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We consider the existence of multiple solutions of the singular elliptic problem −div(|x|−ap
|∇u|p−2∇u) + |u|p−2u/|x|(a+1)p = f |u|r−2u + h|u|s−2u + |x|−bp∗ |u|p∗−2u, u(x) → 0 as |x| → +∞, where
x ∈ R

N , 1 < p < N, a < (N − p)/p, a ≤ b ≤ a + 1, r, s > 1, p∗ = Np/(N − pd), d = a + 1 − b. By
the variational method and the theory of genus, we prove that the above-mentioned problem has
infinitely many solutions when some conditions are satisfied.

1. Introduction and Main Results

In this paper, we consider the existence of multiple solutions for the singular elliptic problem

−div
(
|x|−ap|∇u|p−2∇u

)
+

|u|p−2u
|x|(a+1)p

= f |u|r−2u + h|u|s−2u + |x|−bp∗ |u|p∗−2u, x ∈ R
N,

u(x) −→ 0 as |x| −→ +∞,

(1.1)

where 1 < p < N, a < (N − p)/p, a ≤ b ≤ a + 1, r > 1, p∗ = Np/(N − pd), d = a + 1 − b. f(x)
and h(x) are nonnegative functions in R

N .
In recent years, the existence of multiple solutions on elliptic equations has been

considered by many authors. In [1], Assunção et al. considered the following quasilinear
degenerate elliptic equation:

−div
(
|x|−ap|∇u|p−2∇u

)
+ λ|x|−(a+1)p|u|p−2u = |x|−bq|u|q−2u + f, (1.2)
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where x ∈ R
N, 1 < p < N, q =Np/[N−p(a+1−b)]. When λ = 0, f = εg, where 0 < ε ≤ ε0 and

0 ≤ g ∈ (Lq
b
(RN))∗; the authors proved that problem (1.2) has at least two positive solutions.

Rodrigues in [2] studied the following critical problem on bounded domain Ω ∈ R
N :

−div
(
|x|−ap|∇u|p−2∇u

)
= |x|−bp∗ |u|p∗−2u + |x|−βf |u|r−2u, x ∈ Ω,

u(x) = 0, on ∂Ω.
(1.3)

By the variational method on Nehari manifolds [3, 4], the author proved the existence of at
least two positive solutions and the nonexistence of solutions when some certain conditions
are satisfied. When p = 2 and a = −1, Miotto and Miyagaki in [5] considered the semilinear
Dirichlet problem in infinite strip domains

−Δu + u = λf(x)|u|q−1 + h(x)|u|p−1, x ∈ Ω,

u(x) = 0, on ∂Ω.
(1.4)

The authors also proved that problem (1.4) has at least two positive solutions by the methods
of Nehari manifold. For other references, we refer to [6–11] and the reference therein. In fact,
motivated by [1, 2, 5], we consider the problem (1.1). Since our problem is singular and is
studied in the whole space R

N , the loss of compactness of the Sobolev embedding renders a
variational technique that is more delicate. By the variational method and the theory of genus,
we prove that problem (1.1) has infinitely many solutions when some suitable conditions are
satisfied.

In order to state our result, we introduce some weighted Sobolev spaces. For r, s ≥ 1
and g = g(x) > 0 in RN , we define the spaces Lr(RN, g) and Ls(RN, g) as being the set of
Lebesgue measurable functions u : R

N → R
1, which satisfy

‖u‖r,g = ‖u‖Lr(RN,g) =
(∫

RN

g(x)|u|rdx
)1/r

<∞,

‖u‖s,g = ‖u‖Ls(RN,g) =
(∫

RN

g(x)|u|sdx
)1/s

<∞.

(1.5)

Particularly, when g(x) ≡ 1, we have

‖u‖r = ‖u‖Lr(RN) =
(∫

RN

|u|rdx
)1/r

<∞. (1.6)

We denote the completion of C∞
0 (RN) by X =W1,p

a (RN) with the norm of

‖u‖X =
(∫

RN

|x|−ap|u|pdx
)1/p

, (1.7)

where 1 < p < N and a < (N − p)/p. It is easy to find that X is a reflexive and separable
Banach space with the norm ‖u‖X .
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The following Hardy-Sobolev inequality is due to Caffarelli et al. [12], which is called
Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that

(∫

RN

|x|−bp∗ |u|p∗dx
)p/p∗

≤ S1

∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0

(
R
N
)
, (1.8)

∫

RN

|x|−(a+1)p|u|pdx ≤ S2

∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0

(
R
N
)
, (1.9)

where p∗ =Np/(N − pd) is called the Sobolev critical exponent.
In the present paper, we make the following assumptions:

(A1) f(x) ∈ Lσ1(RN, g1)
⋂
L∞
loc(R

N \ {0}) for 1 < r < p, where g1 = |x|(a+1)rσ1 , σ1 = p/(p −
r);

(A2) f(x) ∈ Lσ2(RN, g2)
⋂
L∞
loc(R

N\{0}) for p < r < p∗, where g2 = |x|brσ2 , σ2 = p∗/(p∗−r).
(A3) h(x) ∈ Lμ(RN, g3)

⋂
L∞
loc(R

N \{0}) for p < s < p∗, where g3 = |x|μbp∗ , μ = p∗/(p∗ −s).
Then, we give some basic definitions.

Definition 1.1. u ∈ X is said to be a weak solution of (1.1) if for any ϕ ∈ C∞
0 (RN) there holds

∫

RN

(
|x|−ap|∇u|p−2∇u · ∇ϕ +

|u|p−2uϕ
|x|(a+1)p

)
dx =

∫

RN

f |u|r−2uϕdx +
∫

RN

h|u|s−2uϕdx

+
∫

RN

|x|−bp∗ |u|p∗−2uϕdx.
(1.10)

Let I(u) : X → R
1 be the energy functional corresponding to problem (1.1), which is

defined as

I(u) =
1
p

∫

RN

(
|x|−ap|∇u|p + |u|p

|x|(a+1)p
)
dx − 1

r

∫

RN

f |u|rdx − 1
s

∫

RN

h|u|sdx − 1
p∗

∫

RN

|u|p∗

|x|bp∗
dx,

(1.11)

for all u ∈ X. Then the functional I ∈ C1(X,R1) and for all ϕ ∈ X, there holds

〈
I ′(u), ϕ

〉
=
∫

RN

(
|x|−ap|∇u|p−2∇u∇ϕ +

|u|p−2uϕ
|x|(a+1)p

)
dx −

∫

RN

f(x)|u|r−2uϕdx

−
∫

RN

h(x)|u|s−2uϕdx −
∫

RN

|x|−bp∗ |u|p∗−2uϕdx.
(1.12)

It is well known that the weak solutions of problem (1.1) are the critical points of the
functional I(u), see [13]. Thus, to prove the existence of weak solutions of (1.1), it is sufficient
to show that I(u) admits a sequence of critical points in X.

Our main result in this paper is the following.
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Theorem 1.2. Let 1 < p < N, a < (N − p)/p, a ≤ b ≤ a + 1, r > 1, p∗ = Np/(N − pd), d =
a + 1 − b, max{r, p} < s < p∗. Assume (A1)–(A3) are fulfilled. Then problem (1.1) has infinitely
many solutions in X.

2. Preliminary Results

Our proof is based on variational method. One important aspect of applying this method is
to show that the functional I(u) satisfies (PS)c condition which is introduced in the following
definition.

Definition 2.1. Let c ∈ R1 and X be a Banach space. The functional I(u) ∈ C1(X,R) satisfies
the (PS)c condition if for any {un} ⊂ X such that

I(un) −→ c, I ′(un) −→ 0 in X∗ as n −→ ∞ (2.1)

contains a convergent subsequence in X.

The following embedding theorem is an extension of the classical Rellich-Kondrachov
compactness theorem, see [14].

Lemma 2.2. Suppose Ω ⊂ R
N is an open bounded domain with C1 boundary and 0 ∈ Ω. N ≥

3, a < (N − p)/p. Then the embedding W1,p
0 (Ω, |x|−ap) ↪→ Lr(Ω, |x|−α) is continuous if 1 ≤ r ≤

Np/(N − p) and 0 ≤ α ≤ (1 + a)r +N(1 − r/p), and is compact if 1 ≤ r < Np/(N − p) and
0 ≤ α < (1 + a)r +N(1 − r/p).

Now we prove an embedding theorem, which is important in our paper.

Lemma 2.3. Assume (A1)-(A2) and 1 < r < p∗. Then the embedding X ↪→ Lr(RN, f) is compact.

Proof. We split our proof into two cases.
(i) Consider 1 < r < p.
By the Hölder inequality and (1.9) we have that

‖u‖r
Lr(RN,f) =

∫

RN

f(x)|u|rdx ≤
(∫

RN

|u|p|x|−(a+1)pdx
)r/p(∫

RN

fσ1 |x|(a+1)rσ1dx
)1/σ1

=
(∫

RN

|u|p|x|−(a+1)pdx
)r/p∥∥f∥∥Lσ1 (RN,g1)

≤ S
r/p

2 ‖u‖rX
∥∥f∥∥Lσ1 (RN,g1)

,

(2.2)

where g1 = |x|(a+1)rσ1 , σ1 = p/(p − r). Then the embedding is continuous. Next, we will prove
that the embedding is compact.

Let BR be a ball center at origin with the radius R > 0. For the convenience, we denote
Lr(RN, f) by Z, that is, Z = Lr(RN, f). Assume {un} is a bounded sequence in X. Then {un}
is bounded in X(BR). We choose α = 0 in Lemma 2.2, then there exist u ∈ Z(BR) and a
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subsequence, still denoted by {un}, such that ‖un−u‖Lr(BR) → 0 as n → ∞. We want to prove
that

lim
R→∞

sup
u∈X\{0}

‖u‖Z(BcR)
‖u‖X

= 0, (2.3)

where BcR = R
N \ BR. In fact, we obtain from (2.2) that

‖u‖rZ(BcR) ≤ S
r/p

2 ‖u‖rX
∥∥f∥∥Lσ1 (BcR,g1). (2.4)

The fact f ∈ Lσ1(RN, g1) shows that

lim
R→∞

∫

BcR

fσ1g1dx = 0. (2.5)

Then (2.4) and (2.5) imply that

‖u‖Z(BcR)
‖u‖X

≤ S1/p
2

∥∥f∥∥1/rLσ1 (BcR,g1)
, (2.6)

which gives (2.3).
In the following, we will prove that un → u strongly in Z(RN).
Since X is a reflexive Banach space and {un} is bounded in X. Then we may assume,

up to a subsequence, that

un ⇀ u in X. (2.7)

In view of (2.3), we get that for any ε > 0 there exists Rε > 0 large enough such that

‖un‖Z(BcRε ) ≤ ε‖un‖X (n = 1, 2, . . .). (2.8)

On the other hand, due to the compact embedding X(BRε) ↪→ Z(Rε) in Lemma 2.2, we have
that

lim
n→∞

‖un − u‖Z(BRε ) = 0. (2.9)

Therefore, there isN0 > 0 such that

‖un − u‖Z(BRε ) < ε, (2.10)
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for n > N0. Thus, the inequalities (2.8) and (2.10) show that

‖un − u‖Z ≤ ‖un − u‖Z(BRε ) + ‖un − u‖Z(BcRε )

≤ ‖un − u‖Z(BRε ) + ‖un‖Z(BcRε ) + ‖u‖Z(BcRε )

≤ (1 + ‖un‖X + ‖u‖X)ε.

(2.11)

This shows that {un} is convergent in Z = Lr(RN, f).
(ii) Consider p ≤ r < p∗.
It follows from (1.8) and the Hölder inequality that

‖u‖r
Lr(RN,f) =

∫

RN

f(x)|u|rdx ≤
(∫

RN

|x|−bp∗ |u|p∗dx
)r/p∗(∫

RN

fσ2 |x|brσ2dx
)1/σ2

≤ S
r/p

1

(∫

RN

|x|−ap|∇u|pdx
)r/p(∫

RN

fσ2 |x|brσ2dx
) 1/σ2

≤ S
r/p

1 ‖u‖rX
∥∥f∥∥Lσ2 (RN,g2)

,

(2.12)

where g2 = |x|brσ2 , σ2 = p∗/(p∗ − r). Thus, the fact of f ∈ Lσ2(RN, g2) and (2.12) imply that the
embedding is continuous. Similar to the proof of (i) we can also prove that the embedding
X ↪→ Lr(RN, f) is compact for p ≤ r < p∗.

Similarly, we have the following result of compact embedding.

Lemma 2.4. Assume 1 < p < s < p∗ and (A3), then the embedding X ↪→ Ls(RN, h) is compact.

The following concentration compactness principle is a weighted version of the
Concentration Compactness Principle II due to Lions [15–18], see also [19, 20].

Lemma 2.5. Let 1 < p < N, −∞ < a < (N−p)/p, a ≤ b ≤ a+1, p∗ =Np/(N−pd), d = a+1−b.
Suppose that {un} ⊂W1,p

a (RN) is a sequence such that

un ⇀ u in W
1,p
a

(
R
N
)
,

|x|−ap|∇un|p ⇀ μ in M
(
R
N
)
,

|x|−bp∗ |un|p
∗
⇀ η in M

(
R
N
)
,

un −→ u a.e. on R
N,

(2.13)

where μ, η are measures supported on Ω and M(RN) is the space of bounded measures in R
N . Then

there are the following results.
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(1) There exists some at most countable set J , a family {xj ∈ Ω | j ∈ J} of distinct points in
R
N , and a family {ηj | j ∈ J} of positive numbers such that

η = |x|−bp∗ |u|p∗ +
∑
j∈J
ηjδxj , (2.14)

where δxj is the Dirac measure at xj .

(2) The following equality holds

μ ≥ |x|−ap|∇u|p +
∑
j∈J
μjδxj , (2.15)

for some family {μj > 0 | j ∈ J} satisfying

S1
(
ηj
)p/p∗ ≤ μj ∀j ∈ J,

∑
j∈J

(
ηj
)p/p∗ ≤ ∞. (2.16)

(3) There hold

lim
n→+∞

sup
∫

Ω
|x|−ap|∇un|pdx =

∫

Ω
dμ + μ∞,

lim
n→+∞

sup
∫

Ω
|x|−bp∗ |∇un|p

∗
dx =

∫

Ω
dη + η∞,

(2.17)

where

μ∞ := lim
R→∞

lim
n→+∞

sup
∫

Ω
⋂
BcR

|x|−ap|∇un|pdx,

η∞ := lim
R→∞

lim
n→+∞

sup
∫

Ω
⋂
BcR

|x|−bp∗ |∇un|p
∗
dx.

(2.18)

Lemma 2.6. Let 1 < p < r < s < p∗. Then I(u) satisfies the (PS)c condition with c ≤ (1/r −
1/p∗)Sp

∗/(p∗−p)
1 , where S1 is as in (1.8).

Proof. We will split the proof into three steps.
Step 1. {un} is bounded in X.

Let {un} be a (PS)c sequence of I(u) in X, that is,

I(un) −→ c, I ′(un) −→ 0 in X∗ as n −→ ∞. (2.19)
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Then, we have

1 + c + ‖un‖X ≥ I(un) − 1
r

〈
I ′(un), un

〉

=
(
1
p
− 1
r

)
‖un‖pX +

(
1
r
− 1
s

)
‖un‖sLs(RN,h) +

(
1
r
− 1
p∗

)
‖un‖p

∗

Lp
∗ (RN)

≥
(
1
p
− 1
r

)
‖un‖pX.

(2.20)

Since p > 1, (2.20) shows that {un} is bounded in X.
Step 2. There exists {un} in X such that un → u in Lp

∗
(RN).

The inequality (1.8) shows that {un} is bounded in Lp
∗
(RN, |x|−bp∗). Then the

above argument and the compactness embedding in Lemma 2.2 mean that the following
convergence hold:

un ⇀ u in W
1,p
0

(
R
N
)
,

un ⇀ u in Lp
∗(

R
N, |x|−bp∗

)
,

un −→ u a.e. in R
N.

(2.21)

It follows from Lemma 2.5 that there exist nonnegative measures μ and η such that

|x|−bp∗ |un|p
∗
⇀ η = |x|−bp∗ |u|p∗ +

∑
j∈J
ηjδxj , (2.22)

|x|−ap|∇un|p ≥ |x|−ap|∇u|p +
∑
j∈J
μjδxj . (2.23)

Thus, in order to prove un → u in Lp
∗
(RN) it is sufficient to prove that ηj = η∞ = 0.

For the proof of ηj = 0, we define the functional ψ ∈ C∞
0 (RN) such that

ψ ≡ 1, in B
(
xj , ε
)
, ψ ≡ 0, in B

(
xj , 2ε

)c
,
∣∣∇ψ∣∣ ≤ 2

ε
, (2.24)

where xj belongs to the support of dη. It follows from (2.1) that

lim
n→∞

〈I ′(un), unψ〉 = 0. (2.25)
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Since ‖un‖X is bounded, we can get from (1.8)-(1.9), Lemmas 2.3 and 2.5 that

lim
n→∞

∫

RN

|x|−ap|∇un|p−2∇un∇ψundx = lim
n→∞

(∫

RN

|x|−bp∗ |un|p
∗
ψ dx −

∫

RN

|x|−(a+1)p|un|pψ dx

−
∫

RN

|x|−ap|∇un|pψ dx +
∫

RN

f(x)|un|rψ dx

+
∫

RN

h(x)|un|sψ dx
)

−→
∫

RN

ψdη −
∫

RN

ψdμ = ηj − μj (as ε −→ 0).

(2.26)

On the other hand,

lim
n→∞

∫

RN

|x|−ap|∇un|p−2∇un∇ψundx

≤ lim
n→∞

(∫

RN

|x|−ap|∇un|pdx
)(p−1)/p(∫

RN

|x|−ap|un|p
∣∣∇ψ∣∣pdx

)1/p

≤ c
(∫

B2ε

∣∣∇ψ∣∣Ndx
)1/N(∫

B2ε

|x|(−aNp)/(N−p)|u|Np/(N−p)dx

)(N−p)/Np

≤ c
(∫

B2ε

|x|(−aNp)/(N−p)|u|Np/(N−p)dx

)(N−p)/Np

−→ 0 (ε −→ 0),

(2.27)

where B2ε � B(xj , 2ε). Then μj = ηj ; furthermore, (2.16) implies that μj = ηj = 0 or ηj >

S
p∗/(p∗−p)
1 . We will prove that the later does not hold. Suppose otherwise, there exists some

j0 ∈ J such that ηj0 > S
p∗/(p∗−p)
1 . Then (2.19) and Lemma 2.4 show that

c + o(1) = I(un) − 1
r

〈
I ′(un), un

〉

=
(
1
p
− 1
r

)
‖un‖pX +

(
1
r
− 1
p∗

)∫

Ω
|x|−bp∗ |un|p

∗
dx

≥
(
1
r
− 1
p∗

)
ηj0 >

(
1
r
− 1
p∗

)
S
p∗/(p∗−p)
1 ,

(2.28)

which contradicts the hypothesis of c. Then μj = ηj = 0.
Similarly, we define the functional ψ1 ∈ C∞

0 (RN) as

ψ1 ≡ 0, |x| < R, ψ1 ≡ 1, |x| > 2R,
∣∣∇ψ1

∣∣ ≤ 2
R
. (2.29)
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Then, the similar proof as above shows that η∞ = μ∞ = 0. Thus, we can deduce from (2.22)
that

∫

RN
|x|−bp∗ |un|p

∗
dx −→

∫

RN
|x|−bp∗ |u|p∗dx as n −→ ∞, (2.30)

which implies that un → u in Lp
∗
(RN, |x|−bp∗).

Step 3. {un} converges strongly in X.
The following inequalities [21] play an important role in our proof:

|ξ − ζ|p ≤
⎧
⎨
⎩

c
〈
|ξ|p−2ξ − |ζ|p−2ζ, ξ − ζ

〉
for p ≥ 2,

c
〈
|ξ|p−2ξ − |ζ|p−2ζ, ξ − ζ

〉p/2(|ξ|p + |ζ|p)(2−p)/2 for 1 < p < 2.
(2.31)

Our aim is to prove that {un} is a Cauchy sequence of X. In fact, let ψ = un − um in (1.12), it
follows from (2.19) that

Amn +
∫

RN
|x|−(a+1)p

(
|un|p−2un − |um|p−2um

)
(un − um)dx

=
〈
I ′(un) − I ′(um), un − um

〉

+
∫

RN
f(x)

(
|un|r−2un − |um|r−2um

)
(un − um)dx

+
∫

RN
h(x)

(
|un|s−2un − |um|s−2um

)
(un − um)dx

+
∫

RN
|x|−bp∗

(
|un|p

∗−2un − |um|p
∗−2um

)
(un − um)dx,

(2.32)

where

Amn =
∫

RN
|x|−ap

(
|∇un|p−2∇un − |∇um|p−2∇um

)
· ∇(un − um)dx. (2.33)

Using the inequalities (2.31), we can get by direct computation that

Amn ≥

⎧
⎪⎪⎨
⎪⎪⎩

c

∫

RN
|x|−ap|∇(un − um)|pdx, p ≥ 2

c

(∫

RN
|x|−ap|∇(un − um)|pdx

)2/p

, 1 < p < 2,
(2.34)

with some constant c > 0, independent of n andm.
Then the Hölder inequality together with (1.8) and (2.30) yield that

∫

RN
|x|−bp∗

(
|un|p

∗−2un − |um|p
∗−2um

)
(un − um)dx −→ 0 (as n,m −→ ∞). (2.35)
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Similarly, we have from the Hölder inequality, Lemmas 2.3 and 2.4 that

∫

RN
f(x)

(
|un|r−2un − |um|r−2um

)
(un − um)dx −→ 0 (as n,m −→ ∞),

∫

RN
h(x)

(
|un|s−2un − |um|s−2um

)
(un − um)dx −→ 0 (as n,m → ∞).

(2.36)

Therefore, the above estimates imply that ‖un − um‖X → 0 (n,m → ∞), that is, {un} is a
Cauchy sequence of X. Then {un} converges strongly in X and we complete the proof.

Similarly, we have the following lemma.

Lemma 2.7. Let 1 < r < p < s < p∗. Then I(u) satisfies the (PS)c condition with c ≤ (1/s −
1/p∗)Sp

∗/(p∗−p)
1 + (((s − r)/(s − p))S2)

r/(p−r)((r − p)(s − r)/prs)‖f‖p/(p−r)
Lσ1 (RN,g1)

, where S1, S2 are as
in (1.8), and (1.9) respectively.

Proof. Step 1. {un} is bounded in X.
Let {un} be a (PS)c sequence of I(u) in X. Then we have from Lemma 2.3 that

c + 1 + ‖un‖X ≥ I(un) − 1
s

〈
I ′(un), un

〉

=
(
1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
‖un‖rLr(RN,f) +

(
1
s
− 1
p∗

)
‖un‖p

∗

Lp
∗ (RN)

≥
(
1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
S
r/p

2 ‖un‖rX
∥∥f∥∥Lσ1 (RN,g1)

.

(2.37)

Since 1 < r < p < s, (2.37) shows that ‖un‖ is bounded in X.
Step 2. There exists {un} in X such that un → u in Lp

∗
(RN).

Similar to the proof of Lemma 2.5, we can get that μj = ηj = 0 or ηj > S
p∗/(p∗−p)
1 by

applying the functional ψ. Now we prove that there is no j0 ∈ J such that ηj0 > S
p∗/(p∗−p)
1 .

Suppose otherwise, then

c + o(1) = I(un) − 1
s

〈
I ′(u), un

〉

=
(
1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
‖un‖rLr(RN,f) +

(
1
s
− 1
p∗

)
‖un‖p

∗

Lp
∗ (RN)

≥
(
1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
S
r/p

2 ‖un‖rX
∥∥f∥∥Lσ1 (RN,g1)

+
(
1
s
− 1
p∗

)
S
p∗/(p∗−p)
1 .

(2.38)

Let

q(t) =
(
1
p
− 1
s

)
tp −

(
1
r
− 1
s

)
S
r/p

2

∥∥f∥∥Lσ1 (RN,g1)
tr , t ≥ 0. (2.39)
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Then q(t) has the unique minimum point at

t0 =
[
s − r
s − pS

r/p

2

∥∥f∥∥Lσ1(RN,g1)

]1/(p−r)
,

q(t0) =
(
s − r
s − pS2

)r/(p−r) (r − p)(s − r)
prs

∥∥f∥∥p/(p−r)
Lσ1 (RN,g1)

.

(2.40)

Then it follows from (2.38) that

c + o(1) ≥
(
1
s
− 1
p∗

)
S
p∗/(p∗−p)
1 +

(
s − r
s − pS2

)(r/p−r) (r − p)(s − r)
prs

∥∥f∥∥p/(p−r)
Lσ1 (RN,g1)

, (2.41)

which contradicts the hypothesis of c.
Step 3. {un} converges strongly in X.

By Lemma 2.4, this result can be similarly obtained by the method in Lemma 2.6, so
we omit the proof.

3. Existence of Infinitely Solutions

In this section, we will use the minimax procedure to prove the existence of infinity many
solutions of problem (1.1). Let A denotes the class of A ⊂ X \ {0} such that A is closed in
X and symmetric with respect to the origin. For A ∈ A, we recall the genus γ(A) which is
defined by

γ(A) := min
{
m ∈N : ∃φ ∈ C(A,Rm \ {0}), φ(x) = −φ(−x)}. (3.1)

If there is nomapping φ as above for anym ∈N, then γ(A) = +∞, and γ(∅) = 0. The following
proposition gives some main properties of the genus, see [13, 22].

Proposition 3.1. Let A,B ∈ A. Then

(1) if there exists an odd map g ∈ C(A,B), then γ(A) ≤ γ(B),
(2) if A ⊂ B, then γ(A) ≤ γ(B),
(3) γ(A

⋃
B) ≤ γ(A) + γ(B).

(4) if S is a sphere centered at the origin in R
N , then γ(S) =N,

(5) if A is compact, then γ(A) < ∞ and there exists δ > 0 such that Nδ(A) ∈ A and
γ(Nδ(A)) = γ(A), whereNδ(A) = {x ∈ X : ‖x −A‖ ≤ δ}.

Lemma 3.2. Assume (A1)–(A3). Then for anym ∈N, there exists ε = ε(m) > 0 such that

γ({u ∈ X : I(u) ≤ −ε}) ≥ m. (3.2)
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Proof. For given m ∈ N
+, let Xm be a m-dimensional subspace of X. If p < r < s < p∗, then for

u ∈ Xm we have

I(u) =
1
p
‖u‖pX − 1

r
‖u‖rLr(RN,f) −

1
s
‖u‖sLs(RN,h) −

1
p∗

‖u‖p∗
Lp

∗ ≤ 1
p
‖u‖pX − 1

r
‖u‖rLr(RN,f). (3.3)

The fact that all the norms on finite dimensional space are equivalent implies that for all
u ∈ Xm

I(u) ≤ 1
p
‖u‖pX − c‖u‖rX, (3.4)

for some constant c > 0. Then there exist large ρ > 0 and small ε > 0 such that

I(u) ≤ −ε, ‖u‖Xm
= ρ. (3.5)

Denote

Sρ =
{
u ∈ Xm : ‖u‖Xm

= ρ
}
. (3.6)

Then Sρ is a sphere centered at the origin with radius of ρ and

Sρ ⊂ {u ∈ X : I(u) ≤ −ε} � I−ε. (3.7)

Therefore, Proposition 3.1 shows that γ(I−ε) ≥ γ(Sρ) = m.
If r < p < s < p∗, we have

I(u) =
1
p
‖u‖pX − 1

r
‖u‖r

Lr(RN,f) −
1
s
‖u‖s

Ls(RN,h) −
1
p∗

‖u‖p∗
Lp

∗ ≤ 1
p
‖u‖pX − 1

s
‖u‖sLs(RN,h). (3.8)

Since ‖u‖sLs(RN,h) is also a norm and all norms on the finite dimensional space Xm are
equivalent, we have

I(u) ≤ 1
p
‖u‖pX − c‖u‖sX. (3.9)

Then there exist large σ > 0 and small ε > 0 such that

I(u) ≤ −ε, ‖u‖Xm
= σ. (3.10)

Denote

Sσ =
{
u ∈ Xm : ‖u‖Xm

= σ
}
. (3.11)
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Then Sσ is a sphere centered at the origin with radius of σ and

Sσ ⊂ {u ∈ X : I(u) ≤ −ε} � I−ε. (3.12)

Therefore, Proposition 3.1 shows that γ(I−ε) ≥ γ(Sσ) = m.

Let Am = {A ∈ A : γ(A) ≥ m}. It is easy to check that Am+1 ⊂ Am(m = 1, 2, . . .). We
define

cm = inf
A∈Am

sup
u∈A

I(u). (3.13)

It is not difficult to find that

c1 ≤ c2 ≤ · · · ≤ cm ≤ · · · . (3.14)

and cm > −∞ for any m ∈ N since I(u) is coercive and bounded below. Furthermore, we
define the set

Kc =
{
u ∈ X : I(u) = c, I ′(u) = 0

}
. (3.15)

Then, Kc is compact and we have the following important lemma, see [22].

Lemma 3.3. All the cm are critical values of I(u). Moreover, if c = cm = cm+1 = · · · = cm+τ , then
γ(Kc) ≥ 1 + τ .

Proof of Theorem 1.2. In view of Lemmas 2.6 and 2.7, I(u) satisfies the (PS)c condition in X.
Furthermore, as the standard argument of [13, 22, 23], Lemma 3.3 gives that I(u) has infinity
many critical points with negative values. Thus, problem (1.1) has infinitely many solutions
in X, and we complete the proof.
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