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We establish a new LaSalle’s invariance principle and discuss the asymptotic behavior of a class of
first-order evolution variational inequalities.

1. Introduction

Nonsmooth systems, roughly speaking, are those systems whose trajectories may not be
differentiable everywhere. Usually nonsmooth dynamical systems are represented as differ-
ential inclusions, complementarity systems, evolution variational inequalities, and so on [1].
Since they play important roles in numerous fields, there appeared an increasing interest in
the study of their dynamics in recent years.

In this paper, we consider a class of typical nonsmooth dynamical systems given by
the following first-order evolution variational inequalities:

〈
dx(t)
dt

+ f(x(t)), v − x(t)
〉
+ ϕ(v) − ϕ(x(t)) ≥ 0, ∀v ∈ R

n. (1.1)

It is known that many important mechanical systems arising from applications can be
transformed into an variational inequality as above. In case ϕ is a proper convex and lower
semicontinuous function from R

n to R
1 ∪ {+∞} and f is a continuous operator with f + ωI

being monotone for some ω ≥ 0, Adly and Goeleven [2] made a systematic study on the
asymptotic behavior of the system (1.1). The existence and uniqueness of solutions were
established, and the asymptotic behavior was discussed.
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In this present work, we are basically interested in the case where f is only continuous.
On the other hand, to avoid some technical difficulties, we will always assume ϕ is a proper
convex and lower semicontinuous function from R

n to R
1. Note that, in our case, (1.1) may

fail to have uniqueness. The main purpose is to establish a LaSalle’s invariance principle and
discuss asymptotic stability of the equilibria of the system.

LaSalle’s invariance principle plays a key role in stability analysis and control. In the
past decades, there appeared many important extensions. Results closely related to ours can
be found in [2–6] and so forth.

This paper is organized as follows. In Section 2, we provide some basic definitions
and auxiliary results. In Section 3, we develop a LaSalle’s invariance theorem and discuss the
strong stability and strong asymptotic stability of the system.

2. Preliminaries

This section is concerned with some preliminary works. For convenience, we will denote by
〈·, ·〉 the usual inner product in R

n with the corresponding norm ‖ · ‖.

2.1. Subdifferential

Let V be a function from R
n to R

1. For x, v ∈ R
n, define

DvV (x) = lim
h→ 0+

V (x + hv) − V (x)
h

∈ [−∞,+∞]. (2.1)

DvV (x) is said to be the derivative of V at x in the direction v.
If DvV (x) exists for all directions v, we say that V is differentiable at x.

Definition 2.1. The following closed convex subset (possibly empty)

∂V (x) :=
{
p ∈ R

n | ∀v ∈ R
n,

〈
p, v

〉 ≤ DvV (x)
}

(2.2)

is called the subdifferential of V at x, and we say that the elements p of ∂V (x) are the
subgradients of V at x.

It is known that if V is differentiable at x in the classical sense, then

∂V (x) = {∇V (x)}. (2.3)

Proposition 2.2 (see [7]). If V is a convex function fromR
n toR

1, then, for each fixed x, the mapping
v → DvV (x) is convex and positively homogeneous with the following inequalities hold:

−∞ ≤ V (x) − V (x − v) ≤ DvV (x) ≤ V (x + v) − V (x) ≤ +∞. (2.4)

Furthermore,

∂V (x) =
{
p ∈ R

n | V (x) − V
(
y
) ≤ 〈

p, x − y
〉
, ∀y ∈ R

n}. (2.5)
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Proposition 2.3 (see [7]). Let one assume that V : R
n → R

1 is convex and lower semicontinuous.
Then,

(a) for each x, ∂V (x) is a nonempty and bounded set,

(b) the mapping (x, v) ∈ R
n × R

n → DvV (x) is upper semicontinuous (and thus ∂V (·) is
upper semicontinuous as well),

(c) the following regularity property holds:

DvV (x) = lim sup
h→ 0+
y→x

V
(
y + hv

) − V
(
y
)

h
. (2.6)

2.2. Some Basic Facts on the Evolution Variational Inequality

Let ϕ : R
n → R be a convex and lower semicontinuous function, and let f : R

n → R
n be a

continuous vector field. Consider the following evolution variational inequality.

(VP) For any given x0 ∈ R
n, find a x(·) ∈ C([0, T);Rn) with dx/dt ∈ L∞

loc(0, T ;R
n), such

that

〈
dx(t)
dt

+ f(x(t)), v − x(t)
〉
+ ϕ(v) − ϕ(x(t)) ≥ 0, ∀v ∈ R

n, a.e. t ≥ 0,

x(0) = x0.

(2.7)

Thanks to Proposition 2.2, one can easily rewrite (2.7) as the initial value problem of a
differential inclusion:

dx(t)
dt

+ f(x(t)) ∈ −∂ϕ(x(t)), x(0) = x0. (2.8)

By Definition 2.1 and Proposition 2.3, we see that, for each x ∈ R
n, ∂ϕ(x) is a nonempty

compact and convex subset of R
n; moreover, the multifunction ∂ϕ(·) is upper semicontinuous

in x. This guarantees by the basic theory on differential inclusions (see, e.g., [7–9], etc.) the
local existence of solutions for (2.7).

Let x(·) be a solution to differential inclusion (2.7) defined on [0,+∞). Then, theω-limit
set ω(x(·)) is defined as

ω(x(·)) := {
y ∈ R

n | ∃tn −→ +∞ such that x(tn) −→ y
}
. (2.9)

We infer from [10] that the following basic facts on ω-limit sets hold.

Proposition 2.4. If a solution x(·) of (2.7) is bounded on [0,+∞), then ω(x(·)) is a nonempty
compact weakly invariant set, namely, for each y ∈ Ω, there is a complete solution x(·) on R

1 which is
contained in ω(x(·)) with x(0) = y. Moreover,

lim
t→+∞

d(x(t), ω(x(·))) = 0. (2.10)
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3. LaSalle’s Invariance Principle

We are now ready to establish a LaSalle’s invariance principle for (2.7). For convenience, we
will denote by EΩ(f, ϕ, V ) the set

EΩ
(
f, ϕ, V

)
:=

{
x ∈ Ω | 〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) = 0

}
. (3.1)

In case Ω = R
n, we simply write EΩ(f, ϕ, V ) as E(f, ϕ, V ).

3.1. Invariance Principle

In this subsection, we provide a LaSalle’s invariance principle for the system (2.7) involving
a mapping f that is only assumed continuous. The approach followed by Adly and Goeleven
[2] has been proved with f being continuous and f +ωI monotone.

The main result is contained in the following theorem. The weak invariance of ω-limit
set plays an important role in the proof of the theorem.

Theorem 3.1. Let Ω ⊂ R
n be closed. Assume that there exists V ∈ C1(Ω;R) such that

〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) ≥ 0, x ∈ Ω. (3.2)

LetMΩ be the largest weakly invariant set of EΩ(f, ϕ, V ).
Then, for each x0 ∈ Ω and each bounded solution x(·) of (2.7) in Ω, we have

lim
t→+∞

d(x(t),MΩ) = 0. (3.3)

Proof. For each p ∈ −∂ϕ(x), by Proposition 2.2, we find that

〈p, x − y〉 + ϕ(x) − ϕ
(
y
) ≤ 0, ∀y ∈ R

n. (3.4)

Taking y = x − ∇V (x) in (3.4), one gets

〈∇V (x), p〉 ≤ ϕ(x − ∇V (x)) − ϕ(x). (3.5)

Equation (3.2) then implies

ϕ(x − ∇V (x)) − ϕ(x) ≤ 〈f(x),∇V (x)〉. (3.6)

Now, by (3.5) and (3.6), we deduce that

max
p∈−∂ϕ(x)

〈∇V (x), p〉 ≤ 〈∇V (x), f(x)〉, x ∈ Ω. (3.7)
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Set

E :=
{
x ∈ Ω | 〈∇V (x), p − f(x)

〉
= 0 for some p ∈ −∂ϕ(x)}. (3.8)

Denote by M the largest weakly invariant set of E. In the following, we will check that, for
each x0 ∈ Ω and each bounded solution x(·) of (2.7) in Ω, we have

lim
t→+∞

d(x(t),M) = 0. (3.9)

By Proposition 2.4, we know thatω(x(·)) is a nonempty compact weakly invariant set,
and

lim
t→+∞

d(x(t), ω(x(·))) = 0. (3.10)

To prove (3.9), it suffices to check that

ω(x(·)) ⊂ M. (3.11)

Note that Ω is closed, we have ω(x(·)) ⊂ Ω. Since for every y ∈ ω(x(·)), by the
definition of ω-limit set, there is tn → +∞ such that x(tn) → y. Here, x(·) is a bounded
solution of (2.7) in Ω, and Ω is closed, hence y ∈ Ω.

In what follows we first show that

V
(
y
) ≡ const., y ∈ ω(x(·)). (3.12)

Indeed, by (2.8) and (3.7), we see that

dV (x(t))
dt

= 〈∇V (x(t)), ẋ(t)〉
≤ max

p∈−∂ϕ(x(t))
〈∇V (x(t)), p − f(x(t))

〉

≤ 0, a.e. t ≥ 0.

(3.13)

It then follows from the proof of Lemma 2 in [2] that V is nonincreasing on [0,+∞). Moreover,
V is bounded from below on [0,+∞) since x([0,+∞)) ⊂ Ω and V is continuous on the closed
set Ω. This provides with an existence of the limit of V . Hence,

lim
t→+∞

V (x(t)) := λ (3.14)

exists.
For each y ∈ ω(x(·)), by definition of ω-limit set, there exists tn → +∞ such that

x(tn) −→ y, n −→ +∞. (3.15)
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Further, by continuity, we deduce that

V
(
y
)
= V

(
lim

n→+∞
x(tn)

)
= lim

n→+∞
V (x(tn)) = λ. (3.16)

This verifies the validity of (3.12).
Now, we check thatω(x(·)) ⊂ E. Let y0 ∈ ω(x(·)). Asω(x(·)) is weakly invariant, there

exists a complete solution y(·) starting from y0 with y(t) ∈ ω(x(·)) for all t ≥ 0. By what we
have just proved, it holds that

V
(
y(t)

) ≡ λ, ∀t ≥ 0. (3.17)

Take a sequence tn → 0 such that y(t) is differentiable at each tn with

ẏ(tn) + f
(
y(tn)

) ∈ −∂ϕ(y(tn)). (3.18)

Then,

dV
(
y(tn)

)
dt

= 〈∇V
(
y(tn)

)
, ẏ(tn)〉 = 0. (3.19)

This implies that

〈∇V
(
y(tn)

)
, p − f

(
y(tn)

)〉
= 0, for some p ∈ −∂ϕ(y(tn)). (3.20)

Thus, one deduces that y(tn) ∈ E. By continuity of y(·), we know that y0 ∈ E. This proves
what we desired, and (3.11) follows directly from the weak invariance of ω(x(·)).

Finally, we verify that E ⊂ EΩ(f, ϕ, V ), which implies M ⊂ MΩ and completes the
proof of the theorem. Let x ∈ E. Then, by (3.8), we have

〈∇V (x), p〉 = 〈∇V (x), f(x)〉, for some p ∈ −∂ϕ(x). (3.21)

Invoking (3.5) and (3.6), we find that

〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) = 0. (3.22)

Thus, x ∈ EΩ(f, ϕ, V ).

As a particular case of Theorem 3.1, we have the following.

Theorem 3.2. Assume that there exists V ∈ C1(Rn;R1) such that

(1) 〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) ≥ 0, x ∈ R
n,

(2) V (x) → +∞ as ‖x‖ → +∞, x ∈ R
n.

Denote byM the largest weakly invariant set of E(f, ϕ, V ).
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Then, for each x0 ∈ R
n, every solution x(·) of (2.7) is bounded and

lim
t→+∞

d(x(t),M) = 0. (3.23)

Proof. Let x0 ∈ R
n be given. We set

Ω := {x ∈ R
n | V (x) ≤ V (x0)}. (3.24)

Then, by assumption (2), we see that Ω is a bounded closed subset of R
n. We infer from the

proof of Theorem 3.1 that V is decreasing along any solution of (2.7). Thus, Ω is actually
positively invariant. Therefore, by Theorem 3.1, one concludes that

lim
t→∞

d(x(t),MΩ) = 0 (3.25)

for each solution x(·), where MΩ is the largest weakly invariant subset of E(f, ϕ, V ) ∩ Ω.
Clearly, MΩ ⊂ M, and the conclusion follows.

3.2. Asymptotic Stability of Equilibria

As simple applications of the LaSalle’s invariance principle established above, wemake some
further discussions on the asymptotic behavior of the system (1.1). For this purpose, we
denote by E(f, ϕ) the set of stationary solutions to (1.1), that is,

E(f, ϕ) :=
{
z ∈ R

n | 〈f(z), v − z
〉
+ ϕ(v) − ϕ(z) ≥ 0, ∀v ∈ R

n}. (3.26)

In what follows, we will always assume that

f(0) ∈ −∂ϕ(0), (3.27)

so that 0 ∈ E(f, ϕ) is the trivial stationary solution of (1.1).
Let us first prove the strong stability of the trivial stationary solution 0. For r > 0, we

denote by Br the closed ball of radius r,

Br := {x ∈ R
n : ‖x‖ ≤ r}. (3.28)

Theorem 3.3. Suppose that there exists σ > 0 and V ∈ C1(Bσ ;R) such that

(1) V (x) ≥ a(‖x‖) for all x ∈ Bσ , where a ∈ C([0, σ]) satisfies a(t) > 0 (∀t ∈ (0, σ)),

(2) V (0) = 0,

(3) 〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) ≥ 0, x ∈ Bσ .

Then, the stationary solution 0 is strongly stable, that is, for any ε > 0, there exists a δ > 0 such that
for any solution x(t) of (1.1) with ‖x(0)‖ ≤ δ, one has

‖x(t)‖ ≤ ε, ∀t ≥ 0. (3.29)
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Proof. For any δ < σ, let m be the minimum value of V on the boundary of Bδ. Then, by
assumptions (1) and (2), we find that m > 0. Let

U =
{
x ∈ Bδ | V (x) ≤ m

}
. (3.30)

It is clear that U is a neighborhood of 0. Since V is decreasing along each solution in Bδ, one
trivially checks that U is strongly positive invariant. This implies the desired result.

Propositions 3.4–3.6 below can be proved by the same arguments as the ones in [2].
We omit the details.

Proposition 3.4. Suppose that Ω is a subset of R
n, and there exists V ∈ C1(Ω;R) such that

〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) ≥ 0, x ∈ Ω. (3.31)

Then,

(E(f, ϕ) ∩Ω
) ⊂ EΩ

(
f, ϕ, V

)
. (3.32)

Proposition 3.5. Suppose that there exist a σ > 0 and V ∈ C1(Bσ ;R) such that

(1) 〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) ≥ 0, x ∈ Bσ ,

(2) E(f, ϕ, V ) ∩ Bσ = {0}.

Then, the stationary solution 0 is isolated in E(f, ϕ).

Proposition 3.6. Suppose that there exists V ∈ C1(Rn;R) such that

〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) ≥ 0, x ∈ R
n. (3.33)

Then, E(f, ϕ) ⊂ E(f, ϕ, V ).

Now, we can easily prove the following result.

Theorem 3.7. Suppose that there exists σ > 0 and V ∈ C1(Bσ ;R) such that (1)–(3) in Theorem 3.3
hold; moreover,

E
(
f, ϕ, V

) ∩ Bσ = {0}. (3.34)

Then, the trivial stationary solution 0 is strongly asymptotically stable.

Proof. The strong stability is readily implied in Theorem 3.3. Define

Ω =
{
x ∈ Bσ | V (x) ≤ m

}
. (3.35)
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Then, as in the proof of Theorem 3.3, we know that Ω is a strongly positively invariant
neighborhood of 0. Applying Theorem 3.1, we deduce that, for x0 ∈ Ω,

lim
t→+∞

d(x(t),M) = 0. (3.36)

On the other hand, by (3.34), we see that M = {0}. Therefore, the trivial stationary solution 0
is strongly asymptotically stable.

Theorem 3.8. Suppose that there exists V ∈ C1(Rn;R) such that

(1) V (x) ≥ a(‖x‖) for all x ∈ R
n, where a : R

+ → R is a continuous strictly increasing
function with a(0) = 0,

(2) V (0) = 0,

(3) 〈f(x),∇V (x)〉 + ϕ(x) − ϕ(x − ∇V (x)) ≥ 0, x ∈ R
n,

(4) E(f, ϕ, V ) = {0}.
Then, the trivial stationary solution to (2.7) is globally strongly asymptotically stable.

Proof. The strong asymptotic stability can be directly deduced from Theorem 3.8. Repeating
the same argument as in Theorem 3.2, we can show that each solution of the system ap-
proaches M = {0}.
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[10] D. S. Li, “On dynamical stability in general dynamical systems,” Journal of Mathematical Analysis and

Applications, vol. 263, no. 2, pp. 455–478, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


