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The mathematical formulation for a quadratic optimal control problem governed by a linear
quasiparabolic integrodifferential equation is studied. The control constrains are given in an
integral sense: U,y = {u € X; IQu u > 0,t € [0,T]}. Then the a posteriori error estimates in

L*(0,T; H'(Q))-norm and L?(0, T; L?(Q))-norm for both the state and the control approximation
are given.

1. Introduction

Integrodifferential equations of quasiparabolic and their control of this nature appear in
applications such as biology mechanics, nuclear reaction dynamics, heat conduction in mate-
rials with memory, and viscoelasticity. All these models express a conservation of a certain
quantity in any moment for any subdomain and the historical accumulation feature in the
physical models. This in many applications is the most desirable feature of the approximation
method when it comes to numerical solution of the corresponding initial boundary value
problem. The existence and uniqueness of the solution of the quasiparabolic Integrodifferen-
tial equations has been studied in [1]. Finite element methods for quasiparabolic Integrodif-
ferential equations problems with a smooth kernel have been discussed in Cui [2]. Although
there is so much work for the finite element approximation of this problem, to our knowledge,
there has been a lack of a posteriori error estimates for finite element approximation of any
quasiparabolic Integrodifferential optimal control problem.
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The finite element approximation of optimal control problems has been an important
topic in engineering design works. There have been extensive theoretical and numerical
studies for various optimal control problems, see, for instance, [3-11], although it is impos-
sible to give even a very brief review here. And research on finite element approximation
of parabolic optimal control problems can be found in, for example, [12, 13].

Among many finite element methods, the adaptive finite element method based on a
posteriori error estimates has become a central theme in scientific and engineering computa-
tions for its high efficiency. In order to obtain a numerical solution of acceptable accuracy, it is
essential for the adaptive finite element method to use a posteriori error estimate indicators
to guide the mesh refinement procedure. We only need refine the area where the error
indicators are larger, so that a higher density of nodes are distributed over the area where
the solution is difficult to approximate. In this sense, adaptive finite element approximation
relies very much on the error indicators used, which are often based on a posteriori error
estimates of the solutions.

The purpose of this paper is to derive the a posteriori error estimates for the semidis-
crete finite element approximation of a quadratic optimal control problem governed by
a linear quasiparabolic Integrodifferential equation, which paves a way to derive the a
posteriori error estimates for the full discrete finite element approximation for this control
problem and thus to develop its adaptive finite element schemes. We extend the existing
techniques and results in [14-16] to the optimal control problem governed by the Integrodif-
ferential equation of quasiparabolic type.

The outline of the paper is as follows. In Section 2, we first briefly introduce the optimal
control problem and give the optimality conditions, then construct the finite element approx-
imation schemes for the optimal control problem. In Section 3, we give the a posteriori error
bounds in L* (0, T; H' (Q))-norm for the control problem. And the a posteriori error bounds
in L2(0, T; L?(Q))-norm for the control problem are derived in Section 4.

2. Optimal Control Problem and Its Finite Element Approximation

Let Q and Qy be bounded convex polygon domains in R? with Lipschitz boundary 0Q and
0Qy;. In this paper, we adopt the standard notation W"4(Q) for Sobolev spaces on Q with
norm ||+||n,4,0, and seminorm |- |, 4,0. We set Wgn’q (Q) = {w e W™I(Q) : w|sn = 0}. We denote
Wm'z(Q)(W(;"’Z(Q)) by H™(Q)(H['(Q)), with norm || - ||, and seminorm | - |, .

We denote by L*(0, T; W™1(Q)) the Banach space of all L* integrable functions from
(0,T) into W™4(Q) with norm |||, r.wma@)) = (fOT ||v||f,v,,w(g)dt)1/S for s € [1,0) and the
standard modification for s = co. Similarly, one can define the spaces H' (0, T; W™4(Q)) and
Ck(0, T; W™4(Q)). The details can be found in [17]. In addition, ¢ or C denotes a general
positive constant independent of the mesh size h.

In the following, we will give semi-discrete finite element approximation schemes for
the optimal control problem governed by a linear quasiparabolic Integrodifferential equation.

2.1. Model Problem and Its Weak Formulation

We will take the state space W = L*(0,T;V) with V = Hg (Q) and the control space X =
L%(0,T;U) with U = L?>(Qy). Let the observation space Y = L?(0,T; H) with H = L*(Q) and
U4 C X a convex subset.
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We are interested in the following optimal control problem:

. 1( (T T
mmxf(u,y(u)) = E{I ||y—zd||§,gdt+J‘ ||u||§,9udt}, (2.1)
0 0

uel ,4C
subject to

t
yy —div (AVyt +DVy +I C(t, )Vy(x, T)dT> =f+Bu, inQx(0,T],
0

(2.2)
y=0, on 0Qx][0,T],

y|t=0 = yO/ in Q/

where u is control, y is state, z; is the observation, U, is a closed convex subset, f(x,t) €
L?(0,T; L*(Q)), and z; and y° € H'(Q) are some suitable functions to be specified later. B is
a linear bounded operator from L?(Qy;) to L?(Q) independent of t. And

A= AR = (@), € (C2(R))"", D =D = (), < (c=(B))"",
2.3)

such that there is a constant ¢ > 0 satisfying that for any vector X € R" as follows:

XIAX > c|| X3,  X!DX > c||X|%, (2.4)

C=Clx,t,7) = (c;j(x,1,7),,, € (C(O0,T;LX(Q)" ).
Let

(fi f2) = Lﬁfz, Y(f1, f2) € H x H,

(u,0) = fQ uv, V(u,v)elxU, (2.5)

a(z,w) = (AVz, Vw), d(z,w) = (DVz,Vw),
c(t,t;z,w) = (C(t, T)Vz,Vw), Vz,weV xV.

In the case that f; € V and f, € V*, the dual pair (f1, f) is understood as { f1, f2)yuy--
Assume that there are constants ¢ and C, such that for all t and 7 in [0, T] as follows:

(a) a(z,z) > cllzlf; o,
(b) la(z,w)| < Cllzlhgllwlh g, ld(z,w)| < Clzllyollwl o (2.6)

(©) le(t, 7;2,w)| < Clizls ollwll -

forany zand win V.
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Then the weak form of the state equation reads as

(yr, w) +a(y, w) +d(y, w) + JZ c(t, ;y(r), w)dr = (f + Bu,w)

Yw eV, te (0,T], (2.7)
0o =Y.

It is well known (see, e.g., [1]) that the above weak formulation has at least one solution

inyeW(0,T) ={weL*0,T; H(Q)),w, € L*(0,T; H(Q))}.
Therefore, the weak form of the control problem (2.1) and (2.2) reads as (OCP)

min J (u, y(u)),

(yr,w) + a(y;, w) +d(y, w) + Itc(t,r;y(r) ,w)dr = (f + Bu,w) YweV, te(0,T],
0

Yl = yo.
(2.8)

In the following, we first give the existence and uniqueness of the solution of the system (2.8).

Theorem 2.1. Assume that the condition (2.6) (a)—(c) holds. There exists the unique solution (u, y)
for the minimization problem (2.8) such that u € L*(0,T;L*(Qu)), v € L*(0,T; H (X)), and
yi € L*(0,T; HY(Q)).

Proof. Let {(u",y")},~; be a minimization sequence for the system (2.8), then the sequence
{u"}2, is bounded in L*(0, T; L?>(7)). Thus there is a subsequence of {u"}’; (still denote

by {u"}2, ) such that u" converges to u* weakly in L(0, T; L*(Q)). For the subsequence

{u"}2,, we have

¢
(v, w) +a(y!, w) +d(y", w) + J‘ c(t,7;y"(r),w(t))dr = (f + Bu",w)
0 (2.9)

YweV, te(0,T].
By setting w = y" and integrating from 0 to t in (2.9), we give
2 ! 2
Iy ®lia+ [ 171 ade
, o (2.10)
<c{l e [ i et [ [ ool asae |
, 0 070

Applying Gronwall’s inequality to (2.10) yields

) T
”yn”iw orH(@) T ”yn”iz OTHI(Q) S Ci (v’ + ”f”glg + ”un”%,Qu : (2.11)
( ) ( ) 12 ),
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So {u"}y, is a bounded set in L%(0,T; L*(Qu)) and {y"}:2; is a bounded set in L*(0,T;
H'(Q)). Thus

u" — u  weakly in L? <0, T; Lz(Qu)>,
y" — vy weakly in L <0, T; H' (Q)), (212)

y"(T) — y(T) weakly in H'(Q).

Let W = {w; w e L*(0,T; H(Q)), w} € L*(0,T; H'(Q))}.
By integrating time from 0 to T in (2.9) and taking limit as n — oo, we obtain

T
(1), w(T)) +a(y(T),w(T)) - fo [(v,w}) +a(y,wi) +d(y,w)]
+ J‘T ft c(t, m;y(r), w(t))drdt (2.13)
0Jo
= <y0,w(0)> + a<y0,w(0)> + IT(f +Bu,w), YweW.
0
Then,

(yr,w) +a(y, w) +d(y,w) + ftc(t,T;y(T),w)dT =(f+Bu,w), YweV, te(0,T].
0
(2.14)

Furthermore, we have
T t T
[} vt s v [ ety monae|a= [ g rmuwy. @
0 0 0

Then, we get

T T t
[ lia<c| [||f||im i, + Mylia | IIyIIiQdT]. 216)

This means y; € L?(0, T; H'(L)). So (1, y) is one solution of (2.8).
Since fOT ly = zall§ , is a convex function on space L*(0, T; L*(Q)) and (a/2) fOT l[]l3 6,
is a strictly convex function on U, hence J(u, y(u)) is a strictly convex function on U, so the

minimization problem (2.8) has one unique solution. O
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2.2, Optimality Conditions and Their Finite Element Approximation

By the theory of optimal control problem (see [18]), we can similarly deduce the following
optimality conditions of the problem (2.8).

Theorem 2.2. A pair (y,u) € L?(0,T; H}(Q)) x L*(0,T; L*(Qu)) is the solution of the optimal
control problem (2.8), if and only if there exists a costate p € L*(0,T; Hy(Q)) such that the triple
(v, p, u) satisfies the following optimality conditions:

t
(yr, w) +a(yy, w) +d(y, w) + foc(t,r;y(r),w(t))dr = (f + Bu,w)

YweV, te(0,T], (2.17)

Yo =y%
T
~(q,pt) —a(q,p:) +d(q,p) +f c(t,t;q(t),p())dr = (y - z4,9) VYq€V,t€[0,T),
t

plir =0;
(2.18)

T
f (u+B'p,v—-u),dt >0, Yvelu, (2.19)
0

where B* is the adjoint operator of B.

Let us consider the semi-discrete finite element approximation of the control problem
(2.8). Here, we only consider triangular and conforming elements.
Let Q" be a polygonal approximation to Q with boundary 8Q". Let T" be a partitioning

of Q" into disjoint regular n-simplices 7, so that Q- Uzer» T- Each element has at most one
face on dQ", and 7 and T have either only one common vertex or a whole edge or face if T
and T € T". We further require that P; € 0Q" = P, € 0Q where P; (i=1,...,]) is the vertex
set associated with the triangulation Tj,. As usual, h denotes the diameter of the triangulation
T". For simplicity, we assume that Q is a convex polygon so that Q = Q.

Associated with T" is a finite-dimensional subspace S" of C (ﬁh), such that y|, are
polynomials of order m (m > 1) forall y € S"and 7 € T". Let V¥ = {v, € S, : vp(P) =0
(i=1,...,])},W" =L%0,T; V"). Note that we do not impose a continuity requirement. It is
easy to see that V* c V, Wh c W.

Let T/ be a partitioning of Q] into disjoint regular n-simplices 7y, so that ﬁz =
Urer, Tu- Tu and 7,; have either only one common vertex or a whole edge or face if 7(; and
F{l € T[’[. We further require that P; € GQZ = P, € 0Qy, where P; (i =1,...,]) is the vertex
set associated with the triangulation T}t. For simplicity, we again assume that Q is a convex
polygon so that Qy = QP

Associated with Tl}} is another finite-dimensional subspace U" of LZ(Q{’I), such that
Xl are polynomials of order m (m > 0) for all y € U" and 7; € T};. Here there is no
requirement for the continuity. Let X" = L?(0, T; U"). It is easy to see that X" c X. Let h,(hy,)
denote the maximum diameter of the element 7(7y;) in T" (T[’I).
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Due to the limited regularity of the optimal control u in general, there will be no advan-
tage in considering higher-order finite element spaces than the piecewise constant space
for the control. We therefore only consider the piecewise constant finite element space for
the approximation of the control, though higher-order finite element spaces will be used to
approximate the state and the co-state. Let Py(£2) denote all the 0-order polynomial over Q.
Therefore, we always take Xt={ueX: u(x, B)lxer, € Po(Ty), for all t € [0,T]}. led isa
closed convex set in X". For ease of exposition, in this paper, we assume that U", ¢ U N X".

Then a possible semi-discrete finite element approximation of (OCP) is as follows
(OCP)" .

) 1 T T
min J (s, yn) = 5 {j llyn - zallg e + J llunllf } (2.20)
uheuad 0 0

such that

d d t
<%fwh> + a(%rmh) +d(yn, wn) +I c(t, 75 yn(7), wi(t)dt = (f + Bup, wp),
0

Yw, e V!, te (0,T],
yh|t=0 = yg'
(2.21)

where y;, € W" and ) € V" is the approximation of y/°.

In the same way of proving Theorem 2.1, we can easily prove that the problem (2.20)-
(2.21) has a unique solution (y;, u;) € Wh x u” .

It is well known (see [18]) that a pair (ys, uy) € W" x UZd is a solution of (2.20)-
(2.21), if and only if there exists a co-state py, € W" such that the triple (yn, pn, un) satisfies the
following optimality conditions:

0 0 t
<%,wh) + a(%,w;& +d(yn, wn) +f c(t, T; yn(T), wi(t))dr = (f + Bup, wy),
0
Ywy, € Vh,

Yilio = y?,,
(2.22)

Oph opn ! h
—\aw = ) —alaw = +d(qn,pn) + | (Tt gn pr(r))dr = (yn — za,qn), Yan e V",
t

Pn It:T =0,
(2.23)

T
f (un + B*pp,vn — up) ;dt >0, Yoy, € LIZd. (2.24)
0
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The optimality conditions in (2.22)—(2.24) are the semi-discrete approximation to the
problem (2.17)—-(2.19).
Introduce the local averaging operator s, given by

(W) |n, = , VryeTh. (2.25)

Then, we have fQu w = jQu myw for any w € L?(0,T; L*(Qu)), t € [0,T] and (2.24) is equi-
valent to

T
j (uh +ﬂ'h(B*ph),Uh - uh)udt >0, Voy,e UZd. (2.26)
0

In the following, we derive the a posteriori error estimates for semi-discrete finite element
approximation (2.22)—(2.24), allowing different meshes to be used for the state and the
control.

The following lemmas are important in deriving the a posteriori error estimates of
residual type.

Lemma 2.3 (see [19]). Let 7y, be the standard Lagrange interpolation operator. For m = 0 or 1,
qg>n/2and veW>1(Q)as

[0 = T30l < CH ™[0l q. (2.27)

Lemma 2.4 (see [20]). Let oy, be the average interpolation operator defined in (2.25). For m = 0 or
1,1< g < ooand for all ve WH(Q") as

1-
0= Tn0lpgr < D, Chi "ol (2.28)
TNT#0

Lemma 2.5 (see [21]). Forallv e W'(Q), 1 < g<ooas

-1/ 1-1/
oo gor < C(hz “Iollogr + B Il g ) (229)

3. A Posteriori Error Estimates in L*(0,T; H'(Q))~-Norm

In this paper, the control constraints are given in an integral sense as follows:

Uy = {UEX; v>0te [O,T]}. (3.1)

Qu

The following lemma is the first step to derive the a posteriori error estimates of residual type.
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Lemma 3.1. Let (v, p,u) and (yn, pn, un) be the solutions of (2.17)—(2.19) and (2.22)—(2.24). Then,
we have

2 2
”u - uh”LZ(O,T;LZ(Qu)) < CTZ% + C”ph - p(uh) ||L2(0,T;L2(Q))’ (32)

where
! 2
- {Z | IRGIEEAC) }dt, (33)
0 U Tu
Py is the L2-projection from L*(2) to U", and p(uy,) is defined by the following system:

t
<%y(uh),w> + a(%y(uh),w> +d(y(up),w) + Jo c(t, T y(up) (1), w(t))dr

= (f + Bup,w), YweYV, (3.4)
y(n)(0) = y5(x), x€Q,
0 0 T
~ (9 g ~a(a g ) +dapw) + | et taw payear
= (y(un) — za,q9), VYqeV.
Proof. From (2.19), we have
(u,u—up)y < —(B'p,u—up),; (3.6)

Then, by (2.24) and (3.6), we have

T

T
||u_uh”iz(0,T;Lz(Qu)) = J‘ [(u/u_uh)l,[ - (uh/u_uh)ll]dt = J‘ _(B*p"'”hr”—”h)udt
0 0

T T
= —J‘ (B*ph +up,u— ’Uh)udt - J‘ (B*ph + Uy, vp — uh)udt
0 0
T T
+ f (B*pn — B'p(un), u — up,) ,dt + I (B*p(un) — B*p, u—up,),dt
0 0

T
< inf f (B*ph + up, v — u),,dt

vhellfl’d 0

T T
+ fo (B*(pn — p(un)), u — up,),,dt + fo (B*(p(un) —p), u—up),dt

=L+ 1L +Is.
(3.7)

Next, we will estimate I, I, and I3, respectively.
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(1) We first estimate I;. Let P, be the L?-projection from L?(Q) to U".
We have

(Po-v)p=0, YpeX" velyy, te(,T]. (3.8)
Qu

Since v € U4, so jg P,o > 0 then P,v € LIh So that we can take v, = Pyu in I;.

For given t € (0 T],le
f B*pn
up = Py —B*ppn + max (3.9)
IQu

We have u;, € X". We will show that u, is the solution of the variational inequality in (2.24)
assuming pj, is known.

Since [, [Pu(=B*pr+max{0, [, B*pn/ [, 1}) = (=B*pr+max{0, [, B*pn/ [y, 111 =0,
we have

B* — (s B* B*
f up = —f B*pn + max IQ” P Jo, B'pue o, B'pn <0, (3.10)
Qu Qu Qu et ) o Jo, B'Pr = 0.

Thus, j’Q u, > 0, we have uy, € llh Note that for all v, € llh t € (0,T], we have

(uh + B*ph, On — uh)u

) Lzu [Ph (‘B*Ph + max{(), %}>
< -B' ph+ma><{ f@};u }) + max { fg};u }] _— (3.11)

= max{ fQu }(vh —up).
el

If jQu B*py <0, then
(uh + B*pp, v - uh)u = I 0-(vp —uy) =0. (3.12)
Qu

If [, B*pn = 0, since

B*
f@u up = J;lu <—B*ph + max{O, IQ};T’% }) =0. (3.13)
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we have
B*pn B*pn
(uh + B*ph,vh - uh)u = IQU P (vp —up) = J‘QU—P . I vy = 0. (3.14)
J.Qu 1 Qu IQU 1 Qu
From (3.11)—(3.14), we obtain
(uh + B*ph, on — uh)u >0, Vo, € uZd‘ (3.15)

So uy = Py(-B*pn + max{0, »[Qu B*pn/ fQu 1}) is the solution of the variational inequality in
(2.24) assuming py, is known.
Then,

T
I < J‘ (B*ph + up, Phu — u)udt
0

. [ B (3.16)
= f {ZI [Ph <—B*ph + max{O, 2y Pt }) + B*ph] (Phu - u) }dt.
0 \my Y7u fQu 1
Since fTu (Pyu —u) = 0, we have
T
L < f {ZI (—=Pu(B*pn) + B*pr) (Pyu — u)}dt
0\ my Yru
T
= f {Z f (=Pu(B*pn) + Bpn) (Pn(u — up) — (u - uh))}dt

0 Uru (3.17)

T
< C(5) fo {Z f (=Pu(B"pn) + B*Ph)2} dt +6llu = unll]: o112
Tu ¥ U

2
=Cnp +6|lu- ”h”LZ(o,T;LZ(Qu))'

(2) Consider

T
L= ,[0 (B* (Ph - P(”h))/u - uh)udt < C”Ph - P(”h) ”iz(O,T;LZ(Q)) + 6”” - uh”iz(O,T;Lz(Qu))'
(3.18)

(3) By (3.4) and (2.17), we have for t € (0,T]

(3=, @) = a v = y) ) +d(y - y(an) )
(3.19)

t
+ Io c(t,m; (v —y(up)) (1), w(t))dr = (B(u—up),w), YweV,



12 Abstract and Applied Analysis

and from (3.5) and (2.18), we have

0 0
- (qf 5 (P - p(u»:))) - a<qf 5 (P - P(”h))> +d(q,p—p(un))
. (3.20)
+ L c(r,t:q), (p - p(un)) (1))dr = (y —y(ur),q), VYgeV.

Then, from (3.19), (3.20), and integrating by part we have

T T
Iz = -[0 (B*(p(un) —p), u—up),dt = .[0 (p(un) - p, B(u—up)),,dt
Tr/o 0
- |G-y pn-p) +a( 5=y pom)-p)
t
+d(y — y(up), p(uy) —p) + fo c(t,m; (v —y(un)) (1), (p(un) — p) (t))dr] dt
T ) 0
= JO [— (y = y(un), 7 (p(un) - P)) - a<y =y (), = (p(un) = P))
T
+d(y — y(un), p(un) —p) + L c(r,t; (y = y(un) (®), (p(un) - p) (T))dT] dt

T
= f ~(y — y(un),y - y(up))dt <O0.

0
(3.21)

Following from (3.17)—(3.21), let 6 be small enough as

2
flue - ”h”iz(o,T;LZ(gu)) <Cnf+ Cllpn = p(un) ||L2(O,T;L2(Q))' (3.22)

This completes the proof. O

Lemma 3.2. Let (y,p,u) and (yn, pn, un) be the solutions of (2.17)—(2.19), and (2.22)—(2.24) res-
pectively. Then, there hold the a posteriori error estimates as

2

2 0
—yn)||reorm@) * || 7 (v —y(u
|k — v ()|, (0,T;H () || ot (Yn =y (un)) L (TH@)

, (3.23)

6
<C 112,
L2(0,T;HY(Q)) - ; '

2 (o= p)

2
+ || pn - P(”h)”Lw(o,T;Hl(Q)) +
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where

T aph aph
2 _ 2 _A; * . *
15 = Io { ET h; L<—at 1V<A V_E)t ) +div(D*Vpy)

T 2
+f diV(C*(T,t)Vph(T))dT+yh—Zd> dT}dt,
t

T 3 T 2
13 = J; ;hlf [—(A*V%) -n+ (D*Vpy) -n+ L (C*(7,t)Vpu(T)) -ndT] dldt,

or
T 0 . 0 .
;= J; {;hi L<§yh - le<AV%> —div(DVyy)
, 2
—f div(C(t, 7)Vyn(r))dr - f - Buh> }dt,
0

T bS] t 2
1 = f Sh LT [(AV%) -n+ (AVyy) -n +J (C(t, 7)Vyn(1)) ~ndr] dldt,

0 T 0

= s - ol
(3.24)

where 1 is a face of an element T, hy is the maximum diameter of I, and [Vpy, - n] and [Vyy, - n] are the
normal derivative jumps over the interior face I defined by

[Vph ’ n]l = (VPhh|T} - VPh|T,2> ‘n,

(3.25)
[vyh ’ n]l = <Vyh|’rl1 - Vyh|7,2> n,

where n is the unit normal vector on 1 = Tll n le outwards Tll. For later convenience, one can define
[Vpy -n]; =0and [Vyy, - n]; = 0 when 1 C 0Q.

Proof. Let

(R, ) = = (25 (o= p0) ) = a((0, 5 (= p(a) ) + (o, - plan)
: (3.26)
; f c(z,t;0(), (p - plw)) (7)) dr,

and oy, the average interpolation operator defined as in (2.25) and e = p;, — p(uy). Then, it
follows from (2.23) and (3.5) that

0 0
- (qh, o (Pn = P(“h))) - a(% 5 (Pr = P(uh))> +d(qn, pn — p(un))
T (3.27)
+f c(t,t:qn(t), (pn — p(un)) (7))dT = (yn — y(un), qn), Yqn € V"

t
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We have
<R(uh)/v>
= —<7J — TR 2(ph - p(uh))> - a(v TR, —(ph p(un) )) +d(v —apv, pr — p(un))
T ,
T
+ J: c(t,t; (v = mpo) (1), (pr — p(un) ) (1)) dT - <Jrhv, 3 (pn — p(uh)))
5 T
- a<Jrhv, a(ph - p(uh))> +d(mpv, pr— p(un)) + j o(t, t; mpo(t), (pn — p(un)) (T))dT
¢

Opn opn !
<7J TR, E) - a<v — o, W) +d(v—myo,pn) + | c(r,t; (v —mp0)(t), pr(T))dT
¢

— (y(un) = za,v = m,0) + (yn = y(un), 710)

opn . .
= 'V d * —| div(C*(z, dar -
ZI < (A v o ) iv(D*Vpy) L iv(C*(t,t)Vpu(t))dr yh+zd>

T
x (v — apv) + ZI l <A*V—> -n+ (D*Vpy) -n+ L (C*(,t)Vpu(T)) -ndT]

x (v = mpv) + (yn — y(un),v)
{Zf h? < — R div (A*V%) div(D*Vpy)

2
—f div(C*(7,t)Vpu(7))dT — yp + zd>
t

. 2y 172
+ZJ [ (A*Vﬂ) -n+ (D*Vpy) -n+ L (C*(7, ) Vpnu(T)) ‘TldT] }

x [[vllq + (yn = y(un), v).
(3.28)

Taking v = pj, — p(uy,) in (3.28) and from (2.6), we have

1 d 2 1 d 2
=5 77l =p@lloq = 5 5;a(pn = pGun), pr = p@an)) + ellpn = PGl o

{ZJ‘ h2< +div (A*V?) div(D*Vpy) - J‘ div(C*(t,t) Vpp(7))dr

_yh+zd> Zj [(A*V ph)-n+(D*Vph).n]2}1/2
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*|lpn = pun) ||, o + (vn =y (un), pr — p(un))
T
[ et (= P O, (= p) ()
t

(3.29)

Integrating time from ¢ to T in (3.29) and by Schwartz inequality, Lemmas 2.4 and 2.5, we
have

1 T
= pa g+ ellpn g ve [ o= plan g
T opn Oph
2 rh g xyg _n . *
< J't }T;hT x f( 5 d1v<A v >+d1v(D Vpn)
T 2
+f div(C*(s, ) Vpu(s))ds + yn — zd> dr

+IT;hz faT[ <A* ag”‘) -n+ (D*Vpy) .n+f(c*(s,r)vph(s)) .nds]sz

t

T T T T
+6 [ o= pnliadr +C [ = yliiadr«C [ 10 =p) @) ads
t t tJr

(3.30)
Letting 6 be small enough, we have
T
L llpn = pQun) |1} o7
0 0
f th J‘ < P _ 'V<A*V%> +div(D*Vpy)
T 2
+j div(C*(s, ) Vpn(s))ds + yn — zd> dr
' (331)

+Cf Zh’f [ (A* )-n+(D*Vph)-n
T 2
+L (C*(s,7)Vpn(s)) -nds] dr

T T T
<[ = ylliadr+ [ [ = ptun) @I} ads
t tJT
Then, from Gronwall inequality and (3.28)—(3.31) we have

”Ph - p(uh)”iz(o,T;Hl(Q)) < C’lé + C’1§ + C”yh - y(uh)”iz(O,T;Lz(Q))' (3.32)
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Similarly,
2 2
| — P(”h)”Lw(O,T,-Hl(Q)) < C(’lg + 115 + |y = y(un) ||L2(O,T;L2(Q))>
T (T ,
cof [ 1= pa) @l gdrar 639)
0 Jt
< C’lg + C’lé + C”yh - y(uh)”iZ(O,T;LZ(Q))'

In the same way of getting (3.32),by setting v = (0/0t) (pr, — p(up)) in (3.28), we have

2
< Crpa + Cn3 + Cllyn =y (un) ”iZ(O,T;LZ(Q))' (3.34)

| 35— pean)

L2(0,T;HY(Q))

Similarly analysis for |y, — v (un) |1 (0,1:H1 (@), We let

(Q(up),v) = <a%(]/h - y(uh)),v> + a<§t(yh - y(uh)),v> +d(yn — y(un),v)

t (3.35)
+ JO c(t, 7; (yn = y(un)) (1), 0(t))dr.
From (2.22) and (3.4), we obtain
(“’h/ %(yh - y(uh))> + a<%(yh - y(uh))/w;z> +d(yn - y(un), wn)
(3.36)

t
+ -[o c(t,7; (yn — y(un)) (1), wi(t))dr =0, Yewy, € V"

We have
(Q(un),v)

= (%(yh —y(un)), v —fhv> + a(%(}/h —y(un)), v - ﬂh”) +d(yn — y(un), v - m40)
R ﬂc(t,’l‘; (v~ 9 (1)) (1), (0 = 740) () I

_ <%,v-m> . a(%,v—mm) +d(yn 0 - my0)
+ f; o(t, 75 yn(r), (0 - 1,0) ()7 — (f + Bup, 0 - 40)

0 b t
B ZT: J‘T<% - iV<AV%> —div(DVyn) - fo div(C(t, T)Vyp)dr - f - Buh>(v — )
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+ZJ- [(AV_> n+ (DVyy) - 71+J‘(C(t T)Vyn) - ndT](v ITR0)

17

{Z f h2< Yp - d1v<AV yh) —div(DVyy) - JZ div(C(t, 7)Vyp)dr - f - Buh>2

+Zf [( ) n+(DVyy) - n+I(C(t T)Vyn) - "d7]2}1/2||0||1,g-

By setting v = y, — y(uy) and Swartz inequality, we have

d 1d
=y log + 5 7 a(un =y, yu = yn) +cllyn -yl o

N —

(3.37)

2
5 (2 - (0% ~aomn - [ ey )

+ ZJ- [(AV—) -n+ (DVyy) -n+ f;(C(t,T)Vyh) ~ndT]2

t
+6llyn -y @)l - fo c(t, 75 (yn =y (un)) (1), (yn — y(un)) (1)) dr.

Integrating time from 0 to ¢ in (3.38), we obtain

t
s = v g v [l ) g

! ayh a]/h
2 —_—— 1 — —_— 1
C{fo TE h’z‘ fr< Y div <Av ' ) div (Dvyh)

T 2
—f diV(C(T,s)Vyh)ds—f—Buh> dr
0

+J:) zT:hl far [(AV%) -n+ (DVyy) -n+ J‘;(C(T, s)Vyn) onds] 2dt}

t t AT 2
+5 [ Ny=y)lfadr+ [ | llvn=ymlfiadsdr+ -,

Since 6 is small enough, then from (3.39) and Gronwall inequality, we have

t
[ = v g

(3.38)

(3.39)
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t ayh ayh
< 2 AT YT\ _ 4
<C .[o zT:hT L( o 1V<AV o > div(DVyy)
T 2
—f div(C(t,s)Vyp)ds - f - Buh> dr
0

t ayh T 2 ., 2
*CL?’Z f [(AV7> i+ (DVy) f (Cr,)Vyn) - nds| dt +Cllyo -y

(3.40)
Then,
2
=y @) 132 o100y < C (1 + 13 + 1),
(3.41)
2
llyn = y(un) ”LOO(O,T;Hl(Q)) < C(’ZZ + 13+ 712)
In the same way of getting (3.34), we can similarly obtain
0 : 2,2, .2
—_ — < . .
H o Wry@)| @) C(i + 2 + ) (3.42)
Then the desired results (3.23) follow from (3.32)—(3.34) and (3.41)-(3.42). O

From Lemmas 3.1 and 3.2, we have the following results.

Theorem 3.3. Let (y,p,u) and (yn, pn, un) be the solutions of (2.17)—(2.19) and (2.22)—(2.24)
respectively. Then, there hold the a posteriori error estimates as

2

= 1Py o+ 1 = Yl o + || 2 (v — )
L2(0,T;L2(Qu)) L= (0,T;H (Q)) ot

L2(0,T;HY(Q))
(3.43)
) 9 2 6 )
+ ~ Ph||1 Nl + || = — FPh < C ir
lp =Pl (0T;H'(Q)) ot (p—pn) (oTH@) ;71
where n? is defined in Lemma 3.1.
Proof. First, from (3.27) and (3.36), and [2], we have the following stability results:
2 0 2 »
”y - ]/(”h)”Lw(o,T;Hl(Q)) + ||a(]/ - y(un)) L(oTH @) < Cllu- uh”Lz(O,T;LZ(Qu))/
g (3.44)

2 0 2
”P = p(un) ||L°°(0,T;H1(Q)) + a(P - p(un)) < C”]/ - y(un) ||L2(O,T;L2(Q))

L2(0,T;HY(Q))

2
< Cllw = unllia o 1200y
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Then, the desired results (3.43) follows from triangle inequality, (3.44) and Lemmas 3.1 and
3.2.
This completes the proof. O

4. A Posteriori Error Estimates in L>(0,T; L?(Q))~-Norm
In the following, we will derive the a posteriori error estimates in L2(0, T; L*(Q))-norm.
For given F € L?(0,T; L*(Q)), we have
op . op . L
= - d1V<AV—> - div(DV¢) —I div(C(t, 7)V(r))dr =F, (x,t) € Qx(0,T],
0

ot ot
¢ (4.1)
a_Q = 0, te (0, T],

¢(x,0)=0, xe€Q,

and its dual equation

d o T
—a—‘f+div<A*va—"t’> — div(D*Vy) —f div(C*(r, ) Ve(r))dr = F, (x,) € @x (0,T],
t
¥ _
30 =0, te(0,T],

¢(x,T)=0, xe€Q.
(4.2)
From [1, 2], we have the following stability results.

Lemma 4.1. Assume that Q is a convex domain. Let ¢ and ¢ be the solution of (4.1) and (4.2),
respectively. Then,

||¢”L°°(O,T;L2(Q)) < C”F”LZ(O,T;LZ(Q))'
||V¢||L2(0,T;LZ(Q)) < C”F”LZ(O,T;LZ(Q))'

o

0T < ClIF(| 20,7502/

< ClFl 20,7120/
L2(0,T;L2(Q))

0
Ha‘ﬁ

(4.3)
”‘P”Lw(o,T;LZ(Q)) < C”F”LZ(O,T;LZ(Q))'

||V(P”L2(O,T;LZ(Q)) < C”FHLZ(O,T;LZ(Q))’
%

|5
FTAd

L2(0,T;L2(Q)) g C||F||L2(O,T;L2(Q))/

< ClFl 20,7120/
L2(0,T;L2(Q))

where D¢ = 0*¢/0x;0x;,1 < i,j < n, and D*q is defined similarly.
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Using Lemmas 3.1 and 4.1, we have the following upperbounds.

Lemma 4.2. Let (y,p,u) and (yu, pn, un) be the solutions of (2.17)—(2.19) and (2.22)—(2.24),
respectively. Then, there hold the a posteriori error estimates as

5
lyn -y (un) ”iZ(O,T;LZ(Q)) + |lpn = p(un) ”iZ(O,T;LZ(Q)) < C<Z‘§i2 + 11§>, (4.4)

where n? is defined in Lemma 3.2, and
2= JJ h4f pn _ iv(A*V%> +div(D*Vpy)
2= ) 14" )\ o ot Ph
- 2
+f div(C*(t,t) Vpi(7))dT + yp — Zd> }dt,
t
T aph T 2
&= J‘ Zh?f —(A*V§> -n+ (D*Vpy) -n+J‘ (C*(7,t)Vpnu(r)) - ndr | dldt,
0 =z or t
T ayh ayh
2 _ 4 9Yn _ g A WEH
& = jo {;hT L< o 1V<AV o > div(DVyy)

2
—It div(C(t, T)Vyn(t))dr - f - Buh> }dt/
0

(4.5)

T t 2
&= .[o ;h? J‘ar [(AV%) -n+ (DVyy) -n+ IO(C(t,T)Vyh(T)) ondT:I dldt.

Proof. We first estimate ||py — p(un) ”iZ(O,T;LZ(Q))'

Let ¢ be the solution of (4.1) with F = p;, — p(uy), and ¢; = 7,¢ the interpolation of ¢
in Lemma 2.3.

From (4.1), (3.27), and by integrating by parts we obtain

2
llpn =P @)1= (0112))

T
) fo (F®), (pn = p(un)) (1)) dt

_ j[- (5 n-pn).9) -a( 2 (n-pan))

t
+d (¢, pn — p(un)) + fo c(t,7;¢(1), (pn — p(un)) (t))dr] dt
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T /o 0
[ (G p) p-91) - (9= 1,5 (n - piw) )
t
+d(¢ = b1, pn = p(un)) + IO c(t, 3 (¢ = @) (1), (pn = p(un)) (1))dT
0 0
- (g n =), g ) = a5 (s = plan)))
t
+d (1, pn =~ p(un)) + fo c(t, T ¢r(7), (pr — P(uh))(t))dT] dt
_ T aph aph
([ @)oo )
op(un)

+d(¢—¢1/Ph)+foc(t/T;(¢—¢1)(T)/Ph(t))d7+( 5 /4’—4’1)

va(p- g, T ) == bup)) - [ ctmi (@~ 1)) plu) 0)dr

- (5= pa), ¢ ) = a(9r, 35 - plan)))
+d (1, pn — p(un)) + JZ c(t,7; ¢1(7), (pn — P(uh))(t))dT] dt
([ Gre)-oo-03)

T
vd(§-dup) +ft e(t, 1 (§— dr) (6), pu(r))dr

(H20) (o0 )

T
—d (-, plun)) - f e(r,t: (¢ - br) (), plaan) (7))l

_ (%(Ph - p(“h))/d’l) - a(gbf, %(ph —p(uh))>
+d(¢1,Ph - P(uh)) + L c(r, tdr(t), (ph - P(uh))(T))dT] dt
’ T
- fo [—(%,fﬁ - ¢1> - a(ti) - ¢1, %) +d(p— 1, pn) + L o(r,t (P - ¢I)(f),Ph(T))dT]dt

T T
- JO (y(un) — za, ¢ — r)dt + ’[O (yn —y(up), §r)dt

! pn o e OPh P
= ,[0 {ZT: L< ~ > +d1V<A VE) —div(D*Vpy)
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T
+f div(C*(,t) Vpu(T))dT + yp — Zd> (p-¢1) }dt
t

+ JZ; LT [—(A*V%) n+(D*Vpy) -n+ J‘tT(C*(T,f)VPh(T)) -ndr]

T
x (¢ —¢p)dldt + fo (yn — y(up), §)dt

=i+ ]2+ ]
(4.6)

It follows from Lemmas 2.3, 2.5, and 4.1 that
T aph 8;9;,
< 4 —— —di v
J1 < C(6) fo {;hT L< o 1V<A o ) +div(D*Vpy)
T 2
+f div(C*(7,t)Vpu(7))dT + yp — zd> }dt
t
oo 2
+ 5J’0 |¢|2,th < C(5)§§ + 5||Ph —P(”h)”LZ(o,T;LZ(Q))/
3 * aph * T * ’
6)J‘ Zh f <A 5 >.n+(D Vph)~n+f (C*(7,t)Vpu(r)) - ndr | dldt
t

T
¥ 5[0 |¢|§,th

< C(6)& +6||pn - P(uh)"iz(o,T;Lz(Q))'

4.7)
By Schwartz inequality, we have
J3 < C(6)|lyn — y(un) ”iZ(O,T;LZ(Q)) +6||pn - P(”h)”iZ(o,T,-LZ(Q))' (4.8)
Letting 6 be small enough, it follows from (4.6)—(4.8) that
3
llpn - P(”h)”iZ(o,T;LZ(Q)) S C;gf +Cllyn - y(uh)”iz(o,T;Lz(Q))' (4.9)

Next, we estimate ||y, — y(uh)||%2 OTI2(Q)" Similarly let ¢ be the solution of (4.2) with F =
Y — Y(uy), and ¢ = T the interpolation of ¢ in Lemma 2.3.
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Then, it follows from (3.36) and integrating by parts that
2
”yh - y(un) ||L2(O,T;L2(Q))

T
B -[o (F(t), (yn = y(un))(t))dt

_ IOT [(%(yh - y(uh)),qf) ¥ a(%(yh - y(uh)),q;) + d(yn - y(n), )
* f c(78; (ya - ]/(uh))(t),qf(’r))dr] dt
+a(yl -0, 90) + (v - v0.9(0)
_ IZ[(%(% —y(uh)),qf—qu> + a(%(yh —y(uh)),(/;_q;1>

T
+d(yn - y(un), ¢ — ¢r1) + L c(z,t; (yn —y(un)) (1), (¢ - w)(r))df] dt

+ IOT [(%(yh - J/(uh))MPI) + ﬂ(%(yh - y(uh))#ﬁ)
+d(yn — y(un), ¢r) + J;T o(r, t; (yn — y(uh))(t)/(lfl(T))dT] dt

+a(yl - o, ¢(0) + (vi - yo,9(0))

= f:[(%,qf—qfo + a(%ﬂ/f—w) +d(yn g — 1)
+ JZ c(t, ;yn(7), (¢ — qq)(t))dr] dt

- fOT(f + Bun, ¢ = grr)dt + a(y = yo,¢(0) + (v~ v0,4/(0))

- IOT{ZT: L(% - div(AV%) —div(DVyy)
- JZ div(C(z, t)Vyu(r))dr - f - Buh> (¢ —or) }dt

T ayh t
‘), 2[—4(‘”7) 4 (DTy) = [ (CnT(e) -n]df(w—qn)dldt

+ a(yé‘ - yorqf(O)) + (yS - yo,qv(O)) =D;+D;+ D3 + Dy
(4.10)
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Similarly, it follows from Lemmas 2.3, 2.5 and 4.1 that
T oy oy,
< 4 AT YT
D; < C(6) J'O {Zh f< o 1V<AV i > div(DVyy)
; 2
_I div(C(z,t)Vyu(r))dr - f - Buh> }dt
0

T
+6 fo |‘I’|§,§zdt < C& +6||lyn — y(un) ”iZ(O,T;LZ(Q))’

(4.11)
T a]/h t 2
D; < C(5)f thj (AV7> -n+ (DVyy) -n—f (C(t, T)Vyn(7)) - n| dldt
0 T aT 0
oo 2
+6 fo |‘F|2,th < C& +6|lyn — y(un) ||L2(O,T;L2(Q))’
2
D5 + Dy < Crpg + 6|y = y (un) ”LZ(O,T;LZ(Q))

Letting 6 be small enough, then from (4.10)—(4.11), we have
- 2 <C(E+E+12 4.12
[l y(”h)”LZ(o,T;LZ(Q)) SC(6+85+115)- (412)
The desired results (4.4) follows from (4.9)—(4.12).This completes the proof. O

Using Lemmas 3.1 and 4.2, we have the following upper bounds.

Theorem 4.3. Let (y,p,u) and (yn, pn, un) be the solutions of (2.17)—(2.19) and (2.22)—(2.24),
respectively. Then, there hold the a posteriori error estimates as

5
2 2
= nll32 o 71200 + 1Y = ¥ll 2oz *+ 1P = Palliz o) < C(n% + Zzlé? + né)-
(4.13)

Proof. By triangle inequality, (3.44) and (3.38), Lemmas 3.1 and 4.2, we can easily prove (4.13)
in the same way of getting (3.43).
This completes the proof. O

5. Conclusion

In this paper, we study the semi-discrete adaptive finite element method for optimal control
problem governed by a linear quasiparabolic Integrodifferential equation. We extend the
existing methods in studying adaptive finite element approximation of optimal control
governed by a parabolic Integrodifferential equation to the control governed by a quasipara-
bolic Integrodifferential equation. After presenting the weak form and the existence and
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uniqueness of the solution for the optimal control problem, the a posteriori error estimates
for semi-discrete finite element approximations in L* (0, T; H*(Q))-norm and L?(0, T; L*(Q))-
norm are derived. The work will pave a way to derive the a posteriori error estimates of full
discrete finite element approximations of this optimal control problem
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