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We introduce new integral operators of analytic functions f and g defined in the open unit disk U.
For these operators, we discuss some univalence conditions.

1. Introduction and Preliminaries

Let o/ denote the class of all functions of the form
f(z)=z+ Zanz”, (1.1)
n=2

which are analytic in the open unit disk

U={zeC:|z] <1} (1.2)
and satisfy the following usual normalization condition:

fO)=f(©0)-1=0. (1.3)

Also, let S denote the subclass of </ consisting of functions f, which are univalent in U (see,
for details [1]; see also [2, 3]).
In [4, 5], Pescar gave the following univalence conditions for the functions f € .
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Theorem 1.1 (see [4]). Let a be a complex number, Rea > 0, and c a complex number, |c| <
1, ¢c# - 1,and f(z) = z +--- aregular function in U. If

ciaf+ (1- 1) 22| <1, 14
forall z € U, then the function
z 1/a
Fu(z) = (af t“‘lf'(t)dt) =z+--- (1.5)
0

is reqular and univalent in U.

Theorem 1.2 (see [5]). Let a be a complex number, Rea > 0, and c a complex number, |c| <
1, c#-1,and feAIf

1 _ |Z|2Rea

zfn(z)
f'(2)

<1-|c| (1.6)

Rea

forall z € U, then for any complex number B, Re p > Re a, the function

ﬁ@=@ﬂ¢7wﬂw (1.7)

is in the class S.

On the other hand, for the functions f € «, Ozaki and Nunokawa [6] proved another
univalence condition asserted by Theorem 1.3.

Theorem 1.3 (see [6]). Let f € o satisfy the condition

2f(z)
[f(2)]

1|<1 (zel). (1.8)

Then f is univalent in U.

In the paper [7], Pescar determined some univalence conditions for the following
integral operators.

Theorem 1.4 (see [7]). Let the function g satisfy (1.8), M a positive real number fixed, and c a
complex number. If a € [QM +1)/(2M +2),(2M +1)/2M],

|c|§1—‘a—_1‘(2M+1), c# -1,
a (1.9)

lg(z)| <M
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forall z € U, then the function
z 1/a
Ga(2) = ([ [g(t1"ar) (1.10)
0

is in the class S.

Theorem 1.5 (see [7]). Let ¢ € 4, a a real number, a > 1, and c a complex number, |c| <

1/a, c# -1 1If

<1 (zel), (1.11)

‘ g'(2)
g'(2)

then the function

Ha(z) = <a L [tg’(t)]“_ldt>1/u (1.12)

is in the class S.

Theorem 1.6 (see [7]). Let g € A satisfies (1.8), a a complex number, M > 1 fixed, Rea > 0, and
¢ a complex number, |c| < 1. If |g(z)| < M for all z € U, then for any complex number

2M +1
Ref>Rea> —— (1.13)
P [l (1= e

the function

z 1/a 1/p
Hy(z) = (p fo tfH(@) dt> (1.14)

is in the class S.

In this paper, we introduce the following integral operators as follows:
z P 1/a
Fi(f, 8)(z) = (af ( f(t)e8<f>) 1dt> (f,ge 4 aeC), (1.15)
0
z a 1/a
Gi(f,8)(2) = (tx _[O (' (Hes®) 1cilt) (f,ge# acC), (1.16)
S FO )\
Hi(f,8)(2) = <ﬂf tf“(Teg“’) dt> (fgeHa,peC-{0}).  (L17)
0

Remark 1.7. For e8® = 1 and f(z) = g(z), the integral operators (1.15), (1.16), and (1.17)
would reduce to the integral operators (1.10), (1.12), and (1.14).
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In this paper, we generalize the integral operators given by Pescar [7], and we study
the univalence conditions for the integral operators defined by (1.15), (1.16), and (1.17).
For this purpose, we need the following result.
Lemma 1.8 (General Schwarz Lemma [8]). Let the function f be reqular in the disk Ug = {z €

C : |z| < R}, with |f(z)| < M for fixed M. If f has one zero with multiplicity order bigger than m for
z =0, then

M m
[f(2)] < 2 l2l™ (2 €Ug). (1.18)
The equality can hold only if
f(z) = O M om (1.19)

where 0 is constant.

2. Main Results

Theorem 2.1. Let f,g € o, where g satisfies the condition (1.8), My and M, are real positive
numbers, and a a complex number, Rea > 0. If

J;_I((ZZ)) <M; (zel), |g(z)| <M> (z€l), (2.1)
|c|§1—‘a7_1‘<M1+2M§+1>, CEC, c# -1, 2.2)

then the integral operator F1(f, g)(z) defined by (1.15) is in the class S.

Proof. From (1.15), we have

1/a

z a-1
Fi(f,8)(z) = (zxf t“*(@eﬁ“) dt> . (2.3)

0

Let us consider the function

h(z) = I <@e8<ﬂ>a—1dt. (2.4)

0
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The function h is regular in U. From (2.4), we get

e = (12e0) "

i) = - ) (L)

Also, a simple computation yields

@) _1)[<

H(z)

which readily shows that

. \ zh'(z
e (1- 1) 5

a_
<lel+

= ‘C|z|2” + (1 -z

(¢

From the hypothesis of Theorem 2.1, we have

F@I My zew,

f(2)

then by General Schwarz Lemma for the function g, we obtain

|8(2)] < Malz]

Using the inequality (2.7), we have

. 2\ zh' (z
e (1- 1) 5

from which, by (2.2), we get

c|z|2“ + (1 |Z|2a> zh"(z)

c|z|2"‘ +

-1
§|c|+‘a7|<M1+l+<

From (2.10) and since g satisfies the condition (1.8), we have

ah'(z)

(1)

5
(2.5)
zf' (Z)Z f(z) o8 4 f( z) , (z)eg(z)>
J{((Z;) - 1> + Zg’(Z)], (2.6)
20\ & 1 Zf/(z) _ )
| ) (( @ 1) +2zg (z)))
zf'(z) 22¢'(2) [g(z)]2 >
1 U).
@1 >+ [s@I’Il = (26(2)7)
|g(x)| <My (z€D), (2.8)
(z €). (2.9)
1))
~1|+1)M2). (210)
()] ?
<le| + '—|<M1+2M2+1> (2.11)
z;;ll((;) <1 (z€D). (2.12)
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Applying Theorem 1.1, we conclude that the integral operator F;(f, g)(z) defined by (1.15) is
in the class .S. O

Setting M; = 1 and M, = 1 in Theorem 2.1, we immediately arrive at the following
application of Theorem 2.1.

Corollary 2.2. Let f, g € 4, where g satisfies the condition (1.8) and a a complex number, Re a > 0.
If

<1 (zel), |g(z)| <1 (z€l),

'f’(Z)
f(2)

o) (2.13)

a

|C|S1_| '/ CEC/C#_]-/

then the integral operator F1(f, g)(z) defined by (1.15) is in the class S.

Theorem 2.3. Let f, g € #4, where g satisfies the inequality |g(z)| < M, M > 1. Also, let a be a real
number, a > 1, and ¢ a complex number with

le| <1- “;1‘(M+1), c# —1. (2.14)
If
fll(z) &
Ze) <1 (zel), e <1 (zel), (2.15)

then the integral operator G1(f, §)(z) defined by (1.16) is in the class S.
Proof. We observe that
z a-1 e
Gi(f,g)(z) = (a f g1 ( f’(t)eg(t)> dt) . (2.16)
0
Let us consider the function

h(z) = f ( f’(t)eg(”)a_ldt. (2.17)
0

The function h is regular in U. From (2.17), we have

a-1
4

H(z) = (f(z)es?)

zh"(z) . (z2f"(z)
i (g @),

(2.18)
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which readily shows that

2a _opa\ 2h'(2) a-1 <Zf"(z) zg'(z) )
clzf*+ (1- 1) 3| <1+ [ | ([T + 25 le@l)  cev. @
From (2.19) and the conditions of Theorem 2.3, we get
2a _ 20 Zh"(Z) ‘LX—1|
clz| +<1 12| )ah,(z) Slel+|=—|a+M)<1 (z€D). (2.20)

Applying Theorem 1.1, we conclude that the integral operator G;(f, g)(z) defined by (1.16)
is in the class S. u

Setting M = 1 in Theorem 2.3, we obtain the following consequence of Theorem 2.3.

Corollary 2.4. Let f,g € 4, where g satisfies the condition |g'(z)/g(z)| £ 1, a a real number,
a>1, and ¢ a complex number with |c| <1-2(a-1)/al, c# - 1. If

fll (Z)

e <1 (ze€l), lg(z)] <1 (z€D), (2.21)

then the integral operator G1(f, g)(z) defined by (1.16) is in the class S.

Theorem 2.5. Let f, g € o, where g satisfies the condition (1.8), a a complex number, Rea >0, M;
and M, are real positive numbers, and ¢ a complex number, |c| < 1. If

‘%| <M (zel) |g(2)| <My (z€D), (2.22)

then for any complex number B,

M +2M3 +1

Ref>Rea> ————— =
P [l (= e

(2.23)

the integral operator H(f, g)(z) defined by (1.17) is in the class S.

Proof. Let us consider the function

h(z) = I ) <@e8<ﬂ>wdt. (2.24)

0
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The function h is regular in U. From (2.24), we have

W (z) = <@eg(2)>l/a’

W' (2) f'(2) )
zh"(z) 1 <<z "(z ) , )
=— -1)+z9(2) ),
W@ a\\ 7 8
which readily shows that
1-— |Z|2Rea Zh"(Z) - 1- |Z|2Rea Zf,(Z) Zzg/(z) [g(z)]z
Rea W(z) |~ |a|Rea f(z) [g(z)]2 z
s (2.26)
_ |~|2Rea ’ 2 o
B E e ECTR ORI SOl
la| Re f(z) [g(2)] z
By the General Schwarz Lemma for the function g, we obtain
|g(2)| < Ma|z| (z€D), (2.27)
and using the inequality (2.26), we have
_ |~|2Rea " _ |~|2Rea 25!
Loz 7|z (@)] 1k <M1+1+< Zg(zz—1 +1>M§ . (2.28)
Rea h(z) |a|Re a [g(2)]
From (2.28) and since g satisfies the condition (1.8), we get
1- |Z|2Rea Zh"(Z) B 1- |Z|2Rea (Ml + ZMg + 1)
Rea h(z) |~ Rea |a|
(2.29)
M +2M3 +1
|| Re
From (2.23), we have
M; +2M3 +1 530
“aRea =17 lcl, (2.30)
and using (2.29), we obtain
1- |Z|2Rea Z]’l”(Z)
<1- . .
Rea ) | S 1-1lc (z€U) (2.31)

Applying Theorem 1.2, we conclude that the integral operator H;(f, g)(z) defined by (1.17)
is in the class S. O
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Setting M1 = 1 and M, = 1 in Theorem 2.5, we obtain the following corollary.

Corollary 2.6. Let f, g € oA, where g satisfies the condition (1.8), a a complex number, Rea > 0,
and c a complex number, |c| < 1. If

fz)

IR 1 (zel), lg(zx)| <1 (zeU), (2.32)

then for any complex number B,

Ref >Rea > (2.33)

4
lal(1 = D)’

the integral operator H1(f, §)(z) defined by (1.17) is in the class S.
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