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A shallow water wave equation with a weakly dissipative term, which includes the weakly
dissipative Camassa-Holm and the weakly dissipative Degasperis-Procesi equations as special
cases, is investigated. The sufficient conditions about the existence of the global strong solution
are given. Provided that (1 — 02)ug € M*(R), up € H'(R), and uy € L'(R), the existence and
uniqueness of the global weak solution to the equation are shown to be true.

1. Introduction

The Camassa-Holm equation (C-H equation)
Up — Upyx + SUUy — 2Ux Uy — Uy =0, £>0, x ER, (1.1)

as a model for wave motion on shallow water, has a bi-Hamiltonian structure and is
completely integrable. After the equation was derived by Camassa and Holm [1], a lot of
works was devoted to its investigation of dynamical properties. The local well posedness of
solution for initial data 1y € H®(R) with s > 3/2 was given by several authors [2-4]. Under
certain assumptions, (1.1) has not only global strong solutions and blow-up solutions [2, 5-
7] but also global weak solutions in H(R) (see [8-10]). For other methods to handle the
problems related to the Camassa-Holm equation and functional spaces, the reader is referred
to [11-14] and the references therein.

To study the effect of the weakly dissipative term on the C-H equation, Guo [15] and
Wu and Yin [16] discussed the weakly dissipative C-H equation

Up — Upex + FUUy — 2Us Uy — Ullyyy + MU —Uyxy) =0, t>0, x € R (1.2)
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The global existence of strong solutions and blow-up in finite time were presented in
[16] provided that yy = (1 — d2)uy changes sign. The sufficient conditions on the infinite
propagation speed for (1.2) are offered in [15]. It is found that the local well posedness
and the blow-up phenomena of (1.2) are similar to the C-H equation in a finite interval of
time. However, there are differences between (1.2) and the C-H equation in their long time
behaviors. For example, the global strong solutions of (1.2) decay to zero as time tends to
infinite under suitable assumptions, which implies that (1.2) has no traveling wave solutions
(see [16]).
Degasperis and Procesi [17] derived the equation (D-P equation)

Up — Upyy + AUy — BUylUyr — Ul =0, £>0, x ER, (1.3)

as a model for shallow water dynamics. Although the D-P equation (1.3) has a similar form to
the C-H equation (1.1), it should be addressed that they are truly different (see [18]). In fact,
many researchers have paid their attention to the study of solutions to (1.3). Constantin et
al. [19] developed an inverse scattering approach for smooth localized solutions to (1.3). Liu
and Yin [20] and Yin [21, 22] investigated the global existence of strong solutions and global
weak solutions to (1.3). Henry [23] showed that the smooth solutions to (1.3) have infinite
speed of propagation. Coclite and Karlsen [24] obtained global existence results for entropy
solutions in L'(R) N BV(R) and in L?(R) N L*(R).
The weakly dissipative D-P equation

Up — Upex + 4Uly — BUyUyy — Ullgxy + MU —Uxy) =0, >0, x ER (1.4)

is investigated by several authors [25-27] to find out the effect of the weakly dissipative term
on the D-P equation. The global existence, persistence properties, unique continuation and
the infinite propagation speed of the strong solutions to (1.4) are studied in [26]. The blow-
up solution modeling wave breaking and the decay of solution were discussed in [27]. The
existence and uniqueness of the global weak solution in space Wlloj" (R xR)N Ly (Ry; H L(R))
were proved (see [25]).

In this paper, we will consider the Cauchy problem for the weakly dissipative shallow
water wave equation

U — Upex + (A + D) Uty — AU Uy — DUl + MU —Uxy) =0, t>0, X ER,
(1.5)
H(O,X) = uo(X), X € Rr

where a >0, b > 0,and A > 0 are arbitrary constants, u is the fluid velocity in the x direction,
A(u — uyy) represents the weakly dissipative term. For A = 0, we notice that (1.5) is a special
case of the shallow water equation derived by Constantin and Lannes [28].

Since (1.5) is a generalization of the Camassa-Holm equation and the Degasperis-
Procesi equation, (1.5) loses some important conservation laws that C-H equation and D-
P equation possesses. It needs to be pointed out that Lai and Wu [12] studied global
existence and blow-up criteria for (1.5) with A = 0. To the best of our knowledge, the
dynamical behaviors related to (1.5) with A = 0, such as the global weak solution in space
WY (R, x R) N L= (Ry; H'(R)), have not been yet investigated. The objective of this paper

loc loc
is to investigate several dynamical properties of solutions to (1.5). More precisely, we firstly
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use the Kato theorem [29] to establish the local well-posedness for (1.5) with initial value
uy € H*® with s > 3/2. Then, we present a precise blow-up scenario for (1.5). Provided that
up € H(R) N L*(R) and the potential y = (1-02)uo does not change sign, the global existence
of the strong solution is shown to be true. Finally, under suitable assumptions, the existence
and uniqueness of global weak solution in W'* (R, x R) Ly (Ry; H L(R)) are proved. Our
main ideas to prove the existence and uniqueness of the global weak solution come from

those presented in Constantin and Molinet [8] and Yin [22].

2. Notations

The space of all infinitely differentiable functions ¢(f, x) with compact support in [0, +o0) x R
is denoted by Cj°. Let 1 < p < +oo, and let L? = LP(R) be the space of all measurable functions
h(t, x) such that ||h||1L)p = [ |h(t, x)Pdx < co. We define L* = L (R) with the standard norm
Al = infine)=-0SUP g |h(t, X)|. For any real number s, let H* = H*(R) denote the Sobolev

space with the norm defined by ||kl = (f (1+ P Rt &) de)Y? < oo, where hi(t,¢) =
[r e ™h(t, x)dx.

We denote by * the convolution. Let || - ||y denote the norm of Banach space X and
(-,-) the HY(R), H™}(R) duality bracket. Let M (R) be the space of the Radon measures on R
with bounded total variation and M*(R) the subset of positive measures. Finally, we write
BV (R) for the space of functions with bounded variation, V(f) being the total variation of
f € BV(R).

Note that if G(x) = (1/2)e], x € R. Then, (1-32) "' f = G * f forall f € L*(R) and
G * (1 — uyy) = u. Using this identity, we rewrite problem (1.5) in the form

Up + bty + 0,G * 2.2 3b_—a(ux)2 +lu=0 t>0, xeR,
= 2 (2.1)
M(O,X) = uo(X), X € R/
which is equivalent to
Yy +buy, +ayu, +\y =0, t>0, x€ER,
Y =U—Uxx, (2.2)

u(0, x) = up(x).

3. Preliminaries

Throughout this paper, let {p,} ., denote the mollifiers

n>1

-1
pn(x) = (pr(g)d§> np(nx), x€R, n>1, (3.1)
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where p € C?(R) is defined by

e/ for |x| <1,
p(x) = (32)
0 for |x| > 1.
Thus, we get
f pn(x)dx=1, p, 20, xeR n>1 (3.3)
R

Next, we give some useful results.

Lemma 3.1 (see [8]). Let f : R — R be uniformly continuous and bounded. If y € M(R), then
[on % (f1) = (pu % £) (pn * p)]n —> 00 0 in L'(R). (34)

Lemma 3.2 (see [8]). Let f : R — R be uniformly continuous and bounded. If g € L*(R), then
[on % (f8) = (pu* f)(pn* g)]n —> 0 0 in L*(R). (35)

Lemma 3.3 (see [30]). Let T > 0. If f,g € L?((0,T); HY(R)) and df/dt dg/dt €
L2((0,T); H'(R)), then f, g are a.e. equal to a function continuous from [0, T] into L*(R) and

(8, 80) - (f(5),8(5)) = f<d(f(”) <>> j<d(g(7)) fr >> (36)

forall s, t € [0,T].

Lemma 3.4 (see [8]). Assume that u(t,-) € WY(R) is uniformly bounded in W' (R) for all t € R,..
Then, fora.e. t € R,

d
i | Jpnuldx = [ (o) sen(on < wyx,
(3.7)

d
at fR|Pn * Uy |dx = IR(pn * Uyt ) SEN(Pn * Uy ) dX.

4. Global Strong Solution

We firstly present the existence and uniqueness of the local solutions to the problem (2.1).

Theorem 4.1. Let ug € H°(R), s > 3/2. Then, the problem (2.1) has a unique solution u, such that
u=u(t,x) € C([0,T); H*(R) nC'([0,T); H"'(R)), (4.1)

where T > 0 depends on [|uo|| s (g)-



Abstract and Applied Analysis 5

Proof. The proof of Theorem 4.1 can be finished by using Kato’s semigroup theory (see [29]
or [4]). Here, we omit the detailed proof. O

Theorem 4.2. Given ug € H®, s > 3/2, the solution u = (-, ug) of problem (2.1) blows up in finite
time T < +oo if and only if

th_r)r% 1nf{}cr€1£[ux(t,x)]} = —o0. (4.2)
Proof. Setting y(t, x) = u(t, x) — uxx(t, x), we get
||y||i2 = JR (U =ty ) dx = JR <u2 +2u2 + u§x>dx, (4.3)
which yields
lullfe < N1y ll7e < 20wl (44)
Using system (2.2), one has
d 2
— | vt x)dx=2| yydx
dt Jr R
= —ZbI UYYxdx — ZaJ‘ uyy*dx — ZAI yidx (4.5)
R R R

=—(2a-b) I U y*dx — 2.)LJ‘ y2dx.
R R

Assume that there is a constant M > 0 such that

—uy(t,x) <M on[0,T)xR. (4.6)
From (4.5), we get
i f yz(t,x)dx <|2a - b|Mf yzdx - ZAJ‘ yzdx. (4.7)
at Jg R R
Using Gronwall” inequality, we deduce the ||u||z12 is bounded on [0, T). On the other hand,
-1
u(t, x) = (1 - ag) y(t,x) = J' G(x - s)y(s)ds. (4.8)
R
Therefore, using (4.4) leads to

1
i < | [ Gulor=9)y©)ds| < IGulallyll: = 5 1l < el @9)

It shows that if ||u||y2 is bounded, then ||u || is also bounded. This completes the proof. O
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We consider the differential equation

g =bu(t,q), te[0,T), x€R,
(4.10)
q(0,x)=x, x€R,

where u solves (1.5) and T > 0.

Lemma 4.3. Let ug € H°(R) (s > 3); T is the maximal existence time of the corresponding solution
u to (1.5). Then, system (4.10) has a unique solution g € C'([0,T) x R; R). Moreover, the map q(t,-)
is an increasing diffeomorphism of R with

gx(t, x) = exp <j; bu, (s,q(s,x))ds> >0, VY(x)e[0,T)xR,
(4.11)

t
y(tq(t, x)) g (t, x) = yo(x) exp <L [~(a—-2b)uy(s,q(s,x)) - A] ds>.

Proof. From Theorem 4.1, we have u € C'([0,T); H*"'(R)) and H*! € C'(R). We conclude
that both functions u(t,x) and u,(t,x) are bounded, Lipschitz in space, and C! in time.
Applying the existence and uniqueness theorem of ordinary differential equations implies
that system (4.10) has a unique solution g € C*([0,T) x R, R).

Differentiating (4.10) with respect to x leads to

%qx =bux(t,q)qx, t€[0,T), b>0,

(4.12)
gx(0,x) =1, x€R,
which yields
t
gx = exp <f bu, (s,q(s,x))ds>. (4.13)
0
For every T' < T, using the Sobolev embedding theorem gives rise to
sup  |ux(s, x)| < co. (4.14)

(s,x)€[0,T")xR

It is inferred that there exists a constant K > 0 such that g, > e for (¢t,x) € [0,T) x R.
By computing directly, we derive

d
T v(tat, )@t x)] = ~(a - 20yt )y g2 - \ya?, (4.15)
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which results in

t
y(t,4(t, )G (t, %) = yo(x) exp <j [~(a - 2b)uy (s, 4(s,)) - A]ds>. (4.16)

0

The proof of Lemma 4.3 is completed. O

Theorem 4.4. Let ug € L'(R) N H*(R), s >3/2, and (1 — 2)ug > 0 for all x € R (or equivalently
(1-32)ug <0 forall x € R). Then, problem (2.1) has a global strong solution

u=u(- up) € C([0, 0); HS(R)) N c1<[o, oo);HS-l(R)). (4.17)

Moreover, if y(t,-) = u — Uy, then one has for all t € R,,
(1) y(t/ ) > O/ u(t/ ) > O/ and |ux(t/ )l < u(t/ ) on R/

(i) eMllyollim = Iyt Mg = luE) g = e luollnw and luxt, Mipsg <
B_MHuOHLT(R),

(i) [lullF < lluoll? expl(la = 2b1/A) (1 = e™)|[uol 1 — 28]

Proof. Let up € H®, s > 3/2, and let T > 0 be the maximal existence time of the solution u
with initial date g (cf. Theorem 4.1). If yo > 0, then Theorem 4.2 ensures that y > 0 for all
te[0,T).

Note that up = G * yp and yo = (1o — Uoxx) € LY(R). By Young's inequality, we get

||u0||L1(R) = ||G*y0(t/)||Ll(R) < ||G||L1(R) < ”G“Ll(R)”yO(tr)”Ll(R) < ||y0||L1(R)- (418)

Integrating the first equation of problem (2.1) by parts, we get

i’[ udx = —bI Ul dx — J‘ ax<c * [Euz + 3b- a(ux)z] )dx + .)LJ‘ udx=0. (4.19)
It follows that

J‘ udx = e*)‘tJ‘ updx. (4.20)
R R

Since y = u — Uy, we have

I ydx = f udx—f Uyrydx = f udx
R R R R
= e_MJ‘ updx = e‘”(f uodx —f uo,xxdx> = e‘“J‘ Yodx.
R R R R

(4.21)
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Givent € [0,T), due to u(t,x) € H®, s > 3/2, from Theorem 4.1 and (4.21), we obtain

—ux(t,x)+f udx=f u—uxxdx=f ydx

. (4.22)
< f ydx = e J‘R yodx = e™M JR updx.

Note thatu = G*y, y > 0on [0,T) and the positivity of G. Thus, we can infer that # > 0 on
[0,T). From (4.22) we have

Uy (t,x) > —e””J‘ updx, V(t,x) €[0,T)x R. (4.23)
R

From Theorem 4.2 and (4.23), we find T = oo. This implies that problem (2.1) has a unique
solution

u=u(-, up) € C([0, 0); H*(R)) ﬂC1<[O,oo);HS_1(R)>, s> ; (4.24)
Due to y(t,x) > 0 and u(t, x) > 0 for all t > 0, it shows that
ut) =5 [ ey 5[ etvoa
(4.25)

wnlt0) == [ ev@des 5 [ ety

X

From the two identities above, we infer that (11y)? < 12 on R for all t > 0. This proves (i).
Due to y > 0, we obtain

X

ux (t, x) —f

—Qo0

udx = —j (U — Uyy)dx = —f ydx <0. (4.26)
From u > 0 and the inequality above, we get

X [0e] {ee)
Uy (£, x) < j udx < f udx = e‘)‘t’[ updx = e‘)‘t||uo||L1(R). (4.27)

—0o -0 —00

On the other hand, from (4.23), we have that u,(t, x) > —e~||ug|| 1 (r)- This proves (ii).
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Multiplying the first equation of problem (2.1) by u and integrating by parts, we find

1d 2, .2 _ 2 2
¥ IR <u + ux>dx =—(a+Db) IR Uudx +a JR UU U dX + D J‘R U UyrrydX
- )Lf <u2 + ui)dx (4.28)
R
a-2b J' 3 J 2, .2
=- udx — A u® +uy)dx,
2t ()
which yields

JR <u2 + ui)dx =—(a-2b) IR uldx -2\ IR (uz + ui)dx

<la- 2b|f |y Pdx - uf <u2 + ui)dx
R R

(4.29)
< la= 2o sl 20 [ (5 )t
R
< la= bl -2 | (o7 4 02 )t
R
From Gronwall’s inequality, one has
a-2b
iy < ol exp |52 (1= ) ol - 241 (4.30)
This proves (iii) and completes the proof of the theorem. O

5. Global Weak Solution

Theorem 5.1. Let ug € HY(R) N L*(R) and yo = (1o — Uoxx) € M*(R). Then equation (1.5) has
a unique solution u € W (R, x R) "L (Ry; H'(R)) with initial data u(0) = uo and such that
(U —uyx) € M*, a.e. € R, is uniformly bounded on R.

Proof. We split the proof of Theorem 5.1 in two parts.
Letuy € H'(R) and Yo = Ug—Upxx € MT(R). Note that ug = G*yp. Thus, for ¢ € L*(R),
we have

ol = 1G * Yollngy = sup f 9(x) (G * o) (x)dx

|‘p||L°°(R)51

- s [ o) [ Glx-dn@ax

llll oo <1 R
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~ awp f(c*w@)dyo(g)

”‘F”LOO(R)Sl R

= sup [Gx (P||L°°(R) ”yOHM(R)

|‘/’| Lon(RyS1

< sup Glp ) 19l ey 10l arry = ¥l arewy-

[l ooy <1
(5.1)
Let us define u{ := p, * up € H*(R) for n > 1. Obviously, we get
ul —ug in H'(R) for n — oo,
””g”m(m = [|lpn = ”0||H1(R) = [lpn = uoll 2 + [l on * ug | 2 < ol 1 gy (5.2)
lugllLi ) = llpn * uollr(r) < lluollrr(r)-
Note that, foralln > 1,
Yo = Uy~ Ug ey = P * (o) 20, (53)
Referring to the proof of (5.1), we have
||yg||L1(R) < ”yollM(R)’ n2>1. (5.4)
From the Theorem 4.4, we know that there exists a global strong solution
3
u = u"(-,ul) € C([0,00); H (R)) N C1<[0,oo);Hs_1(R)>, 523, (5.5)
and u"(t,x) —ull.(t,x) > 0forall (t,x) € Ry x R.
Note that for all (t,x) € R, x R
X
= [ 2wty < [ [om? - o2dg = o 5.6)
- R
From Theorem 4.4 and (5.2), we obtain
217 gy < N 7 iy < N1 120 )
2 |Ll — 2b| _
< |Juf || 7 exp [ 1 (1 -e “)Ilué}llu —ZAt] (5.7)

a-2b -
<l exp 252 (1= e Yol - 2]
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From the Holder inequality, Theorem 4.4, and (5.2), for all ¢t > 0 and n > 1, we have
o (B (D) 2Ry < Bl ()| on (145 (D)l 2y < Bl

. |a - 2b| -
< bl exp |2 (1) sl -2 (538)

a-2b
< b||uo||§11 exp [l 1 | <1 - e‘“)”uollLl - Z)Lt].

Using Young's inequality, we get

G+ [g(u")z + %T_”’(ug)z] .
E (u n) [2(R) 3b2+a u;)Z [2(R)
< 210G | 60, g, + 105Gl | W7,
(5.9)
< 0 Gl I
< 2 210.Gllgp il exp [ (1= ) gl - 21
< 22 10,Gllx i exp [ (1 Y ol - 2],
where [|0,Gl|r2(r) is bounded, and
a2 < A"l
< Aol exp |52 (1 ol - 2. o
Applying (5.8)—(5.10) and problem (2.1), we have
15 < (b 22 210Gl )l exp |52 (1= e )l - 24 -
5.11

a-2b _
+ Al|uol| g exp [l o |<1—e M>||u0||L1 —)Lt].

For fixed T > 0, from (5.7) and (5.11), we deduce

IT I <[u"(t,x)]2+ [ (t, x)]* + [uy(t,x)]z)dxdth, (5.12)
0 R
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where M is a positive constant depending only on ||Gx||;2(g), [[40llg1(r), 140l (r), and T Tt
follows that the sequence {u"},,, is uniformly bounded in the space H 1((0,T) x R). Thus, we
can extract a subsequence such that

u™ —u, weakly in H'((0,T) x R) for nx — oo, (5.13)

Nk

u™ —u, a.e.on (0,T) xR for ny — oo, (5.14)

for some u € H'((0,T) x R). From Theorem 4.4 and (5.2), for fixed t € (0, T), we have that the
sequence uy* (t,-) € BV(R) satisfies

V[uzk (t/x)] = ”u;’;c(t/')”Ll(R) < ||unk(t/')”L1(R) + ”ynk (t/')”Ll(R)
<2e™M||ug (t, ) ||L1(R) < 2e™M[ug(t, )|l ® < 2¢7M|yo(t, ‘)“M(R)’ (5.15)

[l (&) |- < e_M””gk”Ll(R) < e_M””O”Ll(R) < e_M”yO”M(R)'

Applying Helly’s theorem [31], we infer that there exists a subsequence, denoted again by
{ux*(t,-)}, which converges at every point to some function v(t, ) of finite variation with

V(t,) <2yl v (5.16)

From (5.14), we get that for almost all t € (0,T), uy*(t,-) — u,(t,-) in D'(R), it follows that
v(t,-) = uy(t,-) fora.e. t € (0,T). Therefore, we have

wek(t,-) — uy(t,") a.e. on (0,T) x R for nx — oo, (5.17)
and, fora.e.t € (0,T),
V[ ()] = e () gy = 26 olls < 26|30l i (5.18)

By Theorem 4.4 and (5.7), we have

a 3b-a
5 ")+ —— ()’

L*(R)

N 3b+a H(uz)z

s ;” (un)2 L2(R) 2

12

3b+a

< Sl e gy + —— Nl ol 2

N
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a 3b+a
E”u ”HT(R —”u ||H1(R)

3b
(a+ )||u"||H1<R>

3b |a — 2b| -
< (a4 3wl exp |52 (1= e )xluols - 211

(5.19)

Note that for fixed t € (0,T), the sequence {(a/ 2)w™)? + ((3b—-a)/2) (uj’c)2 }i>1 18 uniformly

bounded in L?*(R). Therefore, it has a subsequence {(a/2)(u™)* + ((3b — a)/2)(u§k)2}nk21,
which converges weakly in L?(R). From (5.14), we infer that the weak L?(R)-limit is
{(a/2)(w)* + ((3b - a) /2) (ux)?)}. It follows from G, € L2(R) that

< (u™)? + 3b a qu)2>ﬂaxc*< (u)* + 3b- a(ux)2> for ny — . (5.20)

From (5.14), (5.17), and(5.20), we have that u solves (2.1) in D'((0,T) x R).

For fixed T > 0, note that u* is uniformly bounded in L*(R) as t € [0,T) and
[t () || 2 () is uniformly bounded for all t € [0,T) and n > 1, and we infer that the family
t — u"™ € HY(R) is weakly equicontinous on [0,T]. An application of the Arzela-Ascoli
theorem yields that {1} has a subsequence, denoted again {u"}, which converges weakly
in H'(R), uniformly in ¢ € [0,T). The limit function is u. T being arbitrary, we have that u is
locally and weakly continuous from [0, o) into H'(R), that is, u € Cyjoc(R+; H (R)).

Since, for a.e. t € Ry, u™(t,-) — u(t,-) weakly in H'(R), from Theorem 4.4, we get

et Mooy < et ) gy < lgqun_)igfﬂu"" M)

< Ml exp [ 22 (1= Y ol - ] o
Inequality (5.21) shows that
ueL® (R, x R)NLE, (R+;H1(R)>. (5.22)
From Theorem 4.4, (5.1) and (5.2), for t € R,, we obtain
[l ()l e < e_M”ug”Ll(R) nS e_M””OHLl(R) < e_M”yO”M(R)‘ (5.23)
Combining with (5.14), we have
e € L2(R, x R). (5.24)

Next, we will prove that [, u(t,)dx = e™ [, u(0,)dx by using a regularization approach.
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Since u satisfies (2.1) in distribution sense, convoluting (2.1) with p,, we have that, for
ae. teR,,

Pn ¥ Ut + Py * (buux) + Pn * axp * [Eu2 + b-a (ux)2 + )Lpn *u=0. (525)

2 2

Integrating the above equation with respect to x on R, we obtain

4 J Pn * udx + f Pn * (buuy)dx

) (5.26)
+f P * Oxp * [Euz + 3—_a(ux)2]dx+JlJ‘ pn*udx = 0.
R 2 2 R
Integration by parts gives rise to
d
— | paxudx=-A| py,*udx, teR., n>1 (5.27)
Utilizing Lemma 3.3, we obtain that
f pn *u(t,)dx = e*)‘tJ‘ P * Updx. (5.28)
R R
Since
nhj{}o”Pn *u(t,-) —u(t,) ”Ll(R) = ,}E{}o”/’n *Uo — ”OHLl(R) =0. (5.29)
it follows that, for a.e. t € R,
f u(t,)dx = lim f pn * u(t,)dx = lim e‘MJ‘ P * tpdx = e‘“j updx. (5.30)
R n— oo R n—oo R R

Finally, we prove that (u(t,:) — uxx(t,-)) € M™* is uniformly bounded on R and u(t,x) €
W' (R, x R).
Due to

L'(R) c (L*)* ¢ (Co(R))* = M(R), (5.31)
from (5.18), we get that, fora.e. t € R.,

l[a(t, ) = v (b, ) naery < M2eCE gy + Hotex (8 ) macry
(5.32)

< e M[lugllps gy + 267M||y0||M(R) S 3€7M”y0”M(R)’
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The above inequality implies that, for a.e. t € R, (u(t,) — uxx(t,-)) € M(R) is uniformly
bounded on R. For fixed T > 0, applying (5.13) and (5.14), we have

[ (t,-) —uyi(t,)] — [u(t,-) —ux(t,-)] in D'(R) for n — oo. (5.33)

Since (u™(t,-) — uy%(t,-)) > 0 for all (t,x) € R, x R, we obtain that for a.e. t € R,, (u(t,-) -
Uyx(t,*)) € M*(R).
Note that u(t, x) = G * (u(t, x) — Uy (t, x)). Then we get

[u(t, x)| = |G * (u(t, x) = Uax (8, X)) | < (Gl oo gy l124(E, ) = e (&, ) || M)
D (5.34)
< 3e ”yOHM(R)‘

Combining with (5.24), it implies that u(t, x) € W' (R, x R).

This completes the proof of the existence of Theorem 5.1.

Next, we present the uniqueness proof of the Theorem 5.1.

Letu,v € W' (R, xR)NL7? (Ry; H 1(R)) be two global weak solutions of problem (2.1)
with the same initial data uy. Assume that (u(t, ) — uyx(t,-)) € M*(R) and (v(t,-) —vxx(t,*)) €
M™(R) are uniformly bounded on R, and set

N = supfut, ) = st )iy + 100 ) = 2t Maaco | (5.35)
teR,

From assumption, we know that N < co. Then, for all (¢, x) € Ry x R,

|u(t, x)| = |G * (u(t, X) = uxx (£, X))|

N (5.36)
SIGll g ryllue(t, x) = vzx (8, 2) | aa gy < 5
|ux(t/ x)| = |Gx * (u(trx) - uxx(trx))l
N (5.37)
S NGl s ry 1ty x) = texc (£, 2) [ aa () < o>
Similarly,
lo(t, x)| < %, |ox(t,x)| < g, (t,x) € Ry xR. (5.38)
Following the same procedure as in (5.1), we may also get that
l[(t, )lx = G * (a(t, %) = s (8, X)) | 2Ry
S Gl wy llu(t, x) = tex (£, ) [ ag(ry < N,
(5.39)

Nl (8, X)) = G # (et ) = v (8, %)) |2 ()

S NGl gy et %) = tax (8, ) agry < N
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and, for all (t,x) € R, x R,

lo(t,x)| < N, Jox(t,x)| <N, (t,x)€ R, xR (5.40)

We define

w(t,x) =u(t,x)—-v(t,x), (tx)€ R, xR. (5.41)

Convoluting (2.1) for u and v with p,,, we get that fora.e.t € R, and alln > 1,

Pr ¥ Us + pr ¥ (buttt) + pp % 0G * [guz + 3b2_ a(ux)2] +App *u=0, (5.42)
P * Ut + pp % (DUD) + i * 0:G * [gvz + 3b2_ 20| + Appxv =0. (5.43)

Subtracting (5.43) from (5.42) and using Lemma 3.4, integration by parts shows that, for a.e.
teR,andalln>1

L Jpuwolix= [ (puww)sgnipn s w)ax
= —bJ‘ (pn * wuy) sgn(py * w)dx
R
- bJ (pn * vwy ) sgn(py * w)dx
R

(5.44)
_ g JR (pn * 0xG * w(u +v)) sgn(pn * w)dx

- 3b2_ a J (pn * 0xG * Wy (Uy + V) sgn(py * w)dx
R
- )Lj (pn * w) sgn(p, * w)dx.
R

Using (5.36)—(5.38) and Young’s inequality to the first term on the right-hand side of (5.44)
yields,

UR (pn * (wity)) sgn(pp * w)dx
< [ 1o s (o))l
R

<[ lpuwellon s sl + [ [ows i) = (ou ) (o * )
R R
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<l <ol [ Npw ol | oo o) = (pu s 10) oo+ :)
< lpall sl [ lpw s [ Ipu o) = (pu s ) (oo 1) |

N
< ?J‘ |pn*w|dx+f |pn * (witx) = (pn * W) (pn * ux) | dx.
R R
(5.45)

Similarly, for the second term and the third term on the right-hand side of (5.44), we have

U (pn * (wyv)) sgn(py * w)dx
R
<[ 1o o)) dx
R
< j |pn * wi| | pn * v]dx +I |pn * (wx0) = (pn * wy) (pn x v) |dx
R R
N
<5 [ Jourwldr s [ fous (0r0) = (pn xw2) oo x0) i,
R R

U‘R(pn * 0xG * [w(u +v)]) sgn(p, * w)dx

gf |on * G * [y (u + 0)]|dx
R
+I |pn * G * [w(u +v),]|dx
R
1 1
< —I |pn * [wx(u +v)]|dx + —f |pn * [w(uy +vx)]|dx
2 ) 2 )
SE’[ |pn*wx|dx+ﬁf |pn * w|dx
2 Jr 2 Jr
e Jows (st ) = (oo x w2 o ()]l
R

[ o ot 0,1 (o) e a50),]
R (5.46)

For the last term on the right-hand side of (5.44), we have

IR (pn * 0xG * [y (1 +v),]) sgn(p, * w)dx

sj P % 05G * [[ws|(lix] + [ox]) | dx
R
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< N’[ |pn % 0xG * |wy||dx
R
< NIOGligy [ o sl

SNI |pn*wx|dx+NU (pn * |wx| = | pn * wi|)dx|.
R R

(5.47)
From (5.45)-(5.47), fora.e. t € R, and all n > 1, we find
4 |pn * w|dx < a+2bN+)L |pn * w|dx
dt Jx R
(5.48)
+(a+ 2b)Nf |pn * wx|dx + Ry (1),
R
where
R,(t) — 0 ast— oo,
(5.49)

IR, <K, n>1, teR,,

where K is a positive constant depending on N and the H!(R)-norms of %(0) and v(0).
In the same way, convoluting (2.1) for u and v with p, , and using Lemma 3.4, we get
that, fora.e.t € R, and alln >1,

if |pu * ws |dx = f (pn * wxr) sgn(pnx * w)dx
= —bf (pn * Wy (Ux + Ux)) 5gN(Ppx * w)dx
R
- bf (pn * Vxxw) sgn(pux * w)dx
R

- bf (pn * UWxy ) SgN (P * w)dx
R

3b -
_ J‘R <Pn * 052G * [g(uz -vy) + 5 a (ui - vi)] sgn (pnx * w)dx

- .)LJ‘ (pn * wy) sgn(pnyx * w)dx.
R
(5.50)
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Using the identity 82(G * g) = G x ¢ — g for ¢ € L?(R) and Young's inequality, we estimate the
forth term of the right-hand side of (5.50)

[ (preoucn |2 -o2) + 25 12 -o2)
<[ (oo [302-v) + 22 (i -ot)]

[0y 2520 )
< (1Glw +1) [ [(ons

<a [ J(pu= ot o)lldx+ @b+ [ |(on+ fortus + 0] |dn
R R

dx

dx

(5.51)

dx

a
Wy (Ux + Uy)

gw(u+ v) +

< aNj |pn * w|dx + (3b+a)N’[ |pn * wy|dx + Ry
R R

Using (5.36)—(5.38) and Young’s inequality to the first term on the right-hand side of (5.50)
gives rise to

- bIR (pn * W (s + Vx)) 5N (P * w)dx
< bJ‘R|pn * Wi (Uy + V) |dx
Sbe|pn*wx||pn*(ux+vx)|dx (5.52)
+ bIR|pn * Wy (Uy + Vx) — (pn * Wy ) (P * (U + 0x) ) |dx

< be |pn * wy|dx + Ry,
R
To treat the second term of the right-hand side of (5.50), we note that

|bJ‘ (P * Vxxw) sgN (P * w)dx
R
< bf (pu % ) (pu % 022) |dx (5.53)
R

+ bf | (pn * vxxw) = (pu * W) (pn * Vi) |dx.
R
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Applying Lemma 3.1, the second expression of the right-hand side of (5.53) can be estimated

by a function R, (t) belonging to (5.49). Making use of the Holder inequality and (5.1), for a.e.
te R, and all n > 1, we have

[ 1) (pus 00| < low = w0l g 1 # el

(5.54)
<lpn * wllwlrl(R)”Uxx”M(R)'
It follows from (5.53) and (5.54) that
'bf (pn * Vxxw) sgn(ppx * w)dx
R
< bN_[ |pn * w|dx (5.55)
R
+ij |pn * wi| + Ru(t).
R
Now, we deal with the third term on the right-hand side of (5.50)
- bf (P * Uty ) SgN (P * w)dx
R
= b [ (pa 1) 00) s (P + )l
R
0 [ [(on e = (o ) 012) s = )
, (5.56)
< —bf (pn * 1) 5| pn * wy|dx
P,
#b [ [(pu0e) = (pus ) (oo x 0r) |
R
= bI (pn * Uy) |pn * wx|dx + Ry,
R
Therefore, (5.56) implies that, for a.e.t € R, and alln > 1,
|—bJ‘ (pn * UWyy ) SgN (P x * w)dx| < bNJ |pn * wx|dx + Ry (5.57)
R R
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From (5.51), (5.52), (5.55), and (5.57), for a.e. t € R, and all n > 1, we deduce that

%f [P+ wx]dx < (a+b)Nf |pn * w|dx
R R

(5.58)
+[(6b + a)N + 1] f |pn * wy|dx + R,
R
Combining with (5.48) and (5.58), we find
if (|pn * w| + | pn * wx|)dx < ba +6bN +1 f |pn * w|dx
+ [(2a+8b)N+A]f |pn * wy|dx + R, (5.59)
R
<[(2a+8b)N + 1] I (|pn * w| + |pn * wx|)dx + Ry
R
It follows from Gronwall” inequality that, fora.e.t € R, and alln > 1,
[ pnseol +1pnwiyax
(5.60)

t
< [I R, (s)ds +f (|pn * w| + | pn * wx|)(O,x)dx:Ie[(z‘“Bb)N”‘]t.
0 R

Fixt>0,and letn — ooin (5.60). Since w = u—v € WL(R) and relation (5.49) holds, making
use of Lebesgue’s dominated convergence theorem yields

jR(|w| + [wal)dx < |fR<|w| + [wa) O, x)dx] PlCarsN LU (5.61)

Note that w(0) = w,(0) = 0; therefore, we obtain u(t, x) = v(t, x) for a.e. (t,x) € R, x R. This
completes the proof of the theorem. O
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