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Singularities of the focal surfaces and the binormal indicatrix associated with a null Cartan curve
will be investigated inMinkowski 3-space. The relationships will be revealed between singularities
of the above two subjects and differential geometric invariants of null Cartan curves; these
invariants are deeply related to the order of contact of null Cartan curves with tangential planar
bundle of lightcone. Finally, we give an example to illustrate our findings.

1. Introduction

If we imagine a regular curve in R
3
1, denote γ , and then imagine the set of all principal normal

lines intersecting this curve. Unless γ is a line, these lines will all meet some locus, in fact,
it is the locus of centres of curvatures of γ , which we call the focal sets. It is obvious that
the focal set would be a point or a new curve depending on given curves γ(s). Focal sets
are useful to the study of certain optical phenomena (namely, scattering, in fact a rainbow
is caused by caustics), expressing some geometrical results within fluid mechanics as well
as describing many medical anomalies [1–4], and so it is important to study the geometric
properties related to the focal curve (i.e., the locus of focal set is a curve) of a curve.

It is well known that there exist spacelike curve, timelike curve, and null curve in
Minkowski spacetime. For nonnull curve in Minkowski space, many of the classical results
from Riemannian geometry have Lorentz counterparts. In fact, spacelike curves or timelike
curves can be studied by approaches similar to those taken in positive definite Riemannian
geometry. Nonnull curves in Minkowski space, regarding singularity, have been studied
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extensively by, among others, the second author and by Izumiya et al. [5–10]. The importance
of the study of null curves and its presence in the physical theories are clear [4, 11–18].
Nersessian and Ramos [19] also show us that there exists a geometrical particle model
based entirely on the geometry of the null curves, in Minkowskian 4-dimensional spacetime
which under quantization yields the wave equations corresponding to massive spinning
particles of arbitrary spin. They have also studied the simplest geometrical particle model
which is associated with null curves in Minkowski 3-space [20]. However, null curves have
many properties which are very different from spacelike and timelike curves [11, 21, 22].
In other words, null curve theory has many results which have no Riemannian analogues.
In geometry of null curves difficulties arise because the arc length vanishes, so that it is
impossible to normalize the tangent vector in the usual way. Bonner introduces the Cartan
frame as themost useful one and he uses this frame to study the behaviors of a null curve [23].
Thus, one can use these fundamental results as the basic tools in researching the geometry of
null curves. However, to the best of the authors’ knowledge, the singularities of surfaces
and curves as they relate to null Cartan curves (see Section 2) have not been considered in
the literature, aside from our studies in de Sitter 3-space [24, 25]. Thus, the current study
hopes to serve such a need; in this paper, we study the focal surfaces and the binormal indicatrix
associated with a null Cartan curve in Minkowski 3-space from the standpoint of singularity
theory.

A singularity is a point (or a function) at which a function (or surface resp.) blows
up. It is a point at which a function is at a maximum/minimum or a surface is no longer
smooth and regular. Much of the time, these singularities affect a surface not only at a certain
point but around it also, and for this reason, we have focused our attention on germs in a
local neighbourhood around a fixed point. To allow a useful study of these singularities, we
consider volume like distance functions (denoted by D : I × R

3
1 → R,D(s,v) = 〈γ(s) − v, B(s)〉)

locally around the point (s0,v0) These functions are the unfoldings of these singularities in the
local neighbourhood of (s0,v0), and depend only on the germ that they are unfolding. In this
paper, we create these functions by varying a fixed point v in the volumelike distance function
D(s,v) = 〈γ(s) − v, B(s)〉, to get a family of functions. We show that these singularities are
versally unfolded by the family of volumelike distance functions. If the singularity of Dv is
Ak-type (k = 1, 2, 3) and the corresponding 3-parameter unfolding is versal, then applying
Bruce’s theory (cf. [26]), we know that discriminant set of the 3-parameter unfolding is
locally diffeomorphic to cuspidal edge or swallowtail; thus, we finished the classification
of singularities of the focal surface (because the discriminant set of the unfolding is precisely
the focal surface of a null Cartan curve). Moreover, we see the Ak-singularity (k = 1, 2, 3)
of Dv are closely related to the new geometric invariant σ(s). The singular point of the focal
surface corresponds to the point of the null Cartan curve which has degenerated contact with
a tangential planer bundle of a lightcone. As a consequence, the new Lorentzian invariant σ(s)
describes the contact between the tangential planer bundle of a lightcone and null Cartan
curve γ(s). It is important that the properties of volumelike distance function (or null Cartan
curve γ(s)) needed to be generic [27]. Once we proved that the properties of the volumelike
distance function were generic, we could deduce that all singularities were stable under small
perturbations for our family of volumelike distance function. If transversality is satisfied
for the volume like distance function of a null Cartan curve γ(s), then the properties of the
volumelike distance function are generic. By considering transversality, we prove that these
properties given by us are generic. On the other hand, the binormal indicatrix of a null Cartan
curve is a curve that lies in lightcone, by defining the lightcone height function and adopting the
method similar to those taken in the study of focal surface, we can classify the singularities
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of the binormal indicatrix the types of these singularities have a direct relation with the other
Lorentzian invariant k(s).

A brief description of the organization of this paper is as follows. The main results
in this paper are stated in Theorems 2.1 and 6.3. In Section 3, we give volumelike distance
functions and light-like height functions of a null Cartan curve, by which we can obtain
several geometric invariants of the null Cartan curve. The geometric meaning of Theorem 2.1
is described in Section 4. We give the proof of Theorem 2.1 in Section 5. In Section 7, we give
an example to illustrate the results of Theorem 2.1.

2. Preliminaries

Let R
3
1 denote the 3-dimensional Minkowski space, that is to say, the manifold R

3 with a flat
Lorentz metric 〈, 〉 of signature (−,+,+), for any vectors x = (x1, x2, x3) and y = (y1, y2, y3) in
R

3, we set 〈x,y〉 = −x1y1 + x2y2 + x3y3. We also define a vector

x ∧ y =

∣
∣
∣
∣
∣
∣

−e1 e2 e3
x1 x2 x3
y1 y2 y3

∣
∣
∣
∣
∣
∣

, (2.1)

where (e1, e2, e3) is the canonical basis of R
3
1. We say that a vector x ∈ R

3
1 \ {0} is spacelike, null,

or timelike if 〈x, x〉 is positive, zero, or negative, respectively. The norm of a vector x ∈ R
3
1 is

defined by ‖x‖ =
√

|〈x, x〉|. We call x a unit vector if ‖x‖ = 1.
Let γ : I → R

3
1 be a smooth regular curve in R

3
1 (i.e., γ̇(t)/= 0 for any t ∈ I),

parametrized by an open interval I. For any t ∈ I, the curve γ is called a spacelike curve, a null
(lightlike) curve, or a timelike curve if all its velocity vectors satisfy 〈γ̇(t), γ̇(t)〉 > 0, 〈γ̇(t), γ̇(t)〉 =
0 or 〈γ̇(t), γ̇(t)〉 < 0, respectively.We call γ a non-null curve if γ is a timelike curve or a spacelike
curve.

Let γ : I → R
3
1 be a null curve in R

3
1 (i.e., 〈γ̇(t), γ̇(t)〉 = 0 for any t ∈ I). Now suppose

that γ is framed by a null frame. A null frame F = {ξ = dγ/dt,N, B} at a point of R
3
1 is a

positively oriented 3-tuple of vectors satisfying

〈ξ, ξ〉 = 〈B, B〉 = 0, 〈ξ, B〉 = 1,

〈ξ,N〉 = 〈B,N〉 = 0, 〈N,N〉 = 1.
(2.2)

The Frenet formula of γ with respect to F is given by

dξ

dt
= −hξ + k1N,

dB

dt
= hB + k2N,

dN

dt
= −k2ξ − k1B.

(2.3)

The functions h, k1, and k2 are called the curvature functions of γ (cf. [11]). Employing the
usual terminology, the spacelike unit vector filed N will be called the principal normal vector
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filed. The null vector filed B is called the binormal vector filed. Null frames of null curves are
not uniquely determined. Therefore, the curve and a frame must be given together.

There always exists a parameter s of γ such that h = 0 in (2.3). This parameter is called a
distinguished parameter of γ , which is uniquely determined for prescribed screen vector bundle
(i.e., a complement in 〈dγ/dt〉⊥ to 〈dγ/dt〉) up to affine transformation [11].

Let γ(s) be a null curve with a distinguished parameter in R
3
1 (i.e., h = 0 in (2.3)).

Moreover, we assume that γ ′(s), γ ′′(s), γ ′′′(s) are linearly independent for all s. Then, we
consider the basis E = {γ ′(s), γ ′′(s), γ ′′′(s)} such that 〈γ ′′(s), γ ′′(s)〉 = k1(s) = 1. We choose
the ξ = dγ/ds,N = γ ′′, then there exists only one null frame F = {ξ,N, B} for which γ(s) is a
framed null curve with Frenet equations [11]:

dξ

ds
=N,

dB

ds
= k2N,

dN

ds
= −k2ξ − B,

(2.4)

where ξ = dγ/ds, N = γ ′′, B = −γ ′′′ − k2γ ′, k2 = (1/2)〈γ ′′′, γ ′′′〉. We call (2.4) the Cartan Frenet
equations and γ(s) their null Cartan curve [11]. We remark that the curvature function k2 is an
invariant under Lorentzian transformations.

In case γ is a null Cartan curve, labeling k2(s) = k(s), then the Frenet formula of γ(s)
with respect to F = {ξ,N, B} becomes

dξ

ds
=N(s),

dB

ds
= k(s)N(s),

dN

ds
= −k(s)ξ(s) − B(s).

(2.5)

This frame satisfies

ξ(s) ∧ B(s) =N(s), N(s) ∧ ξ(s) = ξ(s), B(s) ∧N(s) = B(s). (2.6)

Now we define surface FS : I × R → R
3
1 by

FS
(

s, μ
)

= γ(s) +
1

k(s)
N(s) + μB(s). (2.7)
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We call FS(s, μ) the Focal surface of null Cartan curve γ . We define the 2-dimensional future
lightcone vertex at v0 by

LC∗
+(v0) =

{

x ∈ R
3
1 : 〈x − v0, x − v0〉 = 0, x0 > 0

}

. (2.8)

When v0 is the null vector 0, we simply denote LC∗
+(0) by LC

∗
+.

Let γ : I → R
3
1 be a regular null Cartan curve. We define the binormal normal indicatrix

of γ(s) as the map BIγ : I → LC∗
+ given by

BIγ(s) = B(s), (2.9)

and the focal curve of γ(s) as the map Fγ : I → R
3
1 given by

Fγ(s) = γ(s) +
1

k(s)
N(s). (2.10)

Defining the set: for any v0 ∈ R
3
1,TPB(v0) = {u ∈ R

3
1 | 〈u − v0, B(s)〉 = 0} \ {v0}, we call it the

tangential planar bundle of lightcone through v0. It is obvious that the lightcone LC∗
+(v0) is the

envelope of the tangential planar bundle.
We give a geometric invariant σ of a null Cartan curve in R

3
1 by

σ(s) = k3(s) + 3k′2(s) − k(s)k′′(s), (2.11)

which are related to the geometric meanings of the singularities of the focal surface.
We shall assume throughout the whole paper that all the maps and manifolds are C∞

unless the contrary is explicitly stated.
Let F : R

3
1 → R be a submersion and γ : I → R

3
1 be a null Cartan curve. We say that

γ and F−1(0) have k-point contact for s = s0 if the function g(s) = F ◦ γ(t) satisfies g(s0) =
g ′(s0) = · · · = gk−1(s0) = 0, gk(s0)/= 0. We also say that γ and F−1(0) have at least k-point contact
for s = s0 if the function g(s) = F ◦ γ(s) satisfies g(s0) = g ′(s0) = · · · = gk−1(s0) = 0.

The main result in the paper is as follows.

Theorem 2.1. (A) Let γ : I → R
3
1 be a regular null Cartan curve with k(s)/= 0. For v0 = FS(s0, μ0)

and the tangential planar bundle TPB(v0) = {u ∈ R
3
1 | 〈u − v0, B(s)〉 = 0} of lightcone, one has the

following.

(1) The null Crtan curve γ(s) and TPB(v0) have at least 2-point contact for s0.
(2) The null Crtan curve γ(s) and TPB(v0) have 3-point contact for s0 if and only if

v0 = γ(s0) +
1

k(s0)
N(s0) +

k′(s0)
k3(s0)

B(s0), σ(s0)/= 0. (2.12)

Under this condition, the germ of Image FS at FS(s0, μ0) is locally diffeomorphic to the cuspidal edge
C × R (cf., Figure 1).
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Figure 1: Cuspidal edge.

(3) The null Crtan curve γ(s) and TPB(v0) have 4-point contact for s0 if and only if

v0 = γ(s0) +
1

k(s0)
N(s0) +

k′(s0)
k3(s0)

B(s0), σ(s0) = 0, σ ′(s0)/= 0. (2.13)

Under this condition, the germ of Image FS at FS(s0, μ0) is locally diffeomorphic to the swallowtail
SW (cf., Figure 2).

(B) Let γ : I → R
3
1 be a null Cartan curve. If p is a point of the binormal indicatrix of γ at s0,

then locally at p,

(1) the binormal indicatrix BIγ is diffeomorphic to a line at s0 if k(s0)/= 0,

(2) the binormal indicatrix BIγ is diffeomorphic to the ordinary cusp C at s0 if k(s0) = 0 and
k′(s0)/= 0.

Here, C ×R = {(x1, x2) | x2
1 = x

3
2} ×R is the cuspidal edge and SW = {(x1, x2, x3) | x1 =

3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail.

3. Volume-Like Distance Function and Lightcone Height Function
of Null Cartan Curve

The purpose of this section is to obtain one geometric invariants of null Cartan curves by
constructing a family of functions of the null Cartan curve.

Let γ : I → R
3
1 be a regular null Cartan curve with k(s)/= 0. We define a three-para-

meter family of smooth functions

D : I × R
3
1 −→ R, (3.1)
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Figure 2: Swallowtail.

by D(s,v) = |B(s)N(s)γ(s) − v| = 〈γ(s) − v, B(s)〉. Here, |abc| denotes the determinant of
matrix (abc). We call D the volumelike distance function of null Cartan curve γ . We denote that
dv(s) = D(s,v) for any fixed vector v in R

3
1. Using (2.5) and making a simple calculation, we

can state the following facts.

Proposition 3.1. Suppose γ : I → R
3
1 is a regular null Cartan curve with k(s)/= 0 and v ∈ R

3
1. Then

(1) dv(s) = 0 if and only if there exist real numbers λ,ω such that γ(s)−v = μB(s) +ωN(s),

(2) dv(s) = d′
v(s) = 0 if and only if v = γ(s) +

(
1

k(s)

)

N(s) − μB(s),

(3) dv(s) = d′
v(s) = d

′′
v(s) = 0 if and only if v = γ(s) +

(
1

k(s)

)

N(s) +
(
k′(s)
k3(s)

)

B(s),

(4) dv(s) = d′
v(s) = d′′

v(s) = d′′′
v (s) = 0 if and only if v = γ(s) + (1/k(s))N(s) +

(k′(s)/k3(s))B(s) and σ(s) = k3(s) + 3k′2(s) − k(s)k′(s) = 0,

(5) dv(s) = d′
v(s) = d′′

v(s) = d′′′
v (s) = d

(4)
v = 0 if and only if v = γ(s) + (1/k(s))N(s) +

(k′(s)/k3(s))B(s) and σ(s) = σ ′(s) = 3k2(s)k′(s) + 5k(s)k′′(s) − k2(s)k′′′(s) = 0.

Proof. (1) Let γ(s) − v = λξ(s) + μB(s) +ωN(s). We have

dv(s) =
〈

γ(s) − v, B(s)
〉

=
〈

λξ(s) +ωB(s) + μN(s), B(s)
〉

= λ.

(3.2)

The assertion (1) follows.

(2) By (1), we have γ(s) − v = ωN(s) + μB(s). Using (3), we obtain

d′
v(s) = 〈ξ(s), B(s)〉 +

〈

γ(s) − v, B′(s)
〉

= 1 +
〈

ωN(s) + μB(s), k(s)N(s)
〉

= 1 +ωk(s).

(3.3)
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It follows that dv(s) = d′
v(s) = 0 if and only if v = γ(s) + (1/k(s))N(s) − μB(s).

(3) Under the assumption that hv(s) = d′
v(s) = 0, we will compute h′′′v (s)

d′′
v(s) = 〈ξ(s), k(s)N(s))〉 +

〈

γ(s) − v, k′N(s) − k2(s)ξ(s) − k(s)B(s)
〉

=
〈

− 1
k(s)

N(s) + μB(s), k′N(s) − k2(s)ξ(s) − k(s)B(s)
〉

= − k2(s)μ − k′(s)
k(s)

.

(3.4)

Hence, the assertion (3) holds.

(4) When dv(s) = d′
v(s) = d

′′
v(s) = 0, the assertion (4) follows from the fact that

d′′′
v (s) =

〈

ξ(s), k′(s)N(s) − k2(s)ξ(s) − k(s)B(s)
〉

+
〈

γ(s) − v,
(

k′′(s) − 2k2(s)
)

N(s) − 3k(s)k′(s)ξ(s) − 2k′(s)B(s)
〉

= − k(s) + 3k′2(s)
k2(s)

− k′′(s)
k(s)

+ 2k(s)

= k(s) +
3k′2(s)
k2(s)

− k′′(s)
k(s)

.

(3.5)

(5) Under the condition that dv(s) = d′
v(s) = d′′

v(s) = d′′′
v (s) = 0, this derivative is

computed as follows:

d
(4)
v (s) = − k′(s) +

〈

ξ(s),
(

k′′(s) − 2k2(s)
)

N(s) − 3k(s)k′(s)ξ(s) − 2k′(s)B(s)
〉

+
〈

γ(s) − v,
((

k′′(s) − 2k2(s)
)

N(s) − 3k(s)k′(s)ξ(s) − 2k′(s)B(s)
)′
〉

= − 3k′(s) − k′(s)
k3(s)

(

−4k(s)k′′(s) + 2k3(s) − 3k′2(s)
)

− 1
k(s)

(

k′′′(s) − 9k(s)k′(s)
)

,

(3.6)

which implies that d(4)
v (s) = 0 is equivalent to 4k3(s)k′(s) + 4k(s)k′(s)k′′(s) − k2(s)k′′′(s) +

3k′3(s) = 0. Moreover, in combination with σ(s) = k3(s) + 3k′2(s) − k(s)k′(s) = 0, it follows
that dv(s) = d′

v(s) = d′′
v(s) = d′′′

v (s) = d
(4)
v = 0 if and only if v = γ(s) + (1/k(s))N(s) +

((k′(s))/(k3(s)))B(s) and σ ′(s) = 3k2(s)k′(s) + 5k(s)k′′(s) − k(s)k′′′(s) = 0.

Let γ : I → R
3
1 be a regular null Cartan curve. We define a two-parameter family of

functions

H : I × LC∗
+ −→ R, (3.7)
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byH(s,v) = 〈γ(s),v〉−s. We callH the lightcone height functions of null Cartan curve γ(s). We
denote that hv(s) = H(s,v) for any fixed vector v in LC∗

+. We have the following proposition.

Proposition 3.2. Suppose γ : I → R
3
1 is a regular null Cartan curve and v ∈ LC∗

+. Then

(1) h′v(s) = 0 if and only if there exist real numbers λ,ω such that v = λξ(s) + B(s) +ωN(s)
and 2λ +ω2 = 0.

(2) h′v(s) = h
′′
v(s) = 0 if and only if v = B(s).

(3) h′v(s) = h
′′
v(s) = h

′′′
v (s) = 0 if and only if v = B(s) and k(s) = 0.

(4) h′v(s) = h
′′
v(s) = h

′′′
v (s) = h

(4)
v (s) = 0 if and only if v = B(s) and k(s) = k′(s) = 0.

Proof. Let v = λξ(s) + μB(s) +ωN(s) in LC∗
+, where λ,ω, μ are real numbers.

(1) If

h′v(s) = 〈ξ(s),v〉 − 1

=
〈

ξ(s), λξ(s) + μB(s) +ωN(s)
〉

= μ − 1

= 0,

(3.8)

then μ = 1. Moreover, in combination with v in LC∗
+, which means 2λμ + ω2 = 0. It follows

that h′v(s) = 0 if and only if v = λξ(s) + B(s) +ωN(s) and 2λ +ω2 = 0.

(2) When h′v(s) = 0, the second derivative

h′′v(s) =
〈

ξ′(s),v
〉

= 〈N(s), λξ(s) + B(s) +ωN(s)〉

= ω,

(3.9)

then h′v(s) = h
′′
v(s) = 0 if and only if v = B(s).

(3) When h′v(s) = h
′′
v(s) = 0, the assertion (3) follows from the fact that

h′′′v (s) =
〈

N ′(s),v
〉

= 〈−k(s)ξ(s) − B(s), B(s)〉

= −k(s).

(3.10)
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(4) Under the condition that h′v(s) = h′′v(s) = h′′′v (s) = 0, this derivative is computed as
follows:

h
(4)
v (s) =

〈

N ′′(s),v
〉

=
〈

−k′(s)ξ(s) − 2k(s)N(s), B(s)
〉

= −k′(s).

(3.11)

The assertion (4) follows.

4. Geometric Meanings of Invariant of a Null Cartan Curve

The purpose of this section is to study the geometric properties of the focal surface of a null
Cartan curve in R

3
1. Through these properties, one finds that the functions σ(s) = k3(s) +

3k′2(s) − k(s)k′′(s) have special meanings. These properties will be stated below.

Proposition 4.1. Let γ : I → R
3
1 be a regular null Cartan curve with k(s)/= 0. Then

(1) the singularities of FS are the set {(s, μ)|μ = k′(s)/k3(s), s ∈ I},

(2) if FS(s, k′(s)/k3(s)) = v0 is a constant vector, then Fγ(s) is in TPB(v0) for any s in I
and σ(s) = k3(s) + 3k′2(s) − k(s)k′′(s) ≡ 0.

Proof. (1) A straightforward computation shows that

∂FS
∂s

=
(

μk(s) − k′(s)
k2(s)

)

N(s) − 1
k(s)

B(s),

∂FS
∂μ

= B(s).

(4.1)

The two equalities above imply that ∂FS/∂s and ∂FS/∂μ are linearly dependent if and only
if μ = k′(s)/k3(s). This completes the proof of assertion (1).

(2) For a smooth function μ : I → R, define

fμ : I −→ R
3
1, fμ(s) = γ(s) +

1
k(s)

N(s) + μ(s)B(s). (4.2)

fμ(s) = v0

dfμ(s)
ds

=
(

μk(s) − k′(s)
k2(s)

)

N(s) +
(

μ′(s) − 1
k(s)

)

B(s).

= 0.

(4.3)
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FS(s, μ)μ(s) = k′(s)/k3(s), μ′(s) = −((k(s)k′(s) − 3k′2(s))/k4(s))σ(s) = k3(s) + 3k′2(s) −
k(s)k′′(s) = 0γ(s) + (1/k(s))N(s) + μB(s) = v0Fγ

〈

Fγ(s) − v0, B(s)
〉

=
〈

−μB(s), B(s)
〉

= 0. (4.4)

5. Unfoldings of Functions of One Variable

In this section, we use some general results on the singularity theory for families of function
germs [24].

Let F : (R × R
r , (s0, x0)) → R be a function germ. We call F an r-parameter unfolding of

f , where f(s) = Fx0(s, x0). We say that f(s) has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 �
p � k and f (k+1)(s0)/= 0. We also say that f(s) has A�k-singularity at s0 if f (p)(s0) = 0 for all
1 � p � k. Let F be an unfolding of f and f(s) hasAk-singularity (k � 1) at s0. We denote the
(k−1)-jet of the partial derivative ∂F/∂xi at s0 by j(k−1)((∂F/∂xi)(s, x0))(s0) =

∑k−1
j=1 αji(s−s0)

j ,
for i = 1, . . . , r. Then F is called a (p) versal unfolding if the (k − 1) × r matrix of coefficients
(αji) has rank k− 1(k− 1 � r). Under the same as the above, F is called a versal unfolding if the
k × r matrix of coefficients (α0i, αji) has rank k(k � r), where α0i = (∂F/∂xi)(s0, x0).

We now introduce several important sets concerning the unfolding. The singular set
of F is the set

SF =
{

(s, x) ∈ R × R
r |
(
∂F

∂s

)

(s, x) = 0
}

. (5.1)

The bifurcation set BF of F is the critical value set of the restriction to SF of the canonical
projection π : R × R

r → R
r and is given by

BF =

{

x ∈ R
r | there exists s with

∂F

∂s
=
∂2F

∂s2
= 0 at (s, x)

}

. (5.2)

The discriminant set of F is the set

DF =
{

x ∈ R
r | there exists s with F =

∂F

∂s
= 0 at (s, x)

}

. (5.3)

Then we have the following well-known result [26].

Theorem 5.1. Let F : (R ×R
r , (s0, x0)) → R be an r-parameter unfolding of f(s) which has the Ak

singularity at s0.

(1) Suppose that F is a (p) versal unfolding.

(a) If k = 2, then (s0, x0) is the fold point of π |SF and BF is locally diffeomorphic to
{0} × R

r−1.

(b) If k = 3, then BF is locally diffeomorphic to C × R
r−2.
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(2) Suppose that F is a versal unfolding.

(a) If k = 1, then DF is locally diffeomorphic to {0} × R
r−1.

(b) If k = 2, then DF is locally diffeomorphic to C × R
r−2.

(c) If k = 3, then DF is locally diffeomorphic to SW × R
r−3.

Here, SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is swallowtail and
C = {(x1, x2) | x2

1 = x
3
2} is the ordinary cusp. We also say that a point x0 ∈ R

r is a fold point of a map
germ f : (Rr , x0) → (Rr , f(x0)) if there exist diffeomorphism germs φ : (Rr , x0) → (Rr , x0) and
ψ : (Rr , f(x0)) → (Rr , f(x0)), ψ ◦φ → ψ−1 ◦f ◦φ such that ψ ◦φ(x1, . . . , xr) = (x1, . . . , xr−1, x2

r ).

In the following propositions, the range of the index i ∈ {2, 3} is used unless otherwise
stated.

For the volumelike distance function D and the lightcone height function H, we can
consider the following propositions.

Proposition 5.2. Let D : I × R
3
1 → R be the volumelike distance function on a null Cartan curve

γ(s) with k(s)/= 0. If dv0 has Ak-singularity at s0 (k = 1, 2, 3), then D is a versal unfolding of dv0 .

Proof. Let γ(s) = (γ1(s), γ2(s), γ3(s)), v = (v1, v2, v3) in R
3
1, and B(s) = (B1(s), B2(s), B3(s)) in

LC∗
+.

Under this notation the same as above proposition, we obtain

D(s, v) = 〈ξ(s) − v, B(s)〉

= −
(

γ1(s) − v1
)

B1(s) +
(

γ2(s) − v2
)

B2(s) +
(

γ3(s) − v3
)

B3(s),

∂D

∂v1
(s,v) = B1(s),

∂D

∂vi
(s,v) = −Bi(s),

∂

∂s

∂D

∂v1
(s,v) = B′

1(s),
∂

∂s

∂D

∂vi
(s,v) = −B′

i(s),

∂2

∂s2
∂D

∂v1
(s,v) = B′′

1(s),
∂2

∂s2
∂D

∂vi
(s,v) = −B′′

i (s).

(5.4)

Let j2((∂D/∂vi)(s,v0))(s0) be the 2-jet of (∂D/∂vi)(s,v0) at s0 (i = 1, 2, 3) and so

∂D

∂vi
(s0,v0) + j2

(
∂D

∂vi
(s,v0)

)

(s0)

=
∂D

∂vi
(s0,v0) +

∂

∂s

∂D

∂vi
(s0,v0)(s − s0) +

1
2
∂2

∂s2
∂D

∂vi
(s0,v0)(s − s0)2

= α0,i + α1,i(s − s0) +
1
2
α2,i(s − s0)2.

(5.5)
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We denote that

A =

⎛

⎝

α0,1α0,2α0,3
α1,1α1,2α1,3
α2,1α2,2α2,3

⎞

⎠ =

⎛

⎝

B1(s0) − B2(s0) − B3(s0)
B′
1(s0) − B

′
2(s0) − B′

3(s0)
B′′
1(s0) − B

′′
2(s0) − B′′

3(s0)

⎞

⎠. (5.6)

Thus,

detA = det
(

B(s0)B′(s0)B′′(s0)
)

=
〈

B(s0) ∧ (k(s0)N(s0)), k′(s0)N(s0)

−k2(s0)ξ(s0) − k(s0)B(s0)
〉

= − k3(s0)〈B(s0) ∧N(s0), ξ(s0)〉

= − k3(s0)/= 0,

(5.7)

which implies that the rank ofA is 3, which finishes the proof.

Proposition 5.3. LetH : I×LC∗
+ → R be the lightcone height function on a null Cartan curve γ(s).

If hv0 has Ak-singularity (k = 2, 3) at s0, thenH is a (p) versal unfolding of hv0 .

Proof. Consider a null Cartan curve γ(s) = (γ1(s), γ2(s), γ3(s)), and let v = (v1, v2, v3) in LC∗
+,

we have

H(s,v) = −γ1(s)v1 + γ2(s)v2 + γ3(s)v3 − s

= ±γ1(s)
√

v2
2 + v

2
3 + γ2(s)v2 + γ3(s)v3 − s,

∂H

∂vi
= ± vi
√

v2
2 + v

2
3

γ1(s) + γi(s),

∂

∂s

∂H

∂vi
= ± vi
√

v2
2 + v

2
3

γ ′1(s) + γ
′
i(s),

∂2

∂s2
∂H

∂vi
= ± vi
√

v2
2 + v

2
3

γ ′′1 (s) + γ
′′
i (s).

(5.8)

Let j2(∂H/∂vi)(s,v0)(s0) be the 2-jet of (∂H/∂vi) (s,v) (i = 2, 3) at s0, then we can show that

j2
(
∂H

∂vi
(s,v0)

)

(s0) =
∂

∂s

∂H

∂vi
(s0,v0)(s − s0) +

1
2
∂2

∂s2
∂H

∂vi
(s0,v0)(s − s0)2

= α1,i(s − s0) +
1
2
α2,i(s − s0)2.

(5.9)
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We denote that

P =
(
α1,2 α1,3
α2,2 α2,3

)

=

⎛

⎜
⎜
⎜
⎜
⎝

±
v0,2

√

v2
0,2 + v

2
0,3

γ ′1(s0) + γ
′
2(s0) ±

v0,2
√

v2
0,2 + v

2
0,3

γ ′1(s0) + γ
′
3(s0)

±
v0,2

√

v2
0,2 + v

2
0,3

γ ′′1 (s0) + γ
′′
2 (s0) ± v2

√

v2
0,2 + v

2
0,3

γ ′′1 (s0) + γ
′′
3 (s0)

⎞

⎟
⎟
⎟
⎟
⎠

.

(5.10)

We require rank P = 2, which is verified from the fact that

detP = ± 1
√

v2
2 + v

2
3

det
(

γ ′(s0) γ ′′(s0) v0
)

= ± 1
√

v2
2 + v

2
3

〈ξ(s0) ∧N(s0), B(s0)〉

= ± 1
√

v2
2 + v

2
3

〈−ξ(s0), B(s0)〉

= ± 1
√

v2
2 + v

2
3

/= 0.

(5.11)

This completes the proof.

Proof of Theorem 2.1. Let γ : I → R
3
1 be a null Cartan curve with k(s)/= 0. For v0 = FS(s0, μ0),

we define a function D : R
3
1 → R by D(u) = 〈u − v0, B(s)〉. Then we have dv0(s) = D(γ(s)).

Since TPB(v0) = D−1(0) and 0 is a regular value of D, dv0(s) has the Ak-singularity at s0 if
and only if γ and TPB(v0) have k + 1-point contact for s0.

On the other hand, we can obtain from Proposition 3.1 that the discriminant set of
D = D ◦ γ is

DD =
{

γ(s) +
1

k(s)
N(s) + μB(s) | s ∈ I, μ ∈ R

}

, (5.12)

the assertion (A) of Theorem 2.1 follows from Propositions 3.1 and 5.2 and Theorem 5.1.
The bifurcation set BH ofH is

BH = {B(s) | s ∈ I}. (5.13)

The assertion (B) of Theorem 2.1 follows from Propositions 3.2 and 5.3 and Theorem 5.1.
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6. Generic Properties of Null Cartan Curves

In this section, we consider generic properties of null Cartan curves in R
3
1. The main tool is

transversality theorem. Let Embnu(I,R3
1) be the space of null embedding γ : I → R

3
1 equipped

with Whitney C∞-topology. We also consider the functions D : R
3
1 × R

3
1 → R defined by

D(u,v) = 〈u − v, B(s)〉. We claim that Dv is a submersion for any v in R
3
1, where Dv(u) =

〈u − v, B(s)〉. For any γ in Embnu(I,R3
1), we have D = D ◦ (γ × idR

3
1
). We also have the �-jet

extension

j�1D : I × R
3
1 −→ J�(I,R), (6.1)

defined by j�1D(s, v) = j�dv(s, v). We consider the trivialization J�(I,R) ≡ I ×R× J�(1, 1). For
any submanifold O ⊂ J�(1, 1), we denote that Õ = I × {0} × O. It is evident that both j�1D is
a submersions and Õ is an immersed submanifold of J�(I,R). Then J�1D is transversal to Õ.
We have the following proposition as a corollary of Lemma 6 in Wassermann [28].

Proposition 6.1. Let O be submanifolds of J�(1, 1). Then the set

TO =
{

γ ∈ Embnu
(

I,R3
1

)

| j�1D is transversal to Õ1

}

(6.2)

is residual subset of Emb nu(I,R3
1). If O is closed subset, then TO is open.

Let f : (R, 0) → (R, 0) be a function germ which has an Ak-singularity at 0. It is well
known that there exists a diffeomorphism germ φ : (R, 0) → (R, 0) such that f ◦φ(s) = ±sk+1.
This is the classification of Ak-singularities. For any z = j�f(0) in J�(1, 1), we have the orbit
Ll(z) given by the action of the Lie group of �-jet diffeomorphism germs. If f has an Ak-
singularity, then the codimension of the orbit is k. There is another characterization of versal
unfoldings as follows [27].

Proposition 6.2. Let F : (R × R
r , 0) → (R, 0) be an r-parameter unfolding of f : (R, 0) → (R, 0)

which has an Ak-singularity at 0. Then F is a versal unfolding if and only if j�1F is transversal to the

orbit L� ˜(j�f(0)) for � � k + 1.
Here, j�1F : (R × R

r , 0) → J�(R,R) is the �-jet extension of F given by j�1F(s, x) = j
�Fx(s).

The generic classification theorem is given as follows.

Theorem 6.3. There exists an open and dense subset TL�
k
⊂ Embnu(I,R3

1) such that for any γ ∈ TL�
k
,

then the focal surface of γ is locally diffeomorphic to the cuspidal edge or the swallowtail at any singular
point.

Proof. For � � 4, we consider the decomposition of the jet space J�(1, 1) into L�(1) orbits. We
now define a semialgebraic set by

Σ� =
{

z = j�f(0) ∈ J�(1, 1) | f has an A�4-singularity
}

. (6.3)
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Then the codimension of Σ� is 4. Therefore, the codimension of Σ̃�
0 = I ×{0}×Σ� is 5. We have

the orbit decomposition of J�(1, 1) − Σ� into

J�(1, 1) − Σ� = L�0 ∪ L
�
1 ∪ L

�
2 ∪ L

�
3 , (6.4)

where L�k is the orbit through an Ak-singularity. Thus, the codimension of ˜L�k is k + 1. We
consider the �-jet extension j�1D of the volumelike distant function D. By Proposition 6.1,
there exists an open and dense subset TL�

k
⊂ Embnu(I,R3

1) such that j�1D is transversal to
˜L�k (k = 0, 1, 2, 3) and the orbit decomposition of ˜Σ� . This means that j�1D(I × R

3
1)
⋂
˜Σ� = ∅

and D is a versal unfolding of g at any point (s0,v0). By Theorem 5.1, the discriminant set of
D (i.e., the focal surface of γ) is locally diffeomorphic to cuspidal edge or swallowtail if the
point is singular.

7. Example

In this section, we give an example to illustrate the idea of Theorem 2.1.
Let γ(s) be a null Cartan curve of R

3
1 defined by

γ(s) =

⎛

⎝s

√

1 − 1
4
s2 + 2 arcsin

s

2
, 2s − 1

6
s3,−1

6

(

4 − s2
)3/2

⎞

⎠, (7.1)

with respect to a distinguished parameter s (Figure 3). The Cartan Frenet frame F = {ξ,N, B}
as follows:

ξ(s) =
(
√

4 − s2, 2 − 1
2
s2,

1
2
s
√

4 − s2
)

,

N(s) =

(

− s√
4 − s2

,−s, 2 − s2√
4 − s2

)

,

B(s) =

(

− 2

(4 − s2)3/2
,
−1 + s2
−4 + s2

,−
s
(

−3 + s2
)

(4 − s2)3/2

)

.

(7.2)
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Figure 3: Null Cartan curve γ(s).
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Figure 4: Focal curve of γ(s).

Thus, using the Cartan Frenet equations (2.5), we obtain

k(s) =
6

(−4 + s2)2
. (7.3)
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Figure 6: Singular locus of focal surface.
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We give, respectively, the vector parametric equations of the focal curve Fγ (Figure 4), the
focal surface FS(s, μ) = γ(s) + (1/k(s))N(s) + μB(s) (Figure 5), and the singular locus
FS(s, k′(s)/k3(s)) of the focal surface (Figure 6)

1
6

{

s
√

4 − s2
(

−1 + s2
)

+ 12 arcsin
s

2
,−s
(

4 − 7s2 + s4
)

,−
(

−4 + s2
)3/2(

−1 + s2
)}

,

{

s
(

−4 + s2
)2(−1 + s2

)

− 12μ

6(4 − s2)3/2
+ 2 arcsin

s

2
,

−1
6
s
(

4 − 7s2 + s4
)

+
−1 + s2
−4 + s2

μ,

(

−4 + s2
)3(−1 + s2

)

6(4 − s2)3/2
−
6s
(

−3 + s2
)

μ

6(4 − s2)3/2

}

1
18

{

−76s + 47s3 − 7s5 + 36
√
4 − s4 arcsin s/2√

4 − s2
,

20s − 27s3 + 15s5 − 2s7,
(

4 − s2
)3/2(

3 + 3s2 − 2s4
)
}

.

(7.4)

We can calculate the geometric invariant

σ(s) = k3(s) + 3k′2(s) − k(s)k′′(s) =
72
(

−5 + 14s2
)

(−4 + s2)4
,

σ ′(s) = −
288s

(

13 + 35s2
)

(−4 + s2)7
.

(7.5)

We see that σ(s) = 0 gives two real roots s = ±
√

5/14 and σ ′(s) = 0 gives one real root s = 0,
and two complex roots s = ±i

√

13/15. Hence, we have FS is locally diffeomorphic to the
cuspidal edge at any singularity FS(s, μ), where s /= ±

√

5/14, μ = k′(s)/k3(s) = −(1/9)s(−4+
s2)3. Moreover, FS is locally diffeomorphic to the swallowtail at FS(s, μ), where (s, μ) =
(
√

5/14, (14739/2744)
√

5/14) or (s, μ) = (−
√

5/14,−(14739/2744)
√

5/14).
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