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We discuss a stochastic predator-prey system with Holling II functional response. First, we show
that this system has a unique positive solution as this is essential in any population dynamics
model. Then, we deduce the conditions that there is a stationary distribution of the system, which
implies that the system is permanent. At last, we give the conditions for the system that is going
to be extinct.

1. Introduction

One of the most popular predator-prey model is the one withMichaelis-Menten type (or Hol-
ling Type II) functional response [1, 2]:

ẋ(t) = x(t)
(
a − bx(t) − αy(t)

1 + βx(t)

)
,

ẏ(t) = y(t)
(
−e + kαx(t)

1 + βx(t)

)
,

(1.1)

where x(t) and y(t) are the population densities of prey and predator at time t, respectively.
The constants a, b/a,α, β, e, and k are positive constants that stand for prey intrinsic growth
rate, carrying capacity, the maximum ingestion rate, half-saturation constant, predator death
rate, and the conversion factor, respectively. This model exhibits the well-known but highly
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controversial “paradox of enrichment” observed by Hairston et al. [3] and by Rosenzweig [4]
which is rarely reported in nature. It is very important to study the existence and asymptotical
stability of equilibria and limit cycle for autonomous predator-prey systems with Holling II
functional response. If kaαβ > aeβ2 + kbα + beβ, then system (1.1) has a unique limit cycle
which is stable. If akα > aeβ + be, then system (1.1) has a unique positive equilibrium:

x∗ =
e

kα − eβ
, y∗ =

kα
(
akα − aeβ − be

)
(
kα − eβ

)2 , (1.2)

which is a stable node or focus (see [5]).
However, countless organisms live in seasonally or diurnally forced environments.

Hence, authors considered models with periodic ecological parameters or perturbations. For
example, Liu and Chen [6] introduced periodic constant impulsive immigration of preda-
tor into system (1.1) and gave conditions for the system to be extinct and permanence,
respectively. Zhang and Chen [7] studied a Holling II functional response food chain model
with impulsive perturbations. Zhang et al. [8] further considered system (1.1) with periodic
constant impulsive immigration of predator and periodic variation in the intrinsic growth
rate of the prey.

On the other hand, the white noise is always present, and we cannot omit the influence
of the white noise to the system. May [9] pointed out that due to continuous fluctuation in
the environment, the birth rates, death rates, carrying capacity, competition coefficients, and
all other parameters involved with the model exhibit random fluctuation to a great lesser
extent, and as a result the equilibrium population distribution never attains a steady value,
but fluctuates randomly around some average value. Many authors studied the effect of the
stochastic perturbation to the predator-prey system with different functional responses, such
as [10–14]. Therefore, in this paper, we also introduce stochastic perturbation system (1.1)
and obtain the following stochastic system:

dx(t) = x(t)
(
a − bx(t) − αy(t)

1 + βx(t)

)
dt + σ1x(t)dB1(t),

dy(t) = y(t)
(
−e + kαx(t)

1 + βx(t)

)
dt + σ2y(t)dB2(t),

(1.3)

where B1(t) and B2(t) are mutually independent Brownian motion with B1(0) = B2(0) = 0,
and σ2

1 , σ
2
2 are intensities of the white noise.

The aim of this paper is to discuss the long time behavior of system (1.3). As the
deterministic population models, we are also interested in the permanence and extinction
of the system. The global stability of the positive equilibrium means that the system is
permanence. But, for the stochastic system, there is no positive equilibrium. Hence, it is
impossible that the solution of system (1.3) will tend to a fixed point. In this paper, we
show that there is a stationary distribution of system (1.3) mainly according to the theory
of Has’meminskii [15], if the white noise is small. While if the white noise is large, based
on the techniques developed in [16, 17], we prove that the predator population will die out
a.s. and the prey population will either extinct or its distribution converges to a probability
measure. It does not happen that both the prey population and the predator population in
system (1.3) will die out, which is brought by large white noise, such as weather, epidemic
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disease. From this point, we say the stochastic model is more realistic than the deterministic
model.

The rest of this paper is organized as follows. In Section 2, we show that there is a
unique nonnegative solution of system (1.3). In Section 3, we show that there is a stationary
distribution under small white noise. While in Section 4, we consider the situation when the
white noise is large. We prove that the system will be extinct. Finally, we give an appendix
containing the stationary distribution theory used in Section 3.

2. Existence and Uniqueness of the Nonnegative Solution

To investigate the dynamical behavior, the first concern is the global existence of the solutions.
Hence in this section we show that the solution of system (1.3) is global and nonnegative. It is
not difficult to check the uniqueness and global existence of solutions if the coefficients of the
equation satisfy the linear growth condition and local Lipschitz condition (cf. [18]). However,
the coefficients of system (1.3) do not satisfy the linear growth condition, but locally Lipschitz
continuous, so the solution of system (1.3) may explode at a finite time. In this section, by
changing variables, we first show that system (1.3) has a local solution, then show that this
solution is global.

Theorem 2.1. For any initial value (x(0), y(0)) ∈ R2
+, there is a unique solution (x(t), y(t)) of

system (1.3) on t ≥ 0, and the solution will remain in R2
+ with probability 1.

Proof. First, consider the following system, by changing variables, x(t) = eu(t), y(t) = ev(t),

du(t) =

(
a − σ2

1

2
− beu(t) − αev(t)

1 + βeu(t)

)
dt + σ1dB1(t),

dv(t) =

(
− e − σ2

2

2
+

kαeu(t)

1 + βeu(t)

)
dt + σ2dB2(t).

(2.1)

It is clear that the coefficients of system (2.1) are locally Lipschitz continuous for the given
initial value (logx(0), logy(0)) ∈ R2 there is a unique local solution (u(t), v(t)) on t ∈ [0, τe),
where τe is the explosion time (see [18]). Hence, by Itô formula, we know (eu(t), ev(t)), t ∈
[0, τe) is a unique positive local solution of system (1.3). To show that this solution is global,
we need to show that τe = ∞ a.s. Let m0 ≥ 1 be sufficiently large so that x(0), y(0) all lie
within the interval [1/m0, m0]. For each integer m ≥ m0, define the stopping time:

τm = inf
{
t ∈ [0, τe) : min

{
x(t), y(t)

} ≤ 1
m

or max
{
x(t), y(t)

} ≥ m

}
, (2.2)

Where, throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly,
τm is increasing as m → ∞. Set τ∞ = limm→∞τm, whence τ∞ ≤ τe a.s. If we can show that
τ∞ = ∞ a.s., then τe = ∞ and (x(t), y(t)) ∈ R2

+ a.s. for all t ≥ 0. In other words, to complete the
proof all we need to show is that τ∞ = ∞ a.s. If this statement is false, then there is a pair of
constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε. (2.3)
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Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε ∀m ≥ m1. (2.4)

Define a C2-function V : R2
+ → R+ by

V
(
x, y

)
=
(
x − c − c log

x

c

)
+
1
k

(
y − 1 − logy

)
, (2.5)

where c is a positive constant to be determined later. The nonnegativity of this function can be
seen from u − 1 − logu ≥ 0, for all u > 0. Using Itô’s formula, we get

dV := LVdt + σ1(x − c)dB1(t) +
σ2

k

(
y − 1

)
dB2(t), (2.6)

where

LV = (x − c)
(
a − bx − αy

1 + βx

)
+
cσ2

1

2
+
1
k

(
y − 1

)(−e + kαy

1 + βx

)
+
σ2
2

2k

= −ac + cσ2
1

2
+
e

k
+
σ2
2

2k
+ (a + bc)x − e

k
y − bx2 +

αcy

1 + βx

≤ −ac + cσ2
1

2
+
e

k
+
σ2
2

2k
+ (a + bc)x − bx2 −

(
e

k
− αc

)
y.

(2.7)

Choose c = e/αk such that e/k − αc = 0, then

LV ≤ −ac + cσ2
1

2
+
e

k
+
σ2
2

2k
+ (a + bc)x − bx2 ≤ K, (2.8)

where K is a positive constant. Therefore

∫ τm∧T

0
dV

(
x(t), y(t)

) ≤
∫ τm∧T

0
Kdt

+
∫ τm∧T

0
σ1(x(s) − c)dB1(s) +

σ2

k

(
y(s) − 1

)
dB2(s),

(2.9)

which implies that,

E
[
V
(
x(τm ∧ T), y(τm ∧ T)

)] ≤ V
(
x(0), y(0)

)
+ E

∫ τm∧T

0
Kdt ≤ V

(
x(0), y(0)

)
+KT. (2.10)
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Set Ωm = {τm ≤ T} for m ≥ m1, then by (2.4), we know that P(Ωm) ≥ ε. Note that for every
ω ∈ Ωm, there is at least one of x(τm,ω) and y(τm,ω) equals either m or 1/m, then

V
(
x(τm), y(τm)

) ≥
(
m − c − c log

m

c

)
∧
(

1
m

− c + c log(cm)
)

∧ 1
k

(
m − 1 − logm

) ∧ 1
k

(
1
m

− 1 + logm
)
.

(2.11)

It then follows from (2.4) and (2.10) that

V
(
x(0), y(0)

)
+KT ≥ E

[
1Ωm(ω)V

(
x(τm), y(τm)

)]

≥ ε

(
m − c − c log

m

c

)
∧
(

1
m

− c + c log(cm)
)
∧ 1
k

(
m − 1 − logm

)

∧ 1
k

(
1
m

− 1 + logm
)
,

(2.12)

where 1Ωm(ω) is the indicator function of Ωm. Letting m → ∞ leads to the contradiction that
∞ > V (x(0), y(0)) +KT = ∞. So we must therefore have τ∞ = ∞ a.s.

3. Permanence

There is no equilibrium of system (1.3). Hence we cannot show the permanence of the system
by proving the stability of the positive equilibrium as the deterministic system. In this section
we show that there is a stationary distribution of system (1.3).

Remark 3.1. Theorem 2.1 shows that there exists a unique positive solution (x(t), y(t)) of
system (1.3) with any initial value (x(0), y(0)) ∈ R2

+. From the proof of Theorem 2.1,
we obtain that LV ≤ K. Define Ṽ = V + K, then LṼ ≤ Ṽ , and it is clear that ṼR =
inf(x,y)∈R2

+\Dk
Ṽ (x, y) → ∞ as k → ∞, where Dk = (1/k, k) × (1/k, k). Hence by Remark 2 of

Theorem 4.1 of Has’meminskii, 1980, page 86 in [15], we obtain that the solution (x(t), y(t))
is a homogeneous Markov process in R2

+.

Theorem 3.2. If aeβ+be < akα < aeβ+bkα/β and σ1 > 0, σ2 > 0 such that σ2
2 < kαx∗/(1+βx∗)

and

(
1
2
+ l2x

∗
)
x∗σ2

1 +
(
1 + βx∗

2
+
l2y

∗

k

)
y∗σ2

2

k

< min

{
1
2

(
b − αβy∗

1 + βx∗

)
(x∗)2,

l2
2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y∗)2

}
,

(3.1)

where (x∗, y∗) is the positive equilibrium of system (1.1) and l2 is defined as in the proof. Then system
(1.3) has a stationary ergodic solution.
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Proof. Since akα > aeβ + be, then there is a positive equilibrium (x∗, y∗) of system (1.1), and

a = bx∗ +
αy∗

1 + βx∗ , e =
kαx∗

1 + βx∗ . (3.2)

Let

V1
(
x, y

)
=
(
x − x∗ − x∗ log

x

x∗
)
+ l1

(
y − y∗ − y∗ log

y

y∗

)
, (3.3)

where l1 is a positive constant to be determined later. Let L be the generating operator of
system (1.3). Then

LV1 = (x − x∗)
(
a − bx − αy

1 + βx

)
+
x∗σ2

1

2
+ l1

(
y − y∗)(−e + kαx

1 + βx

)
+
l1y

∗σ2
2

2

= (x − x∗)

[
−b(x − x∗) − α

1 + βx

(
y − y∗) + αβy∗(

1 + βx∗)(1 + βx
) (x − x∗)

]
+
x∗σ2

1

2

+ l1
(
y − y∗) kα(x − x∗)(

1 + βx∗)(1 + βx
) +

l1y
∗σ2

2

2

≤ −
(
b − αβy∗

1 + βx∗

)
(x − x∗)2 − α

1 + βx

(
1 − l1k

1 + βx∗

)
(x − x∗)

(
y − y∗) + x∗σ2

1

2
+
l1y

∗σ2
2

2
.

(3.4)

Choose l1 = (1 + βx∗)/k such that 1 − l1k/(1 + βx∗) = 0 and yields

LV1 ≤ −
(
b − αβy∗

1 + βx∗

)
(x − x∗)2 +

x∗σ2
1

2
+

(
1 + βx∗)y∗σ2

2

2k
. (3.5)

Let

V2
(
x, y

)
=

1
2

[
(x − x∗) +

1
k

(
y − y∗)]2. (3.6)

Note that

d

[
(x − x∗) +

1
k

(
y − y∗)] =

(
ax − bx2 − e

k
y

)
dt + σ1xdB1(t) +

σ2

k
ydB2(t)

=

[
−bx(x − x∗)2 + α

y∗(x − x∗) − x∗(y − y∗)
1 + βx∗

]
dt

+ σ1xdB1(t) +
σ2

k
ydB2(t),

(3.7)
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then

LV2 =
[
(x − x∗) +

1
k

(
y − y∗)]

[
−bx(x − x∗)2 + α

y∗(x − x∗) − x∗(y − y∗)
1 + βx∗

]
+
σ2
1

2
x2 +

σ2
2

2k2
y2

= − bx(x − x∗)2 +
(

αy∗

1 + βx∗ +
by∗

k

)
(x − x∗)2 − b

k
(x − x∗)2y − αx∗

k
(
1 + βx∗)

(
y − y∗)2

+

(
αy∗

k
(
1 + βx∗) − αx∗

1 + βx∗ − bx∗

k

)
(x − x∗)

(
y − y∗) + σ2

1

2
x2 +

σ2
2

2k2
y2

≤
(

αy∗

1 + βx∗ +
by∗

k
+ σ2

1

)
(x − x∗)2 −

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y − y∗)2

+

(
αy∗

k
(
1 + βx∗) − αx∗

1 + βx∗ − bx∗

k

)
(x − x∗)

(
y − y∗) + σ2

1(x
∗)2 +

σ2
2

k2

(
y∗)2,

(3.8)

where L is also the generating operator of system (1.3). Note that

(
αy∗

k
(
1 + βx∗) − αx∗

1 + βx∗ − bx∗

k

)
(x − x∗)

(
y − y∗)

≤
(
αy∗/

(
k
(
1 + βx∗)) − αx∗/

(
1 + βx∗) − bx∗/k

)2
2
(
αx∗/

(
k
(
1 + βx∗)) − σ2

2/k
2
) (x − x∗)2

+
1
2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y − y∗)2

:= δ(x − x∗)2 +
1
2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y − y∗)2,

(3.9)

then

LV2 ≤
(

αy∗

1 + βx∗ +
by∗

k
+ σ2

1 + δ

)
(x − x∗)2 − 1

2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y − y∗)2

+ σ2
1(x

∗)2 +
σ2
2

k2

(
y∗)2.

(3.10)

Now define

V
(
x, y

)
= V1

(
x, y

)
+ l2V2

(
x, y

)
, (3.11)
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where l2 is a positive constant to be determined later. Then

LV ≤ −
(
b − αβy∗

1 + βx∗ − l2

(
αy∗

1 + βx∗ +
by∗

k
+ σ2

1 + δ

))
(x − x∗)2

− l2
2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y − y∗)2 +

(
1
2
+ l2x

∗
)
x∗σ2

1 +
(
1 + βx∗

2
+
l2y

∗

k

)
y∗σ2

2

k
.

(3.12)

Choose l2 > 0 such that (b − αβy∗/(1 + βx∗) − l2(αy∗/(1 + βx∗) + by∗/k + σ2
1 + δ)) = (1/2)(b −

αβy∗/(1 + βx∗)), then it follows from (3.12) that

LV ≤ − 1
2

(
b − αβy∗

1 + βx∗

)
(x − x∗)2 − l2

2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y − y∗)2

+
(
1
2
+ l2x

∗
)
x∗σ2

1 +
(
1 + βx∗

2
+
l2y

∗

k

)
y∗σ2

2

k
.

(3.13)

Note that

(
1
2
+ l2x

∗
)
x∗σ2

1 +
(
1 + βx∗

2
+
l2y

∗

k

)
y∗σ2

2

k

< min

{
1
2

(
b − αβy∗

1 + βx∗

)
(x∗)2,

l2
2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y∗)2

}
,

(3.14)

then the ellipsoid

− 1
2

(
b − αβy∗

1 + βx∗

)
(x − x∗)2 − l2

2

(
αx∗

k
(
1 + βx∗) − σ2

2

k2

)(
y − y∗)2

+
(
1
2
+ l2x

∗
)
x∗σ2

1 +
(
1 + βx∗

2
+
l2y

∗

k

)
y∗σ2

2

k
= 0

(3.15)

lies entirely in R2
+. We can take U to be a neighborhood of the ellipsoid with U ⊆ El = R2

+,
so that for (x, y) ∈ U \ El, LV ≤ −C (C is a positive constant), which implies condition
(B.2) in Lemma A.1 is satisfied. Hence the solution (x(t), y(t)) is recurrent in the domain U,
which together with Lemma A.3 and Remark 3.1 implies that (x(t), y(t)) is recurrent in any
bounded domain D ⊂ R2

+. Besides, for all D, there is an M = min{σ2
1x

2, σ2
2y

2, (x, y) ∈ D} > 0
such that

2∑
i,j=1

λijξiξj = σ2
1x

2ξ21 + σ2
2y

2ξ22 ≥ M
∣∣∣ξ2

∣∣∣ all x ∈ D, ξ ∈ R2, (3.16)

which implies that condition (B.1) is also satisfied. Therefore, system (1.3) has a stable a
stationary distribution μ(·) and it is ergodic.
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Note that

dxp = pxp

(
a − bx − αy

1 + βx

)
dt + pσ1x

pdB1(t) +
1
2
p
(
p − 1

)
σ2
1x

pdt

≤ pxp
(
a +

p

2
σ2
1 − bx

)
dt + pσ1x

pdB1(t),

(3.17)

then

dE[xp]
dt

≤ p

(
a +

pσ2
1

2

)
E[xp] − bE

[
xp+1

]

≤ p

(
a +

pσ2
1

2

)
E[xp] − b(E[xp])(p+1)/p.

(3.18)

Hence by comparison theorem, we get

lim sup
t→∞

E[xp(t)] ≤
(

a + pσ2
1/2

b

)p

, (3.19)

bywhich together with the continuity ofE[xp(t)], we have that there exists a positive constant
K = K(p) such that

E[xp(t)] ≤ K
(
p
)
. (3.20)

By Doob’s martingale inequality, together with the (3.20), for δ > 0, we have

P

{
ω : sup

(n−1)δ≤t≤nδ

x(t)
t

> δ

}
≤ E[xp(nδ)]

(nδ)pδ
≤ K

(
p
)

npδp+1
, p > 1. (3.21)

In view of the well-known Borel-Cantelli lemma, we see that for almost all ω ∈ Ω,

sup
(n−1)δ≤t≤nδ

x(t)
t

≤ δ (3.22)

holds for all but finitely many n. Hence there exists an n0(ω), for allω ∈ Ω excluding a P -null
set, for which (3.22) holds whenever n ≥ n0. Consequently, letting δ → 0, we have, for almost
all ω,

lim
t→∞

x(t)
t

= 0. (3.23)
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By the ergodic property, for any given constant m > 0, we have

lim
t→∞

1
t

∫ t

0
(xp(s) ∧m)ds =

∫
R2
+

(
z
p

1 ∧m
)
μ(dz1, dz2), a.s. (3.24)

On the other hand, by dominated convergence theorem and (3.20), we get

E

[
lim
t→∞

1
t

∫ t

0
(xp(s) ∧m)ds

]
= lim

t→∞
1
t

∫ t

0
E[xp(s) ∧m]ds ≤ K

(
p
)
, (3.25)

which together with (3.24) implies

∫
R2
+

(
z
p

1 ∧m
)
μ(dz1, dz2) ≤ K

(
p
)
. (3.26)

Letting m → ∞, we get

∫
R2
+

z
p

1μ(dz1, dz2) ≤ K
(
p
)
. (3.27)

That is to say, the function f1(z) = z
p

1 is integrable with respect to the measure μ. Therefore,
by ergodicity property again, we get

lim
t→∞

1
t

∫ t

0
xp(s)ds =

∫
R2
+

z
p

1μ(dz1, dz2), a.s. (3.28)

Besides,

x(t) − x(0)
t

=
a

t

∫ t

0
x(s)ds − b

t

∫ t

0
x2(s)ds − α

t

∫ t

0

x(s)y(s)
1 + βx(s)

ds +
σ1

t

∫ t

0
x(s)dB1(s). (3.29)

Let M1(t) =
∫ t
0 x(s)dB1(s) which is a martingale with M1(0) = 0 and

lim sup
t→∞

〈M1,M1〉t
t

= lim
t→∞

1
t

∫ t

0
x2
1(s)ds =

∫
R2
+

z21μ(dz1, dz2) < ∞, (3.30)

then by the strong law of large numbers, we get

lim
t→∞

M1(t)
t

= lim
t→∞

1
t

∫ t

0
x1(s)dB1(s) = 0, (3.31)
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which together with (3.23) and (3.28) implies (3.29) that

lim
t→∞

1
t

∫ t

0

x(s)y(s)
1 + βx(s)

ds =
a

α

∫
R2
+

z1μ(dz1, dz2) − b

α

∫
R2
+

z21μ(dz1, dz2). (3.32)

Hence from these arguments, we get the following result.

Theorem 3.3. Assume the same conditions as in Theorem 3.2. Then one has

lim
t→∞

1
t

∫ t

0
xp(s)ds =

∫
R2
+

z
p

1μ(dz1, dz2), a.s.,

lim
t→∞

1
t

∫ t

0

x(s)y(s)
1 + βx(s)

ds =
a

α

∫
R2
+

z1μ(dz1, dz2) − b

α

∫
R2
+

z21μ(dz1, dz2).

(3.33)

4. Extinction

In this section, we show the situation when system (1.3)will be extinct.

Case 1. (a < σ2
1/2).

Obviously,

dx ≤ x(a − bx)dt + σ1xdB1(t), (4.1)

then when a < σ2
1/2,

lim
t→∞

x(t) = 0, a.s. (4.2)

That is to say, for all 0 < ε1 < e + σ2
2/2, there exist T1 = T1(ω) and a set Ωε1 such that P(Ωε1) >

1 − ε1 and kαx(t) ≤ ε1 for t ≥ T1 and ω ∈ Ωε1 . Then

−ey(t)dt + σ2y(t)dB2(t) ≤ dy(t) ≤ y(t)(−e + ε1)dt + σ2y(t)dB2(t), (4.3)

and so

lim
t→∞

y(t) = 0, a.s. (4.4)

Case 2. (a > σ2
1/2, e + σ2

2/2 > kα/β).
Note that

dy(t) ≤ y(t)
(
−e + kα

β

)
dt + σ2y(t)dB2(t), (4.5)
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then if e + σ2
2/2 > kα/β, we have

lim
t→∞

y(t) = 0, a.s. (4.6)

In this situation, for all 0 < ε2 < a − σ2
1/2, there exist T2 = T2(ω) and a set Ωε2 such that

P(Ωε2) > 1 − ε2 and αy(t) ≤ ε2 for t ≥ T2 and ω ∈ Ωε2 . Then

x(t)(a − bx(t) − ε2)dt + σ1x(t)dB1(t) ≤ dx(t) ≤ x(t)(a − bx(t))dt + σ1x(t)dB1(t), (4.7)
(
a − σ2

1

2
− bx(t) − ε2

)
dt + σ1dB1(t) ≤ dx(t) ≤

(
a − σ2

1

2
− bx(t)

)
dt + σ1dB1(t). (4.8)

Consider the following equation:

dΦ(t) =

(
a − σ2

1

2
− beΦ(t)

)
dt + σ1dB1(t). (4.9)

If a > σ2
1/2, (4.9) has the density g∗(ζ) such that

1
2
σ2
1g

′
∗(ζ) =

(
a1 −

σ2
1

2
− b11e

ζ

)
g∗(ζ). (4.10)

Therefore from (4.8) and the arbitrary of ε2, we get that the distribution of logx(t) converges
weakly to the probability measure with density g∗. Thus, from (4.10), we obtain that the
distribution of x(t) converges weakly to the probability measure with density f∗(ζ) =
C0ζ

2(a−σ2
1/2)/σ

2
1−1e−2bζ/σ

2
1 , where C0 = (2b/σ2

1)
2(a−σ2

1/2)/σ
2
1/Γ(2(a − σ2

1/2)/σ
2
1). Besides, from the

ergodic theorem and (4.10), it follows that

lim
t→∞

1
t

∫ t

0
x(s)ds =

∫∞

−∞
eζg∗(ζ)dζ =

∫∞

−∞

a − σ2
1/2

b
g∗(ζ)dζ =

a − σ2
1/2

b
a.s. (4.11)

Therefore, by the above arguments, we obtain the following.

Theorem 4.1. Let (x(t), y(t)) be the solution of system (1.3)with the initial value (x(0), y(0)) ∈ R2
+.

Then,

(i) if a < σ2
1/2, then

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, a.s., (4.12)
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(ii) if a > σ2
1/2, e + σ2

2/2 > kα/β, then the distribution of x(t) converges weakly to
the probability measure with density f∗(ζ) = C0ζ

2(a−σ2
1/2)/σ

2
1−1e−2bζ/σ

2
1 , where C0 =

(2b/σ2
1)

2(a−σ2
1/2)/σ

2
1/Γ(2(a − σ2

1/2)/σ
2
1), and

lim
t→∞

1
t

∫ t

0
x(s)ds =

a − σ2
1/2

b
, lim

t→∞
y(t) = 0, a.s. (4.13)

Appendix

For the completeness of the paper, in this section, we list some theories about stationary distri-
bution (see [15]).

Let X(t) be a homogeneous Markov process in El (El denotes euclidean l-space)
described by

dX(t) = b(X)dt +
k∑

r=1

gr(X)dBr(t). (A.1)

The diffusion matrix is A(x) = (aij(x)), aij(x) =
∑k

r=1 g
i
r(x)g

j
r(x).

Assumption B. There exists a bounded domain U ⊂ El with regular boundary Γ, having the
following properties.

(B.1) In the domainU and some neighbourhood thereof, the smallest eigenvalue of
the diffusion matrix A(x) is bounded away from zero.

(B.2) If x ∈ El \U, the mean time τ at which a path issuing from x reaches the set
U is finite, and supx∈KExτ < ∞ for every compact subset K ⊂ El.

Lemma A.1 (see [15]). If (B) holds, then the Markov processX(t) has a stationary distribution μ(·).
Let f(·) be a function integrable with respect to the measure μ. Then Px{limT →∞1/T

∫T
0 f(X(t))dt =∫

El
f(x)μ(dx)} = 1 for all x ∈ El.

Remark A.2. The proof is given in [15]. Exactly, the existence of stationary distribution with
density is referred to Theorem 4.1, Page 119, and Lemma 9.4, Page 138, in [4]. The weak
convergence and the ergodicity is obtained in Theorem 5.1, Page 121, and Theorem 7.1, Page
130, in [4].

To validate (B.1), it suffices to prove that F is uniformly elliptical in any bounded
domainD, where Fu = b(x) ·ux+(1/2)tr(A(x)uxx); that is, there is a positive numberM such
that

∑k
i,j=1 aij(x)ξiξj ≥ M|ξ|2, x ∈ D, ξ ∈ Rk (see Chapter 3, Page 103 of [19] and Rayleigh’s

principle in [20, Chapter 6, Page 349]). To verify (B.2), it is sufficient to show that there exists
some neighborhood U and a nonnegative C2-function such that and for any El \ U,LV is
negative (for details refer to [21, Page 1163]).

LemmaA.3. LetX(t) be a regular temporally homogeneousMarkov process in El. IfX(t) is recurrent
relative to some bounded domain U, then it is recurrent relative to any nonempty domain in El.
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