZ(kT)
]

+ 2E
[

ZT (kT)P ˜Z(kT)
]

+ E
[

˜ZT (kT)P ˜Z(kT)
]

,

(3.23)
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where

Z(kT) =
(

hT (kT) hT (kT − d))T ,

˜Z(kT) =
(

˜hT (kT) ˜hT (kT − d)
)T
,

Φ =
(

P1e
ATH1

P2e
A(T−d)H2

)

=

⎛

⎝

P1e
AT
(

I −MβW(τk)C1
) −MβP1e

ATW(τk)C2

−MβP2e
A(T−d)W(τk)C1 P2e

A(T−d)(eAd −MβW(τk)C2
)

⎞

⎠,

H = HT
1 (P1 − I)H1 +HT

2 (P2 − I)H2 − P =

⎛

⎝

ϕ11 ϕ12

ϕT12 ϕ22

⎞

⎠.

(3.24)

Then (3.23) is reduced to

∇E[V (x)] = E
[

XT (kT)HX(kT)
]

+ 2E
[

ZT (kT)ΦX(kT)
]

+ 2E
[

˜ZT (kT)ΦX(kT)
]

+ E
[

ZT (kT)PZ(kT)
]

+ 2E
[

ZT (kT)P ˜Z(kT)
]

+ E
[

˜ZT (kT)P ˜Z(kT)
]

.

(3.25)

Let λm(·) and λM(·) denote theminimum andmaximum eigenvalues of a matrix, respectively.
By Lemma 3.1, it is obvious that H is a negative definite matrix if and only if ϕ11 < 0 and
ϕ22 − ϕ12ϕ

−1
11ϕ

T
12 < 0. Noting that

λM
(

ϕ11
) ≤ −1 −Mβλm

[

U1(τk)C1 + (U1(τk)C1)T
]

+M2β2λM
[

CT
1 (G1(τk) +G2(τk))C1

]

� ΘMβ.

(3.26)

From condition (i) it follows that ΘMβ < 0, and hence the claim that ϕ11 < 0 is
true. From condition (ii) we then conclude that H is a negative definite matrix based on
Lemma 3.1.

Now we establish an estimation on Z(kT) and ˜Z(kT). Let μ > 0 be arbitrary. We will
show that there exists δ > 0 whenever ‖G‖ < δ, such that

E
[

‖Z(kT)‖2
]

< μE
[

‖X(kT)‖2
]

, E

[

∥

∥

∥

˜Z(kT)
∥

∥

∥

2
]

< μE
[

‖X(kT)‖2
]

. (3.27)
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For t ∈ [kT, kT + T], we have

x(t) = x(kT) +
∫ t

kT

Ax(s)ds +
∫ t

kT

Adx(s − d)ds

+
∫ t

kT

Bu(s)ds +
∫ t

kT

Gx(s)dWs

= x(kT) +
∫ t

kT

Ax(s)ds +
∫ t−d

kT−d
Adx(s)ds

+
∫ t

kT

Bu(s)ds +
∫ t

kT

Gx(s)dWs,

x(t − d) = x(kT − d) +
∫ t−d

kT−d
Ax(s)ds +

∫ t−d

kT−d
Adx(s − d)ds

+
∫ t−d

kT−d
Bu(s)ds +

∫ t−d

kT−d
Gx(s)dWs

= x(kT − d) +
∫ t

kT

Ax(s − d)ds +
∫ t−d

kT−d
Adx(s − d)ds

+
∫ t−d

kT−d
Bu(s)ds +

∫ t

kT

Gx(s − d)dWs.

(3.28)

Then, we have

X(t) = X(kT) + L(kT) +
∫ t

kT

˜AX(s)ds

+
∫ t−d

kT−d
˜AdX(s)ds +

∫ t

kT

˜GX(s)dWs,

(3.29)

where

˜A =
(

A 0
0 A

)

, ˜Ad =
(

Ad 0
0 Ad

)

, ˜G =
(

G 0
0 G

)

,

L(kT) =

(
∫ t

kT Bu(s)ds 0
0

∫ t−d
kT−d Bu(s)ds

)

.

(3.30)
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Similarly, we have

Z(kT) =
(

hT (kT) hT (kT − d))T

=

(
∫kT+T−d
kT−d eA(kT+T−d−s)Adx(s)ds 0

0
∫kT+T−d
kT−d eA(kT+T−d−s)Adx(s − d)ds

)

=
∫kT+T−d

kT−d
eA(kT+T−d−s)

˜AdX(s)ds,

˜Z(kT) =
(

˜hT (kT) ˜hT (kT − d)
)T

=

(
∫kT+T
kT eA(kT+T−s)Gx(s)dWs 0

0
∫kT+T
kT eA(kT+T−s)Gx(s − d)dWs

)

=
∫kT+T

kT

eA(kT+T−s)
˜GX(s)dWs.

(3.31)

Noting that

E
[

‖L(kT)‖2
]

≤M2β2‖B‖2‖C‖2E
[

‖X(kT)‖2
]

,

∥

∥

∥

˜A
∥

∥

∥ = ‖A‖,
∥

∥

∥

˜Ad

∥

∥

∥ = ‖Ad‖,
∥

∥

∥

˜G
∥

∥

∥ = ‖G‖, C = (C1, C2),

E
[

‖X(t)‖2
]

5
≤ E
[

‖X(kT)‖2
]

+ E

⎡

⎣

∥

∥

∥

∥

∥

∫ t

kT

˜AX(s)ds

∥

∥

∥

∥

∥

2
⎤

⎦ + E
[

‖L(kT)‖2
]

+ E

⎡

⎣

∥

∥

∥

∥

∥

∫ t−d

kT−d
˜AdX(s)ds

∥

∥

∥

∥

∥

2
⎤

⎦ + E

⎡

⎣

(

∫ t

kT

˜Gx(s)dWs

)T(∫ t

kT

˜Gx(s)dWs

)

⎤

⎦.

(3.32)

By Lemma 3.2, one observes that

E

⎡

⎣

(

∫ t

kT

Gx(s)dWs

)T(∫ t

kT

Gx(s)dWs

)

⎤

⎦ = E

[

∫ t

kT

xT (s)GTGx(s)ds

]

. (3.33)
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Then the inequality (3.32) is reduced to

E
[

‖X(t)‖2
]

5
≤ K0E

[

‖X(kT)‖2
]

+
∥

∥

∥

˜Ad

∥

∥

∥

2
∫ t−d

kT−d
E
[

‖X(s)‖2
]

ds

+
(

∥

∥

∥

˜A
∥

∥

∥

2
+
∥

∥

∥

˜G
∥

∥

∥

2
)∫ t

kT

E
[

‖X(s)‖2
]

ds

≤ K0E
[

‖X(kT)‖2
]

+
(

∥

∥

∥

˜A
∥

∥

∥

2
+
∥

∥

∥

˜G
∥

∥

∥

2
+
∥

∥

∥

˜Ad

∥

∥

∥

2
)∫ t

kT−d
E
[

‖X(s)‖2
]

ds

= K0E
[

‖X(kT)‖2
]

+
(

‖A‖2 + ‖G‖2 + ‖Ad‖2
)

∫ t

kT−d
E
[

‖X(s)‖2
]

ds,

(3.34)

where K0 = 1 +M2β2‖B‖2‖C‖2.
By the Gronwall inequality, we have

E
[

‖X(t)‖2
]

≤ 5K0E
[

‖X(kT)‖2
]

e(‖A‖2+‖G‖2+‖ ˜Ad‖
2
)(t−kT)

≤ 5K0e
(‖A‖2+‖G‖2+‖Ad‖2)TE

[

‖X(kT)‖2
]

.

(3.35)

Thus, we have

E
[

‖Z(kT)‖2
]

= E

⎡

⎣

(

∫kT+T−d

kT−d
eA(kT+T−d−s)

˜AdX(s)ds

)T(∫kT+T−d

kT−d
eA(kT+T−d−s)

˜AdX(s)ds

)

⎤

⎦

≤
∥

∥

∥

˜Ad

∥

∥

∥

2
E

⎡

⎣

∫kT+T−d

kT−d

(

eA(kT+T−d−s)
)

T

eA(kT+T−d−s)‖X(s)‖2ds
⎤

⎦

≤ 5K0K1‖Ad‖2e(‖A‖2+‖G‖2+‖Ad‖2)TE
[

‖X(kT)‖2
]

= K‖Ad‖2e(‖G‖
2+‖Ad‖2)TE

[

‖X(kT)‖2
]

,

E

[

∥

∥

∥

˜Z(kT)
∥

∥

∥

2
]

= E

⎡

⎣

(

∫kT+T

kT

eA(kT+T−s)
˜GX(s)dWs

)T ∫kT+T

kT

eA(kT+T−s)
˜GX(s)dWs

⎤

⎦

= E

[

∫kT+T

kT

XT (s) ˜GT
(

eA(kT+T−s)
)T
eA(kT+T−s)

˜GX(s)ds

]

≤
∥

∥

∥

˜G
∥

∥

∥

2
E

[

∫kT+T

kT

(

eA(kT+T−s)
)T
eA(kT+T−s)‖X(s)‖2ds

]

≤ K‖G‖2e(‖G‖2+‖Ad‖2)TE
[

‖X(kT)‖2
]

,

(3.36)
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where

K1 = max
s∈[0,T]

∥

∥

∥eA
TseAs

∥

∥

∥, K = 5K0K1e
‖A‖2T . (3.37)

Thus, when condition (iii) is satisfied, we have

E
[

‖Z(kT)‖2
]

< μE
[

‖X(kT)‖2
]

, E

[

∥

∥

∥

˜Z(kT)
∥

∥

∥

2
]

< μE
[

‖X(kT)‖2
]

. (3.38)

Then, we obtain

∇E[V (x)] = E[V (x(kT + T))] − E[V (x(kT))]

− E[V (x(kT))] + E[V (x(kT − d))]

≤ − c
(

μ
)

λM(P)
E[V (X(kT))] < 0.

(3.39)

Therefore,

E[V (X(kT + T))] <

(

1 − c
(

μ
)

λM(P)

)

E[V (X(kT))]. (3.40)

Noticing that V (X(0)) = xT (0)P1x(0) ≤ ‖P‖‖x(0)‖2 = ‖P‖‖a‖2, where a = x(0) is initial state.
For t ∈ [kT, kT + T], we have

E[V (x(t))] ≤ E[V (X(kT))]

≤
(

1 − c
(

μ
)

λM(P)

)

E[V (X(kT − T))]

≤ · · ·

≤
(

1 − c
(

μ
)

λM(P)

)k

E[V (x(0))]

≤
(

1 − c
(

μ
)

λM(P)

)k

‖P1‖‖x(0)‖2

< et ln(Θ/ρ)‖P1‖‖x(0)‖2

≤ ‖P‖‖a‖2et ln(Θ/ρ),

(3.41)

where

Θ = 1 − c
(

μ
)

λM(P)
< 1, ρ = min

k
(Tk − Tk−1). (3.42)
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Noticing that E[V (x(t))] ≥ λm(P)E‖x(t)‖2, one obtains that

E
[

‖x(t)‖2
]

≤ E[V (x(t))]
λm(P)

< ‖a‖2
[ ‖P‖
λm(P)

]

et ln(Θ/ρ)

= ψ‖a‖2e−βt,

(3.43)

where

ψ =
‖P‖
λm(P)

> 1, β = − ln
Θ
ρ
> 0. (3.44)

Thereforce, by virtue of Definition 2.5 with p = 2, we know that the equilibrium point
of system (3.3) is uniformly exponentially stable in mean square.

Now we will proof the pth moment uniformly exponentially stable in mean of system
(3.3).

For p = 2q, q ≥ 1, we have

E
[

V (X(kT + T))q
] − E[V (X(kT))q

]

= E[V (X(kT + T)) − V (X(kT))]
[

V (X(kT + T))q−1 + · · · + V (X(kT))q−1
]

≤ E
[

− c
(

μ
)

λM(P)
V (X(kT))

]

×
[

V (X(kT + T))q−1 + · · · + V (X(kT))q−1
]

≤ − c
(

μ
)

λM(P)
{

E
[

V (X(kT))q + · · · + V (X(kT))q × V (X(kT + T))
]}

≤ − c
(

μ
)

λM(P)
E
[

V (X(kT))q
]

< 0.

(3.45)

It is obvious that

E
[

V (X(kT + T))q
] ≤
[

1 − c
(

μ
)

λM(P)

]

E
[

V (X(kT))q
]

. (3.46)
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For t ∈ [kT, kT + T], we have

E
[

V (x(t))q
] ≤ E[V (X(kT))q

]

≤
[

1 − c
(

μ
)

λM(P)

]

E
[

V (X(kT − T))q]

≤ · · ·

≤
[

1 − c
(

μ
)

λM(P)

]k

E
[

V (x(0))q
]

≤
(

1 − c
(

μ
)

λM(P)

)k

‖P‖q‖x(0)‖2q

< et ln(Θ/ρ)‖P‖q‖x(0)‖2q = ‖P‖q‖a‖pet ln(Θ/ρ).

(3.47)

Similarly, we have

E
[‖x(t)‖p] ≤ E

[

V (x(t))q
]

[λm(P)]
q

< ‖a‖p
[ ‖P‖
λm(P)

]q

et ln(Θ/ρ)

= ψ̃‖a‖pe−βt,

(3.48)

where ψ̃ = ψp/2 > 1 is constant.
Therefore, we have shown that the trivial solution of system (3.3) is the pth moment

uniformly exponentially stable in mean for even integers. In the same way, the theorem is
satisfied for odd integers. Hence, we conclude the proof for all p > 0.

Remark 3.4. The upper of PWM is given by that can easily be computed and optimized. We
will employ a simple procedure in a specific example in Section 4.

Remark 3.5. The pth moment exponential stability considered, in this paper, the system
tending to equilibrium speeds more quickly than others. The change of the status vectors
as time increases will be showed in Figure 3.

Corollary 3.6. Assume thatA is Hurwitz stable,C1 /= 0,C2 = 0, namely, the output of PWM feedback
system y(t) linear dependences on current status vectors x(t). If the parameter of PWMMβ satisfies

Mβ <
λm(Γ1) +

√

λ2m[Γ1] + 4λM
(

˜Γ2
)

2λM
(

˜Γ2
)

(3.49)

whenever ‖G‖ is sufficiently small (an upper bound of ‖G‖ has been given in the proof of Theorem 3.3),
where Γ1 = U1(Tk)C1 + (U1(Tk)C1)

T , ˜Γ2 = CT
1 (G1(τk) + ˜G2(τk) + ˜UT

2 (Tk) ˜U2(Tk))C1 with
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˜G2(τk) =WT(τk)(e−Ad)
T (P2 − I)e−AdW(τk), ˜U2(τk) = (P2 − I)e−AdW(τk) by choosing P satisfied

(eAT)TPeAT − P = −I.

4. Examples

Example 4.1. Consider the system (3.3) with one order Hurwitz stable plant described by
transfer function T(s) = 1/(s + 1). The state space representation of this system is given by
A = −1, Ad = 0.1, B = 1, C1 = 1, C2 = −1, assuming the period T = 1, the time delay d = 0.1.
HenceW(Tk), Pi, Gi(Tk), Ui(Tk), i = 1, 2, in Theorem 3.3 are calculated in this case as

P1 =
1

1 − e−2 , P2 =
1

1 − e−1.8 , W(Tk) =
e2Tk − 1
Tk

,

G1(Tk) =

(

e2Tk − 1
Tk

)2
1

e2 − 1
, G2(Tk) =

(

e2Tk − 1
Tk

)2
1

e1.8 − 1
,

U1(Tk) =
e2Tk − 1
Tk

1
e2 − 1

, U2(Tk) =
e2Tk − 1
Tk

1
e1.8 − 1

,

(4.1)

where the pulse width Tk satisfies 0 < Tk ≤ 0.9, and we obtain the estimation of the upper
bound of Mβ, that is, Mβ ≤ 0.9398. For Mβ ∈ (0, 0.9398), we compute μmax = 0.7 such that
for all μ < μmax. c(μ) = 1 − 2‖Φ‖√μ − 4‖P‖μ > 0 is true. Next, we compute δmax = 0.22 such
thatK · f(‖Ad‖, ‖G‖) < μmax is true for all δ < δmax, whereK = 5K1(1 +M2β2‖B‖2‖C‖2)e‖A‖2T

andK1 = max
s∈[0,T]

‖eATseAs‖. In Figure 2, we depict the estimates of the upper bound δmax of ‖G‖
versusMβ.

We observe that δmax decreases as Mβ increases. When the states are sufficiently far
away from the origin so that Tk = T − d, the curvature of the curve reduces more slowly than
without time-varying delays. Namely, asMβ increases, the anti-interference performance of
the system (3.3) is stronger than the stochastic PWM feedback system without time-varying
delays. Furthermore, asM increases (for fixed β), the maximum ‖G‖ allowable to ensure the
pth moment uniform exponential stability in mean will decrease, besides, if disturbance of
the feedback system (3.3) is increased (less than δmax), the trivial solution of system (3.3) is
the pth moment uniformly exponentially stable in mean by decreasing the value of Mβ, as
shown in Figure 2.

Example 4.2. Consider PWM feedback system (3.3) with transfer function T(s) = 1/(s + 2)
(s + 1).

The state space representation of this system is given by

A =
(−2 0

0 −1
)

, Ad =
(

0.2 0
0 0.1

)

, G =
(

0.02 0
0 0.006

)

,

B =
(

1 1
)T
, C1 =

[

1 1
]

, C2 =
[

0 0
]

.

(4.2)
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Figure 2: Upper bounds for ‖G‖whenMβ ∈ (0, 0.9398).

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

t

Sa
m

pl
e 

re
sp

on
se

x1

x2

Figure 3: Sample response of PWM feedback system (3.3) in Example 4.2.

In Figure 3, we plot the sample response of x = (x1 x2)
T withM = 0.2, T = β = 1, d = 0.1, and

x(0) = (2 0.5)T . We observe the system (3.3) tending to the equilibrium point speed quickly.

5. Conclusions

We studied the stochastic PWM feedback systems with time-varying delays and established
several Lyapunov and Lagrange criteria for the pth moment exponential stability in mean,
then presented an algorithm to compute the upper bound for the parameters of PWM, and
finally given two numerical examples to verify the effectiveness of theoretical results. We
characterized the relationship among the parameters of pulse-width modulation, time delay,
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and the coefficient of state vectors of the feedback systems and showed that when the random
disturbance is sufficiently small such PWM feedback system is the pth moment uniformly
exponentially stable in mean provided that the upper bounds of parameters of pulse-width
modulator are selected properly.
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