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The generalized coupled Sylvester systems play a fundamental role in wide applications in
several areas, such as stability theory, control theory, perturbation analysis, and some other
fields of pure and applied mathematics. The iterative method is an important way to solve the
generalized coupled Sylvester systems. In this paper, an iterative algorithm is constructed to solve
the minimum Frobenius norm residual problem: ‖( AXB

CXD

) − ( EF
)‖ = min over generalized reflexive

matrix X. For any initial generalized reflexive matrix X1, by the iterative algorithm, the generalized
reflexive solution X∗ can be obtained within finite iterative steps in the absence of round-off
errors, and the unique least-norm generalized reflexive solution X∗ can also be derived when
an appropriate initial iterative matrix is chosen. Furthermore, the unique optimal approximate
solution X̂ to a given matrix X0 in Frobenius norm can be derived by finding the least-norm
generalized reflexive solution X̃∗ of a new corresponding minimum Frobenius norm residual

problem: min
∥∥∥∥
(

AX̃B
CX̃D

)
−
(

Ẽ
F̃

)∥∥∥∥ with Ẽ = E − AX0B, F̃ = F − CX0D. Finally, several numerical

examples are given to illustrate that our iterative algorithm is effective.

1. Introduction

A matrix P ∈ Rn×n is said to be a generalized reflection matrix if P satisfies that PT = P, P 2 = I.
Let P ∈ Rm×m and Q ∈ Rn×n be two generalized reflection matrices. A matrix A ∈ Rm×n

is called generalized reflexive (or generalized anti-reflexive) with respect to the matrix pair
(P,Q) if PAQ = A(or PAQ = −A). The set of all m-by-n generalized reflexive matrices with
respect to matrix pair (P,Q) is denoted by Rm×n

r (P,Q). The generalized reflexive and anti-
reflexive matrices have many special properties and usefulness in engineering and scientific
computations [1–3].
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In this paper, we will consider the minimum Frobenius norm residual problem and its
optimal approximation problem as follows.

Problem 1. For given matrices A ∈ Rp×m, B ∈ Rn×q, C ∈ Rs×m, D ∈ Rn×t, E ∈ Rp×q, F ∈ Rs×t,
find matrix X ∈ Rm×n

r (P,Q) such that

∥
∥
∥
∥

(
AXB
CXD

)
−
(
E
F

)∥∥
∥
∥ = min . (1.1)

Problem 2. Let SE denote the set of the generalized reflexive solutions of Problem 1. For a
given matrix X0 ∈ Rm×n

r (P,Q), find X̂ ∈ SE such that

∥
∥
∥X̂ −X0

∥
∥
∥ = min

X∈SE

‖X −X0‖. (1.2)

Problem 1 plays a fundamental role in wide applications in several areas, such as
Pole assignment, measurement feedback, and matrix programming problem.Liao and Lei
[4] presented some examples to show a motivation for studying Problem 1. Problem 2
arises frequently in experimental design. Here the matrix X0 may be a matrix obtained from
experiments, but it may not satisfy the structural requirement (generalized reflexive) and/or
spectral requirement (the solution of Problem 1). The best estimate X̂ is the matrix that
satisfies both requirements and is the best approximation of Ã in the Frobenius norm.

Least-squares-based iterative algorithms are very important in system identification,
parameter estimation, and signal processing, including the recursive least squares (RLS) and
iterative least squares (ILS) methods for solving the solutions of some matrix equations, for
example, the Lyapunov matrix equation, Sylvester matrix equations, and coupled matrix
equations as well. Some related contributions in solving matrix equations and parameter
identification/estimation should be mentioned in this paper. For example, novel gradient-
based iterative (GI) method [5–9] and least-squares-based iterative methods [5, 9, 10] with
highly computational efficiencies for solving (coupled) matrix equations are presented and
have good stability performances, based on the hierarchical identification principle [11–13]
which regards the unknown matrix as the system parameter matrix to be identified.

The explicit and numerical solutions of matrix equation pair AXB = E, CXD = F have
been addressed in a large body of the literature. Peng et al. [14] presented iterative methods to
obtain the symmetric solutions of the matrix equation pair. Sheng and Chen [15] presented a
finite iterative method when the matrix equation pair is consistent. Liao and Lei [4] presented
an analytical expression of the least squares solution and an algorithm for the matrix equation
pair with the minimum norm. Peng et al. [16] presented an efficient algorithm for the least
squares reflexive solution. Dehghan and Hajarian [17] presented an iterative algorithm for
solving a pair of the matrix equations over generalized centrosymmetric matrices. Cai and
Chen [18] presented an iterative algorithm for the least squares bisymmetric solutions of the
matrix equations. By applying the hierarchical identification principle,Kılıçman and Zhour
[19] developed an iterative algorithm for obtaining the weighted least squares solution.
Dehghan and Hajarian [20] constructed an iterative algorithm to solve the generalized
coupled Sylvester matrix equations (AXB + CYD,EXF + GYH) = (M,N) over generalized
bisymmetric matrices. Wu et al. [21, 22] gave the finite iterative solutions to coupled
Sylvester-conjugate matrix equations. Wu et al. [23] gave the finite iterative solutions
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to a class of complex matrix equations with conjugate and transpose of the unknowns.
Jonsson and Kågström [24, 25] proposed recursive block algorithms for solving the coupled
Sylvester matrix equations and the generalized Sylvester and Lyapunov Matrix equations.
Very recently, Huang et al. [26] presented a finite iterative algorithms for the one-sided and
generalized coupled Sylvester matrix equations over generalized reflexive solutions. Yin et
al. [27] presented a finite iterative algorithms for the two-sided and generalized coupled
Sylvester matrix equations over reflexive solutions. For more studies on the matrix equations,
we refer to [1–4, 16, 17, 28–40]. However, the problem of finding the least squares generalized
reflexive solution of the matrix equation pair has not been solved.

The following notations are also used in this paper. Let Rm×n denote the set of all m×n
real matrices. We denote by the superscript T the transpose of a matrix. In matrix space Rm×n,
define inner product as 〈A,B〉 = trace(BTA) for all A,B ∈ Rm×n, and ‖A‖ represents the
Frobenius norm of A. R(A) represents the column space of A. vec(·) represents the vector
operator, that is, vec(A) = (aT1 , a

T
2 , . . . , a

T
n)

T ∈ Rmn for the matrix A = (a1, a2, . . . , an) ∈
Rm×n, ai ∈ Rm, i = 1, 2, . . . , n. A ⊗ B stands for the Kronecker product of matrices A and
B.

This paper is organized as follows. In Section 2, we will solve Problem 1 by
constructing an iterative algorithm, that is, for an arbitrary initial matrix X1 ∈ Rm×n

r (P,Q),
we can obtain a solution X∗ ∈ Rm×n

r (P,Q) of Problem 1 within finite iterative steps in the
absence of round-off errors. The convergence of the algorithm is also proved. Let X1 =
ATHBT + CTĤDT + PATHBTQ + PCTĤDTQ, where H ∈ Rp×q, Ĥ ∈ Rs×t are arbitrary
matrices, or more especially, let X1 = 0 ∈ Rm×n

r (P,Q); we can obtain the unique least-norm
solution X∗ of Problem 1. Then in Section 3, we give the optimal approximate solution of
Problem 2 by finding the least-norm generalized reflexive solution of a corresponding new
minimum Frobenius norm residual problem. In Section 4, several numerical examples are
given to illustrate the application of our iterative algorithm.

2. Solution of Problem 1

In this section, we firstly introduce some definitions, lemmas, and theorems which are
required for solving Problem 1. Then we present an iterative algorithm to obtain the solution
of Problem 1. We also prove that it is convergent. The following definitions and lemmas come
from [41], which are needed for our derivation.

Definition 2.1. A set of matrices S ∈ Rm×n is said to be convex if for X1, X2 ∈ S and α ∈
(0, 1), αX1 + (1 − α)X2 ∈ S. Let Rc denote a convex subset of Rm×n.

Definition 2.2. A matrix function f : Rc → R is said to be convex if

f(αX1 + (1 − α)X2) ≤ αf(X1) + (1 − α)f(X2) (2.1)

for X1, X2 ∈ Rc and α ∈ (0, 1).

Definition 2.3. Let f : Rc → R be a continuous and differentiable function. The gradient of f
is defined as ∇f(X) = (∂f(X)/∂xij).
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Lemma 2.4. Let f : Rc → R be a continuous and differentiable function. Then f is convex on Rc if
and only if

f(Y ) ≥ f(X) +
〈∇f(X), Y −X

〉
(2.2)

for all X,Y ∈ Rc.

Lemma 2.5. Let f : Rc → R be a continuous and differentiable function, and there exists X∗ in the
interior of Rc such that f(X∗) = minX∈Rcf(X), then ∇f(X∗) = 0.

Note that the set Rm×n
r (P,Q) is unbounded, open, and convex. Denote

F(X) =
∥∥∥∥

(
AXB
CXD

)
−
(
E
F

)∥∥∥∥

2

, (2.3)

then F(X) is a continuous, differentiable, and convex function on Rm×n
r (P,Q). Hence, by

applying Lemmas 2.4 and 2.5, we obtain the following lemma.

Lemma 2.6. Let F(X) be defined by (2.3), then there exists X∗ ∈ Rm×n
r (P,Q) if and only if F(X∗) =

minX∈Rm×n
r (P,Q)F(X), then ∇F(X∗) = 0.

From the Taylor series expansion, we have

F(X + εY ) = F(X) + ε〈∇F(X), Y〉 + o(ε), ∀X,Y ∈ Rm×n
r (P,Q), ε ∈ R. (2.4)

On the other hand, by the basic properties of Frobenius norm and the matrix inner product,
we get the expression

F(X + εY )

=
∥∥∥∥

(
A(X + εY )B
C(X + εY )D

)
−
(
E
F

)∥∥∥∥

2

= 〈AXB − E + εAYB,AXB − E + εAYB〉 + 〈CXD − F + εCYD,CXD − F + εCYD〉
= 〈AXB − E,AXB − E〉 + 〈CXD − F,CXD − F〉
+ 2ε〈AXB − E,AYB〉 + 2ε〈CXD − F,CYD〉 + ε2(〈AYB,AYB〉 + 〈CYD,CYD〉)

= F(X) + 2ε〈AXB − E,AYB〉 + 2ε〈CXD − F,CYD〉 + ε2(〈AYB,AYB〉 + 〈CYD,CYD〉).
(2.5)
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Note that

2ε〈AXB − E,AYB〉 = 2ε
〈
ATAXBBT −ATEBT , Y

〉

= 2ε

〈
ATAXBBT −ATEBT + P

(
ATAXBBT −ATEBT

)
Q

2
, Y

〉

+ 2ε

〈
ATAXBBT −ATEBT − P

(
ATAXBBT −ATEBT

)
Q

2
, Y

〉

= ε
〈
ATAXBBT −ATEBT + PATAXBBTQ − PATEBTQ, Y

〉

+ ε
〈
ATAXBBT −ATEBT − P

(
ATAXBBT −ATEBT

)
Q,Y

〉

= ε
〈
ATAXBBT −ATEBT + PATAXBBTQ − PATEBTQ, Y

〉
,

2ε〈CXD − F,CYD〉 = 2ε
〈
CTCXDDT − CTFDT , Y

〉

= 2ε

〈
CTCXDDT − CTFDT + P

(
CTCXDDT − CTFDT

)
Q

2
, Y

〉

+ 2ε

〈
CTCXDDT − CTFDT − P

(
CTCXDDT − CTFDT

)
Q

2
, Y

〉

= ε
〈
CTCXDDT − CTFDT + PCTCXDDTQ − PCTFDTQ, Y

〉

+ ε
〈
CTCXDDT − CTFDT − P

(
CTCXDDT − CTFDT

)
Q,Y

〉

= ε
〈
CTCXDDT − CTFDT + PCTCXDDTQ − PCTFDTQ, Y

〉
.

(2.6)

Thus, we have

F(X + εY ) = F(X) + ε
〈
ATAXBBT −ATEBT + PATAXBBTQ − PATEBTQ

+CTCXDDT − CTFDT + PCTCXDDTQ − PCTFDTQ, Y
〉

+ ε2(〈AYB,AYB〉 + 〈CYD,CYD〉).

(2.7)

By comparing (2.4) with (2.7), we have

∇F(X) = ATAXBBT −ATEBT + PATAXBBTQ − PATEBTQ

+ CTCXDDT − CTFDT + PCTCXDDTQ − PCTFDTQ.
(2.8)

According to Lemma 2.6 and (2.8), we obtain the following theorem.
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Theorem 2.7. A matrix X∗ ∈ Rm×n
r (P,Q) is a solution of Problem 1 if and only if ∇F(X∗) = 0.

For the convenience of discussion, we adopt the following notations:

M(X) = ATAXBBT + CTCXDDT + PATAXBBTQ + PCTCXDDTQ,

N = ATEBT + CTFDT + PATEBTQ + PCTFDTQ,

G(X) = −∇F(X) = N −M(X),

Pk = G(Xk).

(2.9)

The following algorithm is constructed to solve Problems 1 and 2.

Algorithm 2.8.

Step 1. Input matrices A ∈ Rp×m, B ∈ Rn×q, C ∈ Rs×m, D ∈ Rn×t, E ∈ Rp×q, F ∈ Rs×t, and two
generalized reflection matrix P ∈ Rm×m, Q ∈ Rn×n;

Step 2. Choose an arbitrary matrix X1 ∈ Rm×n
r (P,Q). Compute

P1 = N −M(X1),

Q1 = M(P1),

k := 1.

(2.10)

Step 3. If P1 = 0, then stop. Else go to Step 4.

Step 4. Compute

Xk+1 = Xk +
‖Pk‖2

〈Qk,M(Pk)〉Qk,

Pk+1 = Pk − ‖Pk‖2

〈Qk,M(Pk)〉M(Qk),

Qk+1 = Pk+1 − 〈Pk+1,M(Qk)〉
〈Qk,M(Qk)〉 Qk.

(2.11)

Step 5. If Pk+1 = 0, then stop. Else, let k := k + 1, and go to Step 4.

Remark 2.9. Obviously, it can be seen that Pi ∈ Rm×n
r (P,Q), Qi ∈ Rm×n

r (P,Q), and Xi ∈
Rm×n

r (P,Q), where i = 1, 2, . . ..

Lemma 2.10. Suppose that X ∈ Rm×n
r (P,Q), Y ∈ Rm×n

r (P,Q), then

〈M(X), Y〉 = 〈X,M(Y )〉. (2.12)
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Proof. One has

〈M(X), Y〉
=
〈
ATAXBBT + CTCXDDT + PATAXBBTQ + PCTCXDDTQ, Y

〉

=
〈
ATAXBBT , Y

〉
+
〈
CTCXDDT, Y

〉
+
〈
PATAXBBTQ, Y

〉
+
〈
PCTCXDDTQ, Y

〉

=
〈
X,ATAYBBT

〉
+
〈
X,CTCYDDT

〉
+
〈
X,ATAPYQBBT

〉
+
〈
X,CTCPYQDDT

〉

=
〈
X,ATAYBBT

〉
+
〈
X,CTCYDDT

〉
+
〈
PXQ,ATAPYQBBT

〉
+
〈
PXQ,CTCPYQDDT

〉

=
〈
X,ATAYBBT

〉
+
〈
X,CTCYDDT

〉
+
〈
X, PATAYBBTQ

〉
+
〈
X, PCTCYDDTQ

〉

=
〈
X,ATAYBBT + CTCYDDT + PATAYBBTQ + PCTCYDDTQ

〉

= 〈X,M(Y )〉.
(2.13)

This completes the proof.

Lemma 2.11. For the sequences {Pi} and {Qi} generated by Algorithm 2.8, if there exists a positive
number k such that Pi /= 0 for all i = 1, 2, . . . , k, then

〈
Pi, Pj

〉
= 0,

〈
Qi,M

(
Qj

)〉
= 0

(
i, j = 1, 2, . . . , k, i /= j

)
. (2.14)

Proof. Since 〈A,B〉 = 〈B,A〉 holds for all matrices A and B in Rm×n, we only need prove that
〈Pi, Pj〉 = 0, 〈Qi,M(Qj)〉 = 0 for all 1 ≤ i < j ≤ k. We prove the conclusion by induction and
two steps are required.

Step 1. We will show that

〈Pi, Pi+1〉 = 0, 〈Qi,M(Qi+1)〉 = 0, i = 1, 2, . . . , k − 1. (2.15)

To prove this conclusion, we also use induction.
For i = 1, by Algorithm 2.8 and Lemma 2.10, we have that

〈P1, P2〉 = 〈P2, P1〉 =

〈

P1 − ‖P1‖2

〈Q1,M(P1)〉M(Q1), P1

〉

= ‖P1‖2 − ‖P1‖2

〈Q1,M(P1)〉〈M(Q1), P1〉 = 0,

〈Q1,M(Q2)〉 = 〈Q2,M(Q1)〉 =
〈
P2 − 〈P2,M(Q1)〉

〈Q1,M(Q1)〉Q1,M(Q1)
〉

= 〈P2,M(Q1)〉 − 〈P2,M(Q1)〉
〈Q1,M(Q1)〉〈Q1,M(Q1)〉 = 0.

(2.16)
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Assume (2.15) holds for i = s(1 < s < k). For i = s + 1, by Lemma 2.10, we have

〈Ps+1, Ps+2〉 = 〈Ps+2, Ps+1〉 =

〈

Ps+1 − ‖Ps+1‖2

〈Qs+1,M(Ps+1)〉M(Qs+1), Ps+1

〉

= ‖Ps+1‖2 − ‖Ps+1‖2

〈Qs+1,M(Ps+1)〉〈M(Qs+1), Ps+1〉

= ‖Ps+1‖2 − ‖Ps+1‖2

〈Qs+1,M(Ps+1)〉〈Qs+1,M(Ps+1)〉 = 0,

〈Qs+1,M(Qs+2)〉 = 〈Qs+2,M(Qs+1)〉 =
〈
Ps+2 − 〈Ps+2,M(Qs+1)〉

〈Qs+1,M(Qs+1)〉Qs+1,M(Qs+1)
〉

= 〈Ps+2,M(Qs+1)〉 − 〈Ps+2,M(Qs+1)〉
〈Qs+1,M(Qs+1)〉〈Qs+1,M(Qs+1)〉 = 0.

(2.17)

Hence, (2.15) holds for i = s + 1. Therefore, (2.15) holds by the principle of induction.

Step 2. Assume that 〈Pi, Ps〉 = 0, 〈Qi,M(Qs)〉 = 0, i = 1, 2, . . . , s − 1, then we show that

〈Pi, Ps+1〉 = 0, 〈Qi,M(Qs+1)〉 = 0, i = 1, 2, . . . , s. (2.18)

In fact, by Algorithm 2.8 we have

〈Pi, Ps+1〉 =

〈

Pi, Ps − ‖Ps‖2

〈Qs,M(Ps)〉M(Qs)

〉

= 〈Pi, Ps〉 − ‖Ps‖2

〈Qs,M(Ps)〉〈Pi,M(Qs)〉

= − ‖Ps‖2

〈Qs,M(Ps)〉
〈
Qi +

〈Pi,M(Qi−1)〉
〈Qi−1,M(Qi−1)〉Qi−1,M(Qs)

〉

= − ‖Ps‖2

〈Qs,M(Ps)〉〈Qi,M(Qi−1〉 + ‖Ps‖2

〈Qs,M(Ps)〉
〈Pi,M(Qi−1)〉
〈Qi−1,M(Qi−1)〉〈Qi−1,M(Qs)〉

= 0,

〈Qi,M(Qs+1)〉 = 〈M(Qi), Qs+1〉 =
〈
M(Qi), Ps+1 − 〈Ps+1,M(Qs)〉

〈Qs,M(Qs)〉 Qs

〉

= 〈M(Qi), Ps+1〉 − 〈Ps+1,M(Qs)〉
〈Qs,M(Qs)〉 〈M(Qi), Qs〉

=
〈Qi,M(Pi)〉

‖Pi‖2 〈Pi − Pi+1, Ps+1〉

= −〈Qi,M(Pi)〉
‖Pi‖2 〈Pi+1, Ps+1〉

= 0.
(2.19)

By the principle of induction, (2.14) is implied in Steps 1 and 2. This completes the proof.
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Lemma 2.12. Assume that X∗ is an arbitrary solution of Problem 1, then

〈X∗ −Xk,M(Qk)〉 = 2
‖Pk‖2

‖P1‖2

(
‖AP1B‖2 + ‖CP1D‖2

)
, k = 1, 2, . . . , (2.20)

where the sequences {Xk}, {Pk}, and {Qk} are generated by Algorithm 2.8.

Proof. First, by Algorithm 2.8, it is easy to verify that

−〈Pk+1,M(Qk)〉
〈Qk,M(Qk)〉 =

‖Pk+1‖2

‖Pk‖2
. (2.21)

Thus

〈X∗ −Xk,M(Qk)〉 = 〈M(X∗ −Xk), Qk〉 = 〈Pk,Qk〉

=

〈

Pk−1 − ‖Pk−1‖2

〈Qk−1,M(Pk−1)〉M(Qk−1), Qk

〉

= 〈Pk−1, Qk〉 = · · · = 〈P1, Qk〉

=
〈
P1, Pk − 〈Pk,M(Qk−1)〉

〈Qk−1,M(Qk−1)〉Qk−1

〉

= − 〈Pk,M(Qk−1)〉
〈Qk−1,M(Qk−1)〉〈P1, Qk−1〉

= · · · =
(
− 〈Pk,M(Qk−1)〉
〈Qk−1,M(Qk−1)〉

)
· · ·
(
− 〈P2,M(Q1)〉
〈Q1,M(Q1)〉

)
〈P1, Q1〉

=
‖Pk‖2

‖Pk−1‖2
· · · ‖P2‖2

‖P1‖2 〈P1,M(P1)〉

= 2
‖Pk‖2

‖P1‖2

(
‖AP1B‖2 + ‖CP1D‖2

)
.

(2.22)

This complete the proof.

Remark 2.13. Lemma 2.12 implies that if Pi /= 0, then M(Qi)/= 0, thus Qi /= 0 (i = 1, 2, . . .).

Theorem 2.14. For an arbitrary initial matrix X1 ∈ Rm×n
r (P,Q), a solution of Problem 1 can be

obtained with finite iteration steps in the absence of round-off errors.

Proof. If Pi /= 0, i = 1, 2, . . . , mn, by Lemma 2.12 we have Qi /= 0, i = 1, 2, . . . , mn, then we can
compute Xmn+1, Pmn+1 by Algorithm 2.8.

By Lemma 2.11, we have

〈Pi, Pmn+1〉 = 0, i = 1, 2, . . . , mn,
〈
Pi, Pj

〉
= 0, i, j = 1, 2, . . . , mn, i /= j.

(2.23)
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It can be seen that the set of P1, P2, . . . , Pmn is an orthogonal basis of the matrix space
Rm×n

r (P,Q), which implies that Pmn+1 = 0, that is, Xmn+1 is a solution of Problem 1. This
completes the proof.

To show the least-norm generalized reflexive solution of Problem 1, we first introduce
the following result.

Lemma 2.15 (see [16, Lemma 2.7]). Suppose that the minimum residual problem ‖My − b‖ =min
has a solution y∗ ∈ R(MT ), then y∗ is the unique least Frobenius norm solution of the minimum
residual problem.

By Lemma 2.15, the following result can be obtained.

Theorem 2.16. If one chooses the initial iterative matrix X1 = ATHBT + CTĤDT + PATHBTQ +
PCTĤDTQ, where H ∈ Rp×q, Ĥ ∈ Rs×t are arbitrary matrices, especially, let X1 = 0 ∈ Rm×n

r , one
can obtain the unique least-norm generalized reflexive solution of Problem 1 within finite iteration
steps in the absence of round-off errors by using Algorithm 2.8.

Proof. By Algorithm 2.8 and Theorem 2.14, if we let X1 = ATHBT + CTĤDT + PATHBTQ +
PCTĤDTQ, where H ∈ Rp×q, Ĥ ∈ Rs×t are arbitrary matrices, we can obtain the solution X∗

of Problem 1 within finite iteration steps in the absence of round-off errors, the solution X∗

can be represented that

X∗ = ATGBT + CTĜDT + PATGBTQ + PCTĜDTQ. (2.24)

In the sequel, we will prove that X∗ is just the least-norm solution of Problem 1.
Consider the following minimum residual problem

min
X∈Rm×n

r (P,Q)

∥∥∥∥∥∥∥∥

⎛

⎜⎜
⎝

AXB
CXD

APXQB
CPXQD

⎞

⎟⎟
⎠ −

⎛

⎜⎜
⎝

E
F
E
F

⎞

⎟⎟
⎠

∥∥∥∥∥∥∥∥

. (2.25)

Obviously, the solvability of Problem 1 is equivalent to that of the minimum residual
problem (2.25), and the least-norm solution of Problem 1 must be the least-norm solution of
the minimum residual problem (2.25).

In order to prove that X∗ is the least-norm solution of Problem 1, it is enough to prove
that X∗ is the least-norm solution of the minimum residual problem (2.25). Denote vec(X) =
x, vec(X∗) = x∗, vec(G) = g1, vec(Ĝ) = g2, vec(E) = e, vec(F) = f , then the minimum
residual problem (2.25) is equivalent to the minimum residual problem as follows:

min
x∈Rmn

∥∥∥∥∥∥∥∥

⎛

⎜⎜
⎝

BT ⊗A
DT ⊗ C(

BTQ
) ⊗ (AP)(

DTQ
) ⊗ (CP)

⎞

⎟⎟
⎠x −

⎛

⎜⎜
⎝

e
f
e
f

⎞

⎟⎟
⎠

∥∥∥∥∥∥∥∥

. (2.26)
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Noting that

x∗ = vec
(
ATGBT + CTĜDT + PATGBTQ + PCTĜDTQ

)

=
(
B ⊗AT

)
g1 +

(
D ⊗ CT

)
g2 +

(
(QB) ⊗

(
PAT

))
g1 +

(
(QD) ⊗

(
PCT

))
g2

=
(
B ⊗AT D ⊗ CT (QB) ⊗ (PAT

)
(QD) ⊗ (PCT

))

⎛

⎜
⎜
⎝

g1

g2

g1

g2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

BT ⊗A
DT ⊗ C(

BTQ
) ⊗ (AP)(

DTQ
) ⊗ (CP)

⎞

⎟
⎟
⎠

T⎛

⎜
⎜
⎝

g1

g2

g1

g2

⎞

⎟
⎟
⎠ ∈ R

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

BT ⊗A
DT ⊗ C(

BTQ
) ⊗ (AP)(

DTQ
) ⊗ (CP)

⎞

⎟
⎟
⎠

T⎞

⎟
⎟
⎟
⎠

,

(2.27)

by Lemma 2.15 we can see that x∗ is the least-norm solution of the minimum residual
problem (2.26). Since vector operator is isomorphic, X∗ is the unique least-norm solution
of the minimum residual problem (2.25); furthermore X∗ is the unique least-norm solution of
Problem 1.

3. Solution of Problem 2

Since the solution set of Problem 1 is no empty, when X ∈ SE, then

min
X∈Rm×n

r (P,Q)

∥∥∥∥

(
AXB
CXD

)
−
(
E
F

)∥∥∥∥⇐⇒ min
X∈Rm×n

r (P,Q)

∥∥∥∥

(
A(X −X0)B
C(X −X0)D

)
−
(
E −AX0B
F − CX0D

)∥∥∥∥. (3.1)

Let X̃ = X − X0, Ẽ = E − AX0B, F̃ = F − CX0D, then Problem 2 is equivalent
to finding the least-norm generalized reflexive solution of a new corresponding minimum
residual problem

min
X̃∈Rm×n

r (P,Q)

∥∥∥∥∥

(
AX̃B

CX̃D

)

−
(
Ẽ

F̃

)∥∥∥∥∥
. (3.2)

By using Algorithm 2.8, let initially iterative matrix X̃1 = ATHBT + CTĤDT +
PATHBTQ + PCTĤDTQ, or more especially, let X̃1 = 0 ∈ Rm×n

r (P,Q); we can obtain the
unique least-norm generalized reflexive solution X̃∗ of minimum residual problem (3.2), then
we can obtain the generalized reflexive solution X̂ of Problem 2, and X̂ can be represented
that X̂ = X̃∗ +X0.

4. Numerical Examples

In this section, we will show several numerical examples to illustrate our results. All the tests
are performed by MATLAB 7.8.
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Example 4.1. Consider the generalized reflexive solution of Problem 1, where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 3 −5 7 −9
2 0 4 6 −1
0 −2 9 6 −8
3 6 2 27 −13
−5 5 −22 −1 −11
8 4 −6 −9 −19

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

4 0 8 −5 4
−1 5 0 −2 3
4 −1 0 2 5
0 3 9 2 −6
−2 7 −8 1 11

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

6 32 −5 7 −9
2 10 4 6 −11
9 −12 9 3 −8

13 6 4 27 −15
−5 15 −22 −13 −11
2 9 −6 −9 −19

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

7 1 8 −6 14
−4 5 0 −2 3
3 −12 0 8 25
1 6 9 4 −6
−5 8 −2 9 17

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

E =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

592 −1191 1216 −244 −1331
305 431 1234 −518 221
814 −407 1668 −1176 537
1434 −179 4083 −1374 −808
242 −3150 −1362 1104 −2848
423 −2909 1441 −182 −3326

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, F =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

−2882 2830 299 2291 −4849
409 670 1090 −783 −793

3363 −126 2979 −3851 246
2632 173 4553 −3709 −100
−1774 −4534 −4548 1256 −6896

864 −2512 −1136 −1633 −5412

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

(4.1)

Let

P =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 0 1 0
0 0 0 0 1
0 0 −1 0 0
1 0 0 0 0
0 1 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠

, Q =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠

. (4.2)

We will find the least squares generalized reflexive solution of the matrix equation
pair AXB = E, CXD = F by using Algorithm 2.8. Because of the influence of the error of
calculation, ‖Pk‖ = ‖ − ∇F(Xk)‖ is usually unequal to zero in the process of the iteration,
where k = 1, 2, . . .. For any chosen positive number ε, however small enough, for example,
ε = 1.0000e − 8, whenever ‖Pk‖ < ε, stop the iteration, and Xk is regarded to be the least
squares generalized reflexive solution of the matrix equation pair AXB = E, CXD = F.

Let

X1 =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠

; (4.3)
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Figure 1: Convergence curve for the Frobenius norm of the residual for Example 4.1 with X1 = 0.

by Algorithm 2.8, we have the unique least Frobenius norm generalized reflexive solution of
Problem 1

X139 =

⎛

⎜⎜⎜⎜⎜
⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟⎟⎟⎟⎟
⎠

,

‖P139‖ = 8.1258e − 009 < ε,

min
X∈Rm×n

r (P,Q)

∥∥∥∥

(
AXB
CXD

)
−
(
E
F

)∥∥∥∥ =
∥∥∥∥

(
AX139B
CX139D

)
−
(
E
F

)∥∥∥∥ = 1.9595e − 011.

(4.4)

The convergence curve for the Frobenius norm of the residual is shown in Figure 1.

Example 4.2. Consider the least-norm generalized reflexive solution of the minimum residual
problem in Example 4.1. Let

H =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0 2
0 −1 0 1 0
1 −1 0 0 1
2 0 1 0 −3
0 1 2 1 0
−1 0 −2 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 −1 0 0
0 1 0 −1 3
1 −1 0 −2 0
2 0 1 0 −3
0 1 2 1 0
−1 0 −2 1 2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

X1 = ATHBT + CTĤDT + PATHBTQ + PCTĤDTQ.

(4.5)
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Figure 2: Convergence curve for the Frobenius norm of the residual for Example 4.2.

By using Algorithm 2.8, we have the unique least Frobenius norm generalized reflexive
solution of Problem 1

X118 =

⎛

⎜⎜⎜⎜⎜
⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟⎟⎟⎟⎟
⎠

,

‖P118‖ = 9.8093e − 009 < ε,

min
X∈Rm×n

r (P,Q)

∥∥∥∥

(
AXB
CXD

)
−
(
E
F

)∥∥∥∥ =
∥∥∥∥

(
AX118B
CX118D

)
−
(
E
F

)∥∥∥∥ = 1.1235e − 010.

(4.6)

The convergence curve for the Frobenius norm of the residual is shown in Figure 2.

Example 4.3. Let SE denote the set of all generalized reflexive solutions of Problem 1 in
Example 4.1. For a given matrix

X0 =

⎛

⎜⎜⎜⎜⎜
⎝

−3 3 1 1 1
0 −7 1 6 10

10 −9 0 9 10
−1 1 −1 3 3
−10 6 −1 −7 0

⎞

⎟⎟⎟⎟⎟
⎠

∈ R5 × 5
r (P,Q), (4.7)

we will find X̂ ∈ SE, such that

∥∥∥X̂ −X0

∥∥∥ = min
X∈SE

‖X −X0‖, (4.8)

that is, find the optimal approximate solution to the matrix X0 in SE.
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Figure 3: Convergence curve for the Frobenius norm of the residual for Example 4.3.

Let X̃ = X −X0, Ẽ = E −AX0B, F̃ = F −CX0D, by the method mentioned in Section 3,
we can obtain the least-norm generalized reflexive solution X̃∗ of the minimum residual
problem (3.2) by choosing the initial iteration matrix X̃1 = 0, and X̃∗ is such that

X̃∗
102 =

⎛

⎜⎜⎜⎜⎜
⎝

8.0000 0.0000 −7.0000 11.0000 −6.0000
−11.0000 15.0000 −2.0000 3.0000 −3.0000

3.0000 5.0000 −8.0000 −5.0000 3.0000
6.0000 11.0000 7.0000 0.0000 −8.0000
3.0000 3.0000 2.0000 15.0000 11.0000

⎞

⎟⎟⎟⎟⎟
⎠

,

‖P102‖ = 8.6456e − 009 < ε,

X̂ = X̃∗
102 +X0 =

⎛

⎜⎜⎜⎜⎜
⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟⎟⎟⎟⎟
⎠

.

(4.9)

The convergence curve for the Frobenius norm of the residual is shown in Figure 3.

5. Conclusion

This paper mainly solves the minimum Frobenius norm residual problem and its optimal
approximate problem over generalized reflexive matrices by constructing an iterative
algorithm. We solve the minimum Frobenius norm residual problem by constructing an
iterative algorithm, that is, for an arbitrary initial matrix X1 ∈ Rm×n

r (P,Q), we obtain a
solution X∗ ∈ Rm×n

r (P,Q) of Problem 1 within finite iterative steps in the absence of round-
off errors. The convergence of the algorithm is also proved. Let X1 = ATHBT + CTĤDT +
PATHBTQ + PCTĤDTQ, where H ∈ Rp×q, Ĥ ∈ Rs×t are arbitrary matrices, or more
especially, let X1 = 0 ∈ Rm×n

r (P,Q); we obtain the unique least-norm solution X∗ of the
minimum Frobenius norm residual problem. Then we give the generalized reflexive solution



16 Abstract and Applied Analysis

of the optimal approximate problem by finding the least-norm generalized reflexive solution
of a corresponding new minimum Frobenius norm residual problem.

Several numerical examples are given to confirm our theoretical results. We can see
that our iterative algorithm is effective. We also note that for the minimum Frobenius norm
residual problem with large but not sparse matrices A, B, C, D, E, and F, Algorithm 2.8
may be terminated more than mn steps because of computational errors.
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[24] I. Jonsson and B. Kågström, “Recursive blocked algorithm for solving triangular systems. I. One-sided
and coupled Sylvester-type matrix equations,” ACM Transactions on Mathematical Software, vol. 28, no.
4, pp. 392–415, 2002.
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