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Using Mönch fixed point theorem, this paper proves the existence and controllability of mild solu-
tions for nonlinear mixed type integrodifferential functional evolution equations with nonlocal
conditions in Banach spaces, some restricted conditions on a priori estimation andmeasure of non-
compactness estimation have been deleted, our results extend and improve many known results.
As an application, we have given a controllability result of the system.

1. Introduction

This paper related to the existence and controllability of mild solutions for the following non-
linear mixed type integrodifferential functional evolution equations with nonlocal conditions
in Banach space X:

x′(t) = A(t)x(t) + f

(
t, xt,

∫ t

0
K(t, s, xs)ds,

∫b

0
H(t, s, xs)ds

)
, t ∈ J,

x0 = φ + g(x), t ∈ [−q, 0],
(1.1)

where q > 0, J = [0, b], A(t) is closed linear operator on X with a dense domain D(A) which
is independent of t, x0 ∈ X, and xt : [−q, 0] → X defined by xt(θ) = x(t+θ) for θ ∈ [−q, 0] and
x ∈ C(J,X), f : J ×C([−q, 0], X)×X ×X → X,K : Δ×C([−q, 0], X) → X, Δ = {(t, s) ∈ J × J :
s ≤ t}, H : J × J × C([−q, 0], X) → X, g : C([0, b], X) → C([−q, 0], X), φ : [−q, 0] → X are
given functions.
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For the existence and controllability of solutions of nonlinear integrodifferential func-
tional evolution equations in abstract spaces, there are many research results, see [1–13] and
their references. However, in order to obtain existence and controllability of mild solutions in
these study papers, usually, some restricted conditions on a priori estimation and compact-
ness conditions of evolution operator are used. Recently, Xu [6] studied existence of mild
solutions of the following nonlinear integrodifferential evolution systemwith equicontinuous
semigroup:

(Ex(t))′ +Ax(t) = f

(
t, x(σ1(t)),

∫ t

0
k(t, s)h(s, x(σ2(s))ds)

)
, t ∈ [0, b],

x(0) + g(x) = x0.

(1.2)

Some restricted conditions on a priori estimation andmeasure of noncompactness estimation:

(
1 − αβMc

)
N

αβM(d + ‖x0‖) + αM‖θ1‖L1Ω1(N +K‖θ2‖L1Ω2(N))
> 1,

2α‖θ1‖L1M(1 + 2K‖θ2‖L1) < 1

(1.3)

are used, and some similar restricted conditions are used in [14, 15]. But estimations (3.15)
and (3.21) in [15] seem to be incorrect. Since spectral radius σ(B) = 0 of linear Volterra
integral operator (Bx)(t) =

∫ t
0 k(t, s)x(s)ds, in order to obtain the existence of solutions for

nonlinear Volterra integrodifferential equations in abstract spaces by using fixed point theory,
usually, some restricted conditions on a priori estimation and measure of noncompactness
estimation will not be used even if the infinitesimal generator A = 0.

In this paper, using Mönch fixed point theorem, we investigate the existence and con-
trollability of mild solution of nonlinear Volterra-Fredholm integrodifferential system (1.1),
some restricted conditions on a priori estimation and measure of noncompactness estima-
tion have been deleted, our results extend and improve the corresponding results in papers
[2–20].

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space and let C([a, b], X) be a Banach space of all continuous
X-valued functions defined on [a, b]with norm ‖x‖[a,b] = supt∈[a,b]‖x(t)‖ for x ∈ C([a, b], X).
B(X) denotes the Banach space of bounded linear operators from X into itself.

Definition 2.1. The family of linear bounded operators {R(t, s) : 0 ≤ s ≤ t < +∞} on X is said
an evolution system, if the following properties are satisfied:

(i) R(t, t) = I, where I is the identity operator in X;

(ii) R(t, s)R(s, τ) = R(t, τ) for 0 ≤ s ≤ t < +∞;

(iii) R(t, s) ∈ B(X) the space of bounded linear operator on X, where for every (t, s) ∈
{(t, s) : 0 ≤ s ≤ t < +∞} and for each x ∈ X, the mapping (t, s) → R(t, s)x is contin-
uous.
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The evolution system R(t, s) is said to be equicontinuous if for all bounded set Q ⊂ X,
{s → R(t, s)x : x ∈ Q} is equicontinuous for t > 0. x ∈ C([−q, b], X) is said to be a mild solu-
tion of the nonlocal problem (1.1), if x(t) = φ(t) + g(x)(t) for t ∈ [−q, 0], and, for t ∈ J , it satis-
fies the following integral equation:

x(t) = R(t, 0)
[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)
ds.

(2.1)

The following lemma is obvious.

Lemma 2.2. Let the evolution system R(t, s) be equicontinuous. If there exists a ρ ∈ L1[J,R+] such
that ‖x(t)‖ ≤ ρ(t) for a.e. t ∈ J , then the set {∫ t0 R(t, s)x(s)ds} is equicontinuous.
Lemma 2.3 (see [21]). Let V = {xn} ⊂ L1([a, b], X). If there exists σ ∈ L1([a, b],R+) such that
‖xn(t)‖ ≤ σ(t) for any xn ∈ V and a.e. t ∈ [a, b], then α(V (t)) ∈ L1([a, b],R+) and

α

({∫ t

0
xn(s)ds : n ∈ N

})
≤ 2
∫ t

0
α(V (s))ds, t ∈ [a, b]. (2.2)

Lemma 2.4 (see [22]). Let V ⊂ C([a, b], X) be an equicontinuous bounded subset. Then α(V (t)) ∈
C([a, b],R+) (R+ = [0,∞)), α(V ) = maxt∈[a,b]α(V (t)).

Lemma 2.5 (see [23]). LetX be a Banach space,Ω a closed convex subset inX, and y0 ∈ Ω. Suppose
that the operator F : Ω → Ω is continuous and has the following property:

V ⊂ Ω countable, V ⊂ co
({

y0
} ∪ F(V )

)
=⇒ V is relatively compact. (2.3)

Then F has a fixed point in Ω.

Let V (t) = {x(t) : x ∈ C([−q, b], X)} ⊂ X (t ∈ J), Vt = {xt : x ∈ C([−q, b], X)} ⊂
C([−q, 0], X), α(·) and αC(·) denote the Kuratowski measure of noncompactness in X and
C([−q, b], X), respectively. For details on properties of noncompact measure, see [22].

3. Existence Result

We make the following hypotheses for convenience.

(H1) g : C([0, b], X) → C([−q, 0], X) is continuous, compact and there exists a constant
N such that ‖g(x)‖[−q,0] ≤ N.

(H2) (1)f : J × C([−q, 0], X) × X × X → X satisfies the Carathodory conditions, that is,
f(·, x, y, z) is measurable for each x ∈ C([−q, b], X), y, z ∈ X, f(t, ·, ·, ·) is continuous
for a.e. t ∈ J .

(2) There is a bounded measure function p : J → R
+ such that

∥∥f(t, x, y, z)∥∥ ≤ p(t)
(
‖x‖[−q,0] +

∥∥y∥∥ + ‖z‖
)
, a.e. t ∈ J, x ∈ C

([−q, 0], X), y, z ∈ X. (3.1)
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(H3) (1) For each x ∈ C([−q, 0], X), K(·, ·, x),H(·, ·, x) : J × J → X are measurable and
K(t, s, ·),H(t, s, ·) : C([−q, 0], X) → X is continuous for a.e. t, s ∈ J .

(2) For each t ∈ (0, b], there are nonnegative measure functions k(t, ·), h(t, ·) on [0, b]
such that

‖K(t, s, x)‖ ≤ k(t, s)‖x‖[−q,0], (t, s) ∈ Δ, x ∈ C
([−q, 0], X),

‖H(t, s, x)‖ ≤ h(t, s)‖x‖[−q,0], t, s ∈ J, x ∈ C
([−q, 0], X), (3.2)

and
∫ t
0 k(t, s)ds,

∫b
0 h(t, s)ds are bounded on [0, b].

(H4) For any bounded set V1 ⊂ C([−q, 0], X), V2, V3 ⊂ X, there is bounded measure
function li ∈ C[J,R+] (i = 1, 2, 3) such that

α
(
f(t, V1, V2, V3) ≤ l1(t) sup

−q≤θ≤0
α(V1(θ)) + l2(t)α(V2) + l3(t)α(V3), a.e. t ∈ J,

α

(∫ t

0
K(t, s, V1)ds

)
≤ k(t, s) sup

−q≤θ≤0
α(V1(θ)), t ∈ J,

α

(∫b

0
H(t, s, V1)ds

)
≤ h(t, s) sup

−q≤θ≤0
α(V1(θ)), t ∈ J.

(3.3)

(H5) The resolvent operator R(t, s) is equicontinuous and there are positive numbers
M ≥ 1 and

w = max
{
Mp0(1 + k0 + h0) + 1, 2M

(
l01 + 2l02k0 + 2l03h0

)
+ 1
}
, (3.4)

such that ‖R(t, s)‖ ≤ Me−w(t−s), 0 ≤ s ≤ t ≤ b, where k0 = sup(t,s)∈Δ
∫ t
0 k(t, s)ds, h0 =

supt,s∈J
∫b
0 h(t, s)ds, p0 = supt∈Jp(t), l

0
i = supt∈J li(t) (i = 1, 2, 3).

Theorem 3.1. Let conditions (H1)–(H5) be satisfied. Then the nonlocal problem (1.1) has at least one
mild solution.

Proof. Define an operator F : C([−q, b], X) → C([−q, b], X) by

(Fx)(t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t∈[−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)
ds, t ∈ [0, b].

(3.5)
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We have by (H1)–(H3) and (H5),

‖(Fx)(t)‖ ≤ ∥∥φ∥∥[−q,0] +N ≤ M
(∥∥φ∥∥[−q,0] +N

)
=: L, t ∈ [−q, 0],

‖(Fx)(t)‖ ≤ L +M

∫ t

0
ew(s−t)

∥∥∥∥∥f
(
s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)∥∥∥∥∥ds

≤ L +M

∫ t

0
ew(s−t)p(s)

(
‖xs‖[−q,0] +

∫s

0
‖K(s, r, xr)‖dr +

∫b

0
‖H(s, r, xr)‖dr

)
ds

≤ L +Mp0

∫ t

0
ew(s−t)

(
‖xs‖[−q,0] +

∫ s

0
k(s, r)‖xr‖[−q,0]dr +

∫b

0
h(s, r)‖xr‖[−q,0]dr

)
ds

≤ L +Mp0(1 + k0 + h0)w−1‖x‖[−q,b], t ∈ [0, b].
(3.6)

Consequently,

‖(Fx)(t)‖ ≤ L +Mp0(1 + k0 + h0)w−1‖x‖[−q,b] = L + η‖x‖[−q,b], t ∈ [−q, b], (3.7)

where 0 < η = Mp0(1 + k0 + h0)w−1 < 1. Taking R > L(1 − η)−1, let

BR =
{
x ∈ C

([−q, b], X) : ‖x‖[−q,b] ≤ R
}
. (3.8)

Then BR is a closed convex subset in C([−q, b], X), 0 ∈ BR and F : BR → BR. Similar to the
proof in [14, 24], it is easy to verify that F is a continuous operator from BR into BR. For
x ∈ BR, s ∈ [0, b], (H2) and (H3) imply

∥∥∥∥∥f
(
s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)∥∥∥∥∥ ≤ p(s)(1 + k0 + h0)R. (3.9)

We can show that from (H5), (3.9) and Lemma 2.2 that F(BR) is an equicontinuous in
C([−q, b], X).

Let V ⊂ BR be a countable set and

V ⊂ co({0} ∪ (FV )). (3.10)
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From equicontinuity of F(BR) and (3.10), we know that V is an equicontinuous subset in
C([−q, b], X). By (H1), it is easy to see that α((FV )(t)) = 0, t ∈ [−q, 0]. By properties of non-
compact measure, (H4) and Lemma 2.3, we have

α((FV )(t)) ≤ 2
∫ t

0
‖R(t − s)‖α

(
f

(
s, Vs,

∫ s

0
K(s, r, Vr)dr,

∫b

0
H(s, r, Vr)dr

))
ds

≤ 2M
∫ t

0
ew(s−t)

[
l1(s) sup

−q≤θ≤0
α(Vs(θ)) + l2(s)α

(∫s

0
K(s, r, Vr)dr

)

+l3(s)α

(∫b

0
H(s, r, Vr)dr

)]
ds

≤ 2M
∫ t

0
ew(s−t)

[
l01 sup
−q≤θ≤0

α(V (s + θ)) + 2l02

∫ s

0
k(s, r) sup

−q≤θ≤0
α(V (r + θ))dr

+2l03

∫b

0
h(s, r) sup

−q≤θ≤0
α(V (r + θ))dr

]
ds

≤ 2M
(
l01 + 2l02k0 + 2l03h0

)∫ t

0
ew(s−t)ds sup

−q≤τ≤b
α(V (τ))

≤ 2M
(
l01 + 2l02k0 + 2l03h0

)
w−1α C(V ), t ∈ [0, b].

(3.11)

Consequently,

αC(FV ) = sup
−q≤t≤b

α((FV )(t)) ≤ 2M
(
l01 + 2l02k0 + 2l03h0

)
w−1αC(V ). (3.12)

Equations (3.10), (3.12), and Lemma 2.4 imply

αC(V ) ≤ αC(FV ) ≤ δαC(V ), (3.13)

where δ = 2M(l01 + 2l02k0 + 2l03h0)w−1 < 1. Hence αC(V ) = 0 and V is relative compact in
C([−q, b], X). Lemma 2.5 implies that F has a fixed point in C([−q, b], X), then the system
(1.1), (1.2) has at least one mild solution. The proof is completed.

4. An Example

In this section, we give an example to illustrate Theorem 3.1.
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Let X = L2([0, π],R). Consider the following functional integrodifferential equation
with nonlocal condition:

ut

(
t, y
)
= a1

(
t, y
)
uyy

(
t, y
)

+ a2(t)

[
sinu

(
t + θ, y

)
ds +

∫ t

0

∫s

−q
a3(s + τ)

u
(
τ, y
)
dτds

(1 + t)
+
∫b

0

u
(
s + θ, y

)
ds

(1 + t)(1 + s)2

]
,

0 ≤ t ≤ b,

u
(
t, y
)
= φ
(
t, y
)
+
∫π

0

∫b

0
F
(
r, y
)
log
(
1 + |u(r, s)|1/2

)
dr ds, −q ≤ t ≤ 0, 0 ≤ y ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ b,

(4.1)

where functions a1(t, y) is continuous on [0, b] × [0, π] and uniformly Hölder continuous in
t, a2(t) is bounded measure on [0, b], φ : [−q, 0] × [0, π], a3 : [−q, b], and F : [0, b] × [0, π] are
continuous, respectively. Taking u(t, y) = u(t)(y), φ(t, y) = φ(t)(y),

f

(
t, ut,

∫ t

0
K(t, s, us)ds,

∫b

0
H(t, s, us)ds

)(
y
)

= a2(t)

[
sinu

(
t + θ, y

)
+
∫ t

0

∫s

−q
a3(s + τ)

u
(
τ, y
)
dτds

(1 + t)
+
∫b

0

u
(
s + θ, y

)
ds

(1 + t)(1 + s)2

]
,

K(t, s, us)
(
y
)
=
∫s

−q
a3(s + τ)

u
(
τ, y
)
dτ

(1 + t)
, H(t, s, us)

(
y
)
=

u
(
s + θ, y

)
(1 + t)(1 + s)2

,

g(u)
(
y
)
=
∫π

0

∫b

0
F
(
r, y
)
log
(
1 + |u(r, s)|1/2

)
dr ds.

(4.2)

The operator A defined by A(t)w = a1(t, y)w′′ with the domain

D(A) =
{
w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0

}
. (4.3)

Then A(t) generates an evolution system, and R(t, s) can be deduced from the evolution sys-
tems so that R(t, s) is equicontinuous and ‖R(t, s)‖ ≤ Meβ(t−s) for some constants M and β
(see [24, 25]). The system (4.1) can be regarded as a form of the system (1.1), (1.2). We have
by (4.2)

∥∥f(t, u, v, z)∥∥ ≤ |a2(t)|
(
‖u‖[−q,0] + ‖v‖ + ‖z‖

)
,

‖K(t, s, u)‖ ≤
∫s

−q
|a3(s + τ)|dτ

‖u‖[−q,0]
(1 + t)

, ‖H(t, s, u)‖ ≤
‖u‖[−q,0]

(1 + t)(1 + s)

(4.4)
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for u ∈ C([−q, 0], X), v, z ∈ X,

∥∥g(u)∥∥[−q,0] ≤ bπ max
(r,y)∈[0,b]×[0,π]

∣∣F(r, y)∣∣(‖u‖[0,b] +√
π
)
, (4.5)

and g : C([0, b], X) → C([−q, b], X) is continuous and compact (see the example in [7]).
w > 0 and M ≥ 1 can be chosen such that ‖R(t, s)‖ ≤ Mew(t−s), 0 ≤ s ≤ t ≤ b. In addition, for
any bounded set V1 ⊂ C([−q, 0], X), V2, V3 ⊂ X, we can show that by the diagonal method

α
(
f(t, V1, V2, V3)

) ≤ |a2(t)|
(

sup
−q≤θ≤0

α(V1(θ)) + α(V2) + α(V3)

)
, t ∈ J,

α(K(t, s, V1)) ≤ 1
1 + t

sup
−q≤θ≤0

α(V1(θ)), t, s ∈ Δ,

α(H(t, s, V1)) ≤ 1

(1 + t)(1 + s)2
sup

−q≤θ≤0
α(V1(θ)), t, s ∈ [0, b].

(4.6)

It is easy to verify that all conditions of Theorem 3.1 are satisfied, so the system (5.1) has at
least one mild solution.

5. An Application

As an application of Theorem 3.1, we shall consider the following system with control para-
meter:

x′(t) = A(t)x(t) + f

(
t, xt,

∫ t

0
K(t, s, xs)ds,

∫b

0
H(t, s, xs)ds

)
, t ∈ J,

x0 = φ + g(x), t ∈ [−q, 0],
(5.1)

where C is a bounded linear operator from a Banach spaceU to X and v ∈ L2(J,U). Then the
mild solution of systems (5.1) is given by

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t ∈ [−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)(Cv)(s)ds

+
∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)
ds, t ∈ [0, b],

(5.2)

where the resolvent operator R(t, s) ∈ B(X), f,K,H, g, and φ satisfy the conditions stated in
Section 3.

Definition 5.1. The system (5.2) is said to be controllable on J = [0, b], if for every initial func-
tion φ ∈ C([−q, 0], X) and x1 ∈ X there is a control v ∈ L2(J,U) such that the mild solution
x(t) of the system (5.1) satisfies x(b) = x1.
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To obtain the controllability result, we need the following additional hypotheses.

(H′
5) The resolvent operator R(t, s) is equicontinuous and ‖R(t, s)‖ ≤ Me−w(t−s), 0 ≤ s ≤

t ≤ b, forM ≥ 1 and positive number

w = max
{
Mp0(1 + k0 + h0)(1 +MM1b) + 1, 2M

(
l01 + 2l02k0 + 2l03h0

)
(1 +MM1b) + 1

}
, (5.3)

where k0, h0, p0, l
0
i (i = 1, 2, 3) are as before.

(H6) The linear operator W from L2(J,U) into X, defined by

Wv =
∫b

0
R(b, s)(Cv)(s)ds, (5.4)

has an inverse operatorW−1, which takes values in L2(J,U)/kerW and there exists a positive
constant M1 such that ‖CW−1‖ ≤ M1.

Theorem 5.2. Let the conditions (H1)–(H4), (H′
5) and (H6) be satisfied. Then the nonlocal problem

(1.1), (1.2) is controllable.

Proof. Using hypothesis (H6), for an arbitrary x(·), define the control

v(t) = W−1
(
x1 − R(b, 0)

[
φ(0) + g(x)(0)

]

+
∫b

0
R(b, s)f

(
s, xs,

∫s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)
ds

)
(t), t ∈ [0, b].

(5.5)

Define the operator T : C([−q, b], X) → C([−q, b], X) by

(Tx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t ∈ [−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)(Cv)(s)ds

+
∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)
ds, t ∈ [0, b].

(5.6)

Now we show that, when using this control, T has a fixed point. Then this fixed point is a
solution of the system (5.1). Substituting v(t) in (5.6), we get

(Tx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t∈[−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)CW−1(x1 − R(b, 0)

[
φ(0) + g(x)(0)

]
+
∫b

0
R(b, τ)f

(
τ, xτ ,

∫ τ

0
K(τ, r, xr)dr,

∫b

0
H(τ, r, xr)dr

)
dτ

)
(s)ds

+
∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)
ds, t ∈ [0, b].

(5.7)
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Clearly, (Tx)(b) = x1, which means that the control v steers the system (5.1) from the given
initial function φ to the origin in time b, provided we can obtain a fixed point of nonlinear
operator T . The remaining part of the proof is similar to Theorem 3.1, we omit it.

Remark 5.3. Since the spectral radius of linear Fredholm type integral operator may be greater
than 1, in order to obtain the existence of solutions for nonlinear Volterra-Fredholm type
integrodifferential equations in abstract spaces by using fixed point theory, some restricted
conditions on a priori estimation andmeasure of noncompactness estimation will not be used
even if the generator A = 0. But, these restrictive conditions are not being used in Theorems
3.1 and 5.2.

Acknowledgments

The work was supported by Natural Science Foundation of Anhui Province (11040606M01)
and Education Department of Anhui (KJ2011A061, KJ2011Z057), China.

References

[1] R. Ravi Kumar, “Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in
Banach spaces,” Applied Mathematics and Computation, vol. 204, no. 1, pp. 352–362, 2008.

[2] B. Radhakrishnan and K. Balachandran, “Controllability results for semilinear impulsive integrodif-
ferential evolution systems with nonlocal conditions,” Journal of Control Theory and Applications, vol.
10, no. 1, pp. 28–34, 2012.

[3] J. Wang and W. Wei, “A class of nonlocal impulsive problems for integrodifferential equations in
Banach spaces,” Results in Mathematics, vol. 58, no. 3-4, pp. 379–397, 2010.

[4] M. B. Dhakne and K. D. Kucche, “Existence of a mild solution of mixed Volterra-Fredholm functional
integrodifferential equation with nonlocal condition,” Applied Mathematical Sciences, vol. 5, no. 5–8,
pp. 359–366, 2011.

[5] N. Abada, M. Benchohra, and H. Hammouche, “Existence results for semilinear differential evolution
equations with impulses and delay,” CUBO. A Mathematical Journal, vol. 12, no. 2, pp. 1–17, 2010.

[6] X. Xu, “Existence for delay integrodifferential equations of Sobolev type with nonlocal conditions,”
International Journal of Nonlinear Science, vol. 12, no. 3, pp. 263–269, 2011.

[7] Y. Yang and J. Wang, “On some existence results of mild solutions for nonlocal integrodifferential
Cauchy problems in Banach spaces,” Opuscula Mathematica, vol. 31, no. 3, pp. 443–455, 2011.

[8] Q. Liu and R. Yuan, “Existence of mild solutions for semilinear evolution equations with non-local
initial conditions,” Nonlinear Analysis, vol. 71, no. 9, pp. 4177–4184, 2009.

[9] A. Boucherif and R. Precup, “Semilinear evolution equations with nonlocal initial conditions,”
Dynamic Systems and Applications, vol. 16, no. 3, pp. 507–516, 2007.

[10] D. N. Chalishajar, “Controllability of mixed Volterra-Fredholm-type integro-differential systems in
Banach space,” Journal of the Franklin Institute, vol. 344, no. 1, pp. 12–21, 2007.

[11] J. H. Liu and K. Ezzinbi, “Non-autonomous integrodifferential equations with non-local conditions,”
Journal of Integral Equations and Applications, vol. 15, no. 1, pp. 79–93, 2003.

[12] K. Balachandran and R. Sakthivel, “Controllability of semilinear functional integrodifferential sys-
tems in Banach spaces,” Kybernetika, vol. 36, no. 4, pp. 465–476, 2000.

[13] Y. P. Lin and J. H. Liu, “Semilinear integrodifferential equations with nonlocal Cauchy problem,”Non-
linear Analysis, vol. 26, no. 5, pp. 1023–1033, 1996.

[14] K. Malar, “Existence of mild solutions for nonlocal integro-di erential equations with measure of non-
compactness,” Internationnal Journal of Mathematics and Scientic Computing, vol. 1, pp. 86–91, 2011.

[15] H.-B. Shi, W.-T. Li, and H.-R. Sun, “Existence of mild solutions for abstract mixed type semilinear
evolution equations,” Turkish Journal of Mathematics, vol. 35, no. 3, pp. 457–472, 2011.

[16] T. Zhu, C. Song, and G. Li, “Existence of mild solutions for abstract semilinear evolution equations in
Banach spaces,” Nonlinear Analysis, vol. 75, no. 1, pp. 177–181, 2012.



Abstract and Applied Analysis 11

[17] Z. Fan, Q. Dong, and G. Li, “Semilinear differential equations with nonlocal conditions in Banach
spaces,” International Journal of Nonlinear Science, vol. 2, no. 3, pp. 131–139, 2006.

[18] X. Xue, “Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces,” Electronic
Journal of Differential Equations, vol. 64, pp. 1–7, 2005.

[19] S. K. Ntouyas and P. Ch. Tsamatos, “Global existence for semilinear evolution equations with nonlocal
conditions,” Journal of Mathematical Analysis and Applications, vol. 210, no. 2, pp. 679–687, 1997.

[20] L. Byszewski and H. Akca, “Existence of solutions of a semilinear functional-differential evolution
nonlocal problem,” Nonlinear Analysis, vol. 34, no. 1, pp. 65–72, 1998.

[21] H.-P. Heinz, “On the behaviour of measures of noncompactness with respect to differentiation and
integration of vector-valued functions,” Nonlinear Analysis, vol. 7, no. 12, pp. 1351–1371, 1983.

[22] D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, vol. 373 of
Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1996.

[23] H. Mönch, “Boundary value problems for nonlinear ordinary differential equations of second order
in Banach spaces,” Nonlinear Analysis, vol. 4, no. 5, pp. 985–999, 1980.

[24] R. Ye, Q. Dong, and G. Li, “Existence of solutions for double perturbed neutral functional evolution
equation,” International Journal of Nonlinear Science, vol. 8, no. 3, pp. 360–367, 2009.

[25] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, NY, USA, 1969.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


