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We establish the strong convergence for the implicit S-iterative process associated with
Lipschitzian hemicontractive mappings in Hilbert spaces.

1. Introduction

Let H be a Hilbert space and let T : H — H be a mapping.
The mapping T is called Lipshitzian if there exists L > 0 such that

|Tx-Ty|| <L||x-vy]|, Vx,yeH. (1.1)

If L =1, then T is called nonexpansive and if 0 < L < 1, then T is called contractive.
The mapping T is said to be pseudocontractive ([1, 2]) if

ITx =Tyl < v -yl + 1T -Dx - A-Tyyl’, vxyeH, (12)

and the mapping T is said to be strongly pseudocontractive if there exists k € (0, 1) such that

ITx =Ty|* < ||lx - y||* +k|(I - T)x - I -T)y|*>, Vx,y € H. (1.3)
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Let F(T) := {x € H : Tx = x} and the mapping T is called hemicontractive if F(T) #{
and

ITx — x*||* < |lx = x*||* + |x = Tx|>, Vx e H, x* € F(T). (1.4)

It is easy to see the class of pseudocontractive mappings with fixed points is a
subclass of the class of hemicontractive mappings. For the importance of fixed points of
pseudocontractions the reader may consult [1].

In 1974, Ishikawa [3] proved the following result.

Theorem 1.1. Let K be a compact convex subset of a Hilbert space H and let T : K — K bea
Lipschitzian pseudocontractive mapping.
For arbitrary x1 € K, let {x,} be a sequence defined iteratively by

Xn+l = (1 - “n)xn + “nTynr

Yn=(1=Pn)xy +PuTxn, n>1,

(1.5)

where {a,} and {B,} are sequences satisfying the conditions:
() 0<an<pn<1,
(if) limy oofn =0,
(iil) Xpoq anfPn = 0.
Then the sequence {x,} converges strongly to a fixed point of T.

Another iteration scheme which has been studied extensively in connection with fixed
points of pseudocontractive mappings.

In 2011, Sahu [4] and Sahu and Petrusel [5] introduced the S-iterative process as
follows.

Let K be a nonempty convex subset of a normed space X and letT : K — K be a
mapping. Then, for arbitrary x; € K, the S-iterative process is defined by

Xnt1 = Tyn/

Yn = (1 _ﬂn)xn +PnTx,, nx>1,

(1.6)

where {f,} is a real sequence in [0, 1].
In this paper, we establish the strong convergence for the implicit S-iterative process
associated with Lipschitzian hemicontractive mappings in Hilbert spaces.

2. Main Results
We need the follwing lemma.

Lemma 2.1 (see [6]). Forall x,y € H and A € [0, 1], the following well-known identity holds

11 =0 + Ay [ = (@ = Dl + Ay [|* = 201 = )l -y 2.1)
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Now we prove our main results.

Theorem 2.2. Let K be a compact convex subset of a real Hilbert space H and let T : K — K be a
Lipschitzian hemicontractive mapping satisfying

lx-Tyll <[ITx-Tyl, vxyeK. ©

Let {pn} be a sequence in [0, 1] satisfying
(iv) X0l Bn = o,
(v) X521 B < oo
For arbitrary xg € K, let {x,} be a sequence defined iteratively by

Xn = T]/nr

2.2)
Yn=1-pn)xn1+puTx,, n>1

Then the sequence {x,} converges strongly to the fixed point x* of T.

Proof. From Schauder’s fixed point theorem, F(T) is nonempty since K is a convex compact
set and T is continuous, let x* € F(T). Using the fact that T is hemicontractive we obtain

2 2
1T = %" 1% < [l = ¥ + [l = T, (2.3)

2 <y = x| + [lya - Tyl (2.4)

Ty, - x*

Now by (v), there exists nyp € N such that for all n > ny,
11
n S i PYARD Y 25
po<minf 2, 2} 25)

which implies that

<1. (2.6)
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With the help of (2.2), (2.3), and Lemma 2.1, we obtain the following estimates:

"= (1= Pu)tucs + puToxn = x|

= 11 = Bo) (Fne1 = %) + Bu(Tt — x*) ||
= (1= Bu)1xn1 — x| + BullTacn — x°|
- ﬁn(l - ﬁn) ll2tn-1 — Txn”2

< (1= Bu)ltns = 1P + Bl = "I + [0 = T )

|y — x*

(2.7)
- ﬂn(l - ﬂn) ”xn—l - Txn”2/
v = Tyall” = [1(1 = Bu) w1 + BuT 0w = Ty
= (1= ) (%nt = Tyw) + Bu (T = Ty) |
= (1= ) w1 = Toall* + Bull Tw = T
= pn(1- ﬁn) ll2¢n-1 — Txn||2-
Substituting (2.7) in (2.4) we obtain
1Ty =% 7 < (1= B a1 = X1 + B (1 = 21 + [0 = T )
+ (1= o) w1 = Tyall” + Bul| T = Ty 28)
— 2B, (1 = B) 101 = Toxal.
Also with the help of condition (C) and (2.8), we have
%112 %12
e = 2" = [| Ty = x|
< (1= Bu) 10t = 212+ (10 = X2 + 120 = T2
+ (1= B %t = Tynll* + Bull Tx = Ty*
(1= ) s =Tl + ol T~ T oo

- Zﬁn(l - .ﬁn) ll 21 — Txn||2
< (1= B 1ns = %+ Bullxcn = |7 + (1 = o) | %0t = Ty

+ 2B || T2 = Tyu|* = 2B (1 = Bu) 101 — T2,
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which implies that

121 = |2 < (201 = *|2 + || %01 = Ty

2
l_ﬂn ”Tx" ‘Tl/n”z _2ﬁn||xn—1 —Txn“2
P (2.10)

< Notnes = x| + [|2ne1 = Tyl|” + || Txn = Ty

+

- 2ﬁn”xn—l - Txn”zr

where

%01 = Tyull* < I T01 = Ty
< L|%ne1 = ) (2.11)
= L*fallxtn1 = Txull®,
1T = Tyul|* < L{|x0 =yl
< L2 (Jlatn = 2t ||+ [| %t = ya])°
< L (llatn = Xna |+ Ballxne = Toxll)
< L2 ([l — Xl + fuM)?,

%0 = Xn-all = ||xn-1 = Tya| (2.12)

< Tx0s - T
< L|xat = yal|
= Lfnllxn-1 — Txal|

< LpM

and consequently from (2.12), we obtain

I Tx, - Tya||” < L2(1 + L)> M2p2. (2.13)
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Hence by (2.5), (2.10), (2.11), and (2.13), we have
1% = x*|1* < %t = 7% + L2Bgllxn1 = Toxall®
+ L2(1 + L)>M?B2 = 2B, |31 — Tyl
= b1 = |* + L2(1 + L)* Mg (2.14)
= (2= LBu) It =~ Tl

< lxnet = x*|* + L*(1 + L)> M2B% = Bullxcn-1 — Taxull’,

which implies that
Bulln1 = Txul* < [lxn1 = x| = |0 — x7|* + L*(1 + L) M?5, (215)
so that
1 = 2 2 2 2 2 2 E 2
zgvﬁjnx,-_l = Txj||” < laew = x* (7 = Il = 27| + L2(1 + L)*M %ﬁj. (2.16)
J= J=

Hence by conditions (iv) and (v), we get

i”xH - Txj||* < . 2.17)

=0
It implies that

Hm [l = Tx| = 0. (2.18)
Consider

¢ = Txull < [1xn = Xn-all + 1xn-1 = Txall, (2.19)

which implies that

im lac, = Tox | = 0. (2.20)

The rest of the argument follows exactly as in the proof of Theorem of [3]. This
completes the proof. O

Theorem 2.3. Let K be a compact convex subset of a real Hilbert space H and let T : K — K be
a Lipschitzian hemicontractive mapping satisfying the condition (C). Let {f,} be a sequence in [0,1]
satisfying the conditions (iv) and (v).
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Assume that Py : H — K be the projection operator of H onto K. Let {x,} be a sequence
defined iteratively by

Xn = PK(Tyn)/

(2.21)
Yn =P (1= Bu)xn1 + PuTxn), n>1

Then the sequence {x,} converges strongly to a fixed point of T.

Proof. The operator Pk is nonexpansive (see, e.g., [2]). K is a Chebyshev subset of H so that,
Pk is a single-valued mapping. Hence, we have the following estimate:

20 = |12 = || Pic (Tyw) — Prex*||?
< || Ty - x*||? (2.22)

< lxner = x*|* + L*(1 + L)> M2 = Bullxn-1 — Tocul*.

The set K = K UT(K) is compact and so the sequence {||x, — Tx,||} is bounded. The rest of
the argument follows exactly as in the proof of Theorem 2.2. This completes the proof. O

Remark 2.4. In main results, the condition (C) is not new and it is due to Liu et al. [7].
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