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We study a family of singularly perturbed linear partial differential equations with irregular type
et 0,05 Xi(t, z,€) + (et + 1)OIXi(t,2,€) = 3o xok)es Pskoks (z,e)tsaf"a’;lXi(t, z,€) in the complex
domain. In a previous work, Malek (2012), we have given sufficient conditions under which
the Borel transform of a formal solution to the above mentioned equation with respect to the
perturbation parameter e converges near the origin in C and can be extended on a finite number
of unbounded sectors with small opening and bisecting directions, say «; € [0,20), 0 <i<v -1
for some integer v > 2. The proof rests on the construction of neighboring sectorial holomorphic
solutions to the first mentioned equation whose differences have exponentially small bounds in the
perturbation parameter (Stokes phenomenon) for which the classical Ramis-Sibuya theorem can
be applied. In this paper, we introduce new conditions for the Borel transform to be analytically
continued in the larger sectors {e € C*/arg(e) € (k;, xi+1) }, where it develops isolated singularities
of logarithmic type lying on some half lattice. In the proof, we use a criterion of analytic
continuation of the Borel transform described by Fruchard and Schifke (2011) and is based on a
more accurate description of the Stokes phenomenon for the sectorial solutions mentioned above.

1. Introduction

We consider a family of singularly perturbed linear partial differential equations of the form

ePOO5X(t z,€) + (et + DXLz €) = Y. bokok (2,000 Xi(t, 2, €) (11)
(s,ko,k1)€S

for given initial conditions

(aixi)(t,o, e)=gi(te), 0<i<v-1,0<j<S-1, (1.2)
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where € is a complex perturbation parameter, S is some positive integer, v is some positive
integer larger than 2, and .S is a finite subset of N® with the property that there exists an
integer b > 1 with

S>b(s—ko+2) +ki, s3> 2k (1.3)

for all (s, ko, k1) € S, and the coefficients by, k, (2, €) belong to O{z, e} where O{z, e} denotes
the space of holomorphic functions in (z,€) near the origin in C?. In this work, we make
the assumption that the coefficients of (1.1) factorize in the form bk, x, (z, €) = ko Es,ko,kl (z,€)
where Es,ko,kl (z,€) belong to O{z, €}. The initial data ¢; j(t, €) are assumed to be holomorphic
functions on a product of two sectors T x &;, where T is a fixed bounded sector centered at
O0and &;, 0 <i < v -1, are sectors with opening larger than o centered at the origin whose
union form a covering of U\ {0}, where U is some neighborhood of 0. For all € #0, this family
belongs to a class of partial differential equations which have a so-called irregular singularity
att =0 (in the sense of [1]).

In the previous work [2], we have given sufficient conditions on the initial data
i (t, €), for the existence of a formal series

k
R(t,z,0) = ZEDE ¢ 00 2)11e)] (14)
k>0 :

solution of (1.1), with holomorphic coefficients H(t, z) on T x D(0, 6) for some disc D(0, 6),
with & > 0, such that, for all 0 < i < v — 1, the solution X;(t, z,€) of the problem (1.1),
(1.2) defines a holomorphic function on T x D(0,6) x &; which is the 1-sum of X on &;. In
other words, for all fixed (,z) € T x D(0,8), the Borel transform of X with respect to €
defined as B(X)(s) = >0 Hi(t, z)sk/ (k%) is holomorphic on some disc D(0, sg) and can be
analytically continued (with exponential growth) to sectors G, centered at 0, with infinite
radius and with the bisecting direction x; € [0,2sr) of the sector ;. But in general, due
to the fact that the functions X; do not coincide on the intersections &; N &;41 (known as
the Stokes phenomenon), the Borel transform cannot be analytically extended to the whole
sectors S, «,,, = {s € C*/ arg(s) € (xi, kis1)} for all 0 <i < v —1, where by convention «,, = o,
év = éo, and Xv = XQ.

In this work, we address the question of the possibility of analytic continuation,
location of singularities, and behaviour near these singularities of the Borel transform within
the sector S, «,.,. More precisely, our goal is to give stronger conditions on the initial data
i, (t, €) under which the Borel transform B(X)(s) can be analytically continued to the full-
punctured sector Sy, «,., except a half lattice of points Ak/t, k € N\ {0}, depending on ¢ and
some well-chosen complex number A € C* and moreover develop logarithmic singularities
at Ak /t (Theorem 5.8).

In a recent paper of Fruchard and Schifke, see [3], an analogous study has been
performed for formal WKB solutions y(x,€) = exp((x2/2 - x3/3)/e)xV2(x — 1) *5(x, €)
to the singularly perturbed Schrodinger equation

e?y'(x,€) = x*(x = 1)’y (x,€), (1.5)
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where 0(x,€) = 3,0 Yn(x)€" is a formal series with holomorphic coefficients i, on some
domain avoiding 0 and 1. The authors show that the Borel transform of o with respect to e
converges near the origin and can be analytically continued along any path avoiding some
lattices of points depending on (x?/2 - x3/3). We also mention that formal parametric Stokes
phenomenon for 1-dimensional stationary linear Schroédinger equation €’y (z) = Q(z)y(z),
where Q(z) is a polynomial, has been investigated by several other authors using WKB
analysis, see [4-6]. In a more general framework, analytic continuation properties related
with the Stokes phenomenon have been studied by several authors in different contexts. For
nonlinear systems of ODEs with irregular singularity at oo of the form y/(z) = f(z,y(z))
and for nonlinear systems of difference equations y(z + 1) = g(z,y(z)), under nonresonance
conditions, we refer to [7, 8]. For linearizations procedures for holomorphic germs of (C,0)
in the resonant case, we make mention to [9, 10]. For analytic conjugation of vector fields
in C? to normal forms, we indicate [11, 12]. For Hamiltonian nonlinear first-order partial
differential equations, we notice [13].

In the proof of our main result, we will use a criterion for the analytic continuation of
the Borel transform described by Fruchard and Schifke in [3] (Theorem (FS) in Theorem 5.8).
Following this criterion, in order to prove the analytic continuation of the Borel transform
B(X)(s), say, on the sector Sy, «,, for any fixed (t, z) € TxD(0,6), we need to have a complete
description of the Stokes relation between the solutions X, and X; of the form

m .
Xi(t,z,€) = Xo(t,z,€) = Y e Xpp(t,z,€) + O (e C/°) (1.6)
h=1

for all € € & N &y, for some integer m > 1, where {aj},,,, is a set of aligned complex
numbers such that arg(ay) = a € (o, k1) with |ax| < C (for some C > 0) and Xj(t, z,€),
h > 1, are the 1-sums of some formal series Gj,(€) € O(T x D(0,6))[[e]] on &. If the relation
(1.6) holds, then B(X)(s) can be analytically continued along any path in the punctured sector
(Sxo ND(0,C)) \ {an}1<p<m and has logarithmic growth as s tends to aj, in a sector. Actually,
under suitable conditions on the initial data ¢;;(t,€), we have shown that such a relation
holds for ay = Ak/t, for some well-chosen A € C* and for all k > 1, see (5.145) in Theorem 5.8.
In order to establish such a Stokes relation (1.6), we proceed in several steps.

In the first step, following the same strategy as in [2], using the linear map T — T/e =,
we transform the problem (1.1) into an auxiliary regularly perturbed singular linear partial
differential equation which has an irregular singularity at T = 0 and whose coefficients have
poles with respect to € at the origin, see (4.9). Then, for A € C*, we construct a formal
transseries expansion of the form

exp(-Ah/T) o

Y(T,z,e) =, V(T z€) (1.7)

h>0

solution of the problem (4.9), (4.10), where each Yiu(T,z€) = Dm0 Ynm(z,€)T"/m! is a
formal series in T with coefficients Y}, ,, (z, €), which are holomorphic on a punctured polydisc
D(0,6) x (D(0,¢e) \ {0}). We show that the Borel transform of each Y, (T, z, €) with respect
to T, defined by Vi(7, z,€) = 3,50 Ynm(2z,€)T™/ (m!'?), satisfies an integrodifferential Cauchy
problem with rational coefficients in 7, holomorphic with respect to (7, z) near the origin
and meromorphic in € with a pole at zero, see (4.20), (4.21). For well-chosen A and suitable
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initial data, we show that each Vj,(7, z, €) defines a holomorphic function near the origin with
respect to (7, z) and on a punctured disc with respect to € and can be analytically continued to
functions Vj,i(7, z, €) defined on the products S;xD(0, ) x&;, where S;, 0 < i < v—1 are suitable
open sectors with small opening and infinite radius. Moreover, the functions V},;(7, z, €) have
exponential growth rate with respect to (7, €), namely, there exist A, B, K > 0 such that

sup |Vii(t,z,€)| < Ah!B"eKITl/l .
zeD(0,6) .

for all (7,z,€) in their domain of definition and all & > 0 (Proposition 4.12). In order to get
these estimates, we use the Banach spaces depending on two parameters f € N and e with
norms || - || of functions v(7) bounded by exp(Kp|7|/|e]) for some bounded sequence Kj
already introduced in [2]. If one expands the functions Vj,;(7,z,¢€) = szo O, (T, €)zP /!
with respect to z, we show that the generating function tho,ﬂzo [[on,i,5(T, €)]| ﬂreuhxﬂ/ (h!pY)
can be majorized by a series W;(u, x) which satisfies a Cauchy problem of Kowalevski type
(4.47), (4.48) and is therefore convergent near the origin in C2.

We construct a sequence of actual functions Y, ;(T, z,¢), h > 0,0 <i <v -1 as Laplace
transform of the functions Vj, (7, z, €) with respect to 7 along a halfline L; = R,e"~7 ¢ S;u{0}.
We show that the functions Xp(t,z,€) = Yji(et, z,€) are holomorphic functions on the
domain T x D(0,6) x &; and that the functions Gy i(e) = Xpi1(t, z,€) — Xpi(t, z,€) are
exponentially flat as € tends to 0 on &1 N &; as O(T x D(0,6))-valued functions. In the
proof, we use, as in [2], a deformation of the integration’s path in Xj,; and the estimates
(1.8). Using the Ramis-Sibuya theorem (Theorem (RS) in Proposition 4.15), we deduce that
each Xj(t,z,¢) is the 1-sum of a formal series Gn(e) € O(T x D(0,6))[[e]] on &, for
0 <i £ v -1 (Proposition 4.15). We notice that the functions Xy;(t, z,€) actually coincide
with the functions X;(t, z, ) mentioned above solving the problem (1.1), (1.2). We deduce
that, for a suitable choice of \, the function

—Ah/et
Zo(t, z, 6) = wahﬁ(t/ Z, 6) (19)

h>0

solves (1.1) on the domain T x D(0,6) x (&g N &q).

In the second part of the proof, we establish the connection formula Xg:(t,z,€) =
Zy(t, z, €) which is exactly the Stokes relation (1.6) on Tx D(0, 6) x (9N é&q) (Proposition 5.2).
The strategy we follow consists in expressing both functions Xg; and Z, as Laplace
transforms of objects that are no longer functions in general but distributions supported on R,
which are called staircase distributions in the terminology of [8]. We stress the fact that such
representations of transseries expansions as generalized Laplace transforms were introduced
for the first time by Costin in the paper [8]. Notice that similar arguments have been used in
the work [14] to study the Stokes phenomenon for sectorial holomorphic solutions to linear
integro-differential equations with irregular singularity.

In Lemma 5.5, we show that Z; can be written as a generalized Laplace transform
in the direction arg(\) of a staircase distribution V(r,z,¢) = Zﬁzo Vp(r, €)zP /B! € D'(0,¢€,0),
which is a convergent series in z on D(0, 6) with coefficients Vj(r, €) in some Banach spaces of
staircase distributions %}5,0,6 on R, depending on the parameters ff and e (see Definition 2.3).
We observe that the distribution V(r, z,€) solves moreover an integro-differential Cauchy
problem with rational coefficients in r, holomorphic with respect to z near the origin and
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meromorphic with respect to € at zero, see (5.80), (5.81). The idea of proof consists in showing
that each function X} (t,z,€) can be expressed as a Laplace transform in a sequence of
directions ¢, tending to arg(\) of a sequence of staircase distributions Vj,(r, z,€) (which
are actually convergent series in z with coefficients that are C* functions in r on R, with
exponential growth). Moreover, each distribution Vj,,(r, z, €) solves an integro-differential
Cauchy problem (5.37), (5.38), whose coefficients tend to the coefficients of an integro-
differential equation (5.39), (5.40), as n tends to oo, having a unique staircase distribution
solution Vj, (7, z, €). Under the hypothesis that the initial data (5.38) converge to (5.40) as
n — +oo, we show that the sequence Vj,,(r, z,€) converges to Vj (1, z,€) in the Banach
space 9'(o, €,6) with precise norm estimates with respect to h and n (Lemma 5.3). In order
to show this convergence, we use a majorazing series method together with a version of the
classical Cauchy-Kowalevski theorem (Proposition 2.22) in some spaces of analytic functions
near the origin in C> with dependence on initial conditions and coefficients applied to the
auxiliary problem (5.66), (5.68). Using a continuity property of the Laplace transform (3.5),
we show that each function Xjo(t, z, €) can be actually expressed as the Laplace transform of
Vi (7, 2, €) in the direction arg(A) and finally that Zj itself is the Laplace transform of some
staircase distribution V(r, z, €) solving (5.80), (5.81).

On the other hand, in Lemma 5.7, under suitable conditions on ¢ ;(t,€),0<j < S -1,
we can also write X 1(t,z,€) as a generalized Laplace transform in the direction arg(l) of
the staircase distribution mentioned above V(r, z,€) solving (5.80), (5.81). Therefore, the
equality Xo:(t,z,€) = Zy(t,z,€) holds on T x D(0,6) x (&9 N &€1). The method of proof
consists again in showing that X1 (¢, z, €) can be written as Laplace transform in a sequence
of directions ¢, tending to arg(\) of a sequence of staircase distributions V,(r, z, €) (which
are actually convergent series in z with coefficients that are C* functions in r on R, with
exponential growth). Moreover, each distribution V,(r, z,€) solves an integro-differential
Cauchy problem (5.98), (5.99), whose coefficients tend to the coefficients of the integro-
differential equation (5.80). Under the assumption that the initial data (5.99) converge to
the initial data (5.81), we show that the sequence V,(r,z,€) converges to the solution of
(5.80), (5.81) (i.e., V(r,z,¢€)) in the Banach space ®'(0,¢,6), as n — +oo, see Lemma 5.6.
This convergence result is obtained again by using a majorazing series technique which
reduces the problem to the study of some linear differential equation (5.106), (5.109), whose
coefficients and initial data tend to zero as n — +oo. Finally, by continuity of the Laplace
transform, Xo1 (¢, z, €) can be written as the Laplace transform of V(r, z, €) in direction arg(\).

After Theorem 5.8, we give an application to the construction of solutions to some
specific singular linear partial differential equations in C® having logarithmic singularities at
the points (Ak/t,t,z), for k € N\ {0}. We show that under the hypothesis that the coefficients
bs ko, are polynomials in e, the Borel transform B(X)(s) turns out to solve the linear partial
differential equation (5.149). We would like to mention that there exists a huge literature
on the study of complex singularities and analytic continuation of solutions to linear partial
differential equations starting from the fundamental contributions of Leray in [15]. Several
authors have considered Cauchy problems a(x, D)u(x) = 0, where a(x, D) is a differential
operator of some order m > 1, for initial data 0" ux,-0 = wy, 0 < h < m. Under specific
hypotheses on the symbol a(x, ¢), precise descriptions of the solutions of these problems are
given near the singular locus of the initial data wy,. For meromorphic initial data, we may
refer to [16-18] and for more general ramified multivalued initial data, we may cite [19-23].

The layout of this work is as follows.

In Section 2, we introduce Banach spaces of formal series whose coefficients belong
to spaces of staircase distributions and we study continuity properties for the actions of
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multiplication by C* functions and integro-differential operators on these spaces. In this
section, we also exhibit a Cauchy Kowalevski theorem for linear partial differential problems
in some space of analytic functions near the origin in C* with dependence of their solutions
on the coefficients and initial data which will be useful to show the connection formula (5.28)
stated in Section 5.

In Section 3, we recall the definition of a Laplace transform of a staircase distribution
as introduced in [8] and we give useful commutation formulas with respect to multiplication
by polynomials, exponential functions, and derivation.

In Section 4, we construct formal and analytic transseries solutions to the singularly
perturbed partial differential equation with irregular singularity (1.1).

In Section 5, we establish the crucial connection formula relying on the analytic
transseries solution Zy(t,z,€) and the solution Xg;(t,z,€) of (1.1). Finally, we state the
main result of the paper which asserts that the Borel transform B(X)(s) in the perturbation
parameter ¢ of the formal solution X(t, z, €) of (1.1) can be analytically continued along any
path in the punctured sector Sy, «, \ Uns>1 {Ah/t} and has logarithmic growth as s tends to Ak /t
in a sector for all h > 1.

2. Banach Spaces of Formal Series with Coefficients in Spaces of
Staircase Distributions: A Cauchy Problem in
Spaces of Analytic Functions

2.1. Weighted Banach Spaces of Distributions

We define D(R,) to be the space of complex valued C*®-functions with compact support in
R., where R, is the set of the positive real numbers x > 0. We also denote by ®'(R.) the space
of distributions on R,. For f € @'(R,), we write f () the k-derivative of f in the sense of
distribution, for k > 0, with the convention f© = f.

Definition 2.1. A distribution f € ©'(R,) is called staircase if f can be written in the form
f= S @™ 21
K , (2.1)
k=0

for unique integrable functions Ax(f) € L'(R,) such that the support supp(Ax(f)) of Ax(f)
isin [k, k + 1] for all k > 0.

Remark 2.2. Given a compact set K € R,, a general distribution A € ®'(R.) can always be
written as a k-derivative of a continuous function on R, restricted to the test functions with
support in K, where k depends on K, see [24].

Definition 2.3. Let o > 0 be a real number, b > 1 an integer and let r,(f) = Zi:o 1/(n+ 1)b for

all integers f > 0. Let & be an open sector centered at 0 and let e € £&. We denote by Lg . the
vector space of all locally integrable functions f € L{_(R,) such that

17Oy e = [ 1@ exp (=G (@)r)dr 2
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is finite. We denote by 9 _ . the vector space of staircase distributions f = 3%, (Ax(f )®
such that

+00 k
1o = 2 (G ®) 186D 23
k=0

is finite.

Remark 2.4. Let ¢, 0, such that |e| < orp(B). If f € %,,3,0'16/ then f € %’ﬂ,@e forall p/ > p and
we have that h — ||f||n,0,.,.4 is a decreasing sequence on [f, +o0). Likewise, if f € %}wle, then
fe %fﬁ,a,e for all o > ¢ and we have that 0 — || f||s,0.,4 is a decreasing sequence on [, +c0).

Let # be the Heaviside one-step function defined by #(r) = 1, if r > 0 and H(r) =0,
if r < 0. Let 0 the operator defined on distributions T € @' (R,) by PT =  * T. For a subset
A C R, we denote by 14 the function which is equal to 1 on A and 0 elsewhere.

The proofs of the following Lemmas 2.5 and 2.6, Propositions 2.7, 2.8, 2.9, and
Corollary 2.10 are given in the appendix of [25], see also [8].

Lemma 2.5. Let k > 0 and f = F¥) € ®'(R,), where F € L'(R,) and supp(F) C [k, +0). Then f
is a staircase distribution and the decomposition of f has the following terms Ag = Ay = -+ = Ay =
0, Ak = Fljgpe1) and for n > 1, Mg = Gpliksn kane1] where Gy = P(Gpo1likin+00)) and Go = F.

Lemma 2.6. Let f be as in Lemma 2.5 and €, 0, f such that |e| < ory(p). Then, one has

o -n
8loe < (Gro®) 1Pl (2.4
ifn=0,1,2and forn >3,
1
Aganlls . . < @@/ ey (2.5)
+n ﬁ,o-,e = (Tl _ 1)| ﬂ,o,e'

Proposition 2.7. Let f € Lgo o and €,0,f such that |e| < ory()/2. Then f belongs to Dy
and the decomposition (2.1) of f has the following terms A, = Gyl 1) With Gp = P(Gp11in400))
and Go = f, for n > 0. Moreover, there exists a universal constant Cy > 0 such that ||f||pcea <
Cillfllp.o/2e-

Proposition 2.8. The set D(R,) of C*-functions with compact support in R, is dense in gﬂ,c,e for
allp>0,0>0and e € &.

Proposition 2.9. Let €,0,f such that |e| < ory(p). Forall f, f € ), , we have f  f € D), .

p,oe’
Moreover, there exists a universal constant Cy > 0 such that

IF 7], <CollfllymenllF

poed = (2.6)

p,oe,d

forall f,f €D .



8 Abstract and Applied Analysis

In this paper, for all integers k > 1, we will denote 8;* f (r) the convolution £** * f for
all f € 9 . where H*k stands for the convolution product of J# with itself k — 1 times for

k > 2 and with the convention that #*! = . From Propositions 2.7 and 2.9, we deduce the
following.

Corollary 2.10. Let €,0, B be such that |e| < ory(p) and let k > 1 be an integer. For all f € D
one has 9, f (r) € 9}5,0,@ Moreover, there exists a universal constant C3 > 0 such that

k
lel
| ﬂo‘ed <O‘7‘b (ﬁ) > ”f(r) ”ﬂ,a,e,d (2.7)

p.oe’

FFo)]

forall f €Dy

In the next proposition, we study norm estimates for the multiplication by bounded
analytic functions.

Proposition 2.11. Let o and 3 > 0 such that

30
e (B)e/lehn®) <1, |e| < omy,(B), (2.8)

and let h be a C*-function on R such that there exist constants Cy, > 0, > 0 and p > |e|/(orp(P))
such that

q!
|h(q)(1”)| < ChW (29)

forall r € R,. Then, forall f € %ﬁge, we have h(r)f(r) € %’ﬁ/ole. Moreover, there exists a constant
C4 > 0 (depending on y, p) such that

18Ol 0ea < CCull £ o (2.10)

forall f € D

,0,€"

Proof. The proof can be found in [14] and is inspired from [25, Lemma 2.9.1], but for the sake
of completeness, we sketch it below. Without loss of generality, we can assume that f has the
following form f(t) = A,(ck)(t), where Ay € LY(R,) with supp(Ax) € [k, k + 1], for k > 1. Put
8k,j(t) = h%=1 (t) Ak(t). Then, supp(gk,j(t)) C [k, k +1].

From the Leibniz formula, we get the identity

k
h(t)AX (1) = Z‘ K ———g)). 2.11)
]:0] )

On the other hand, one can rewrite g(] )(t) (Pl gk,]-)(k) , where supp(l][k‘j] 8kj) € [k, +o0)
and Pl denotes the gth iteration of p.
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Due to Lemma 2.5, g(’) can be written g(l) lﬁ’(ﬁl,j)a), with 51,]- = Gl Gy =

P(Gi-1,j1[1,400)) and Ggj = p[k 7l Q-
Therefore, we get the following identity

+oo

k-1
(k) (k) A AD
h(t)A; (1) = (h(t) Ak (1)) +Z ,(k ])| Ay ZOJ(k ])'1%1 L (2.12)

First of all, we have

k +o0
foosiom,,,- () [ mosoremona

lel

. (2.13)
Cn [ or(P)
S - Ak(t) ’
pl/l < |€| ” ||ﬁ,0',€
where Cj, > 0is given in (2.9). From Lemma 2.6, we have the estimates
el "
~ € .
. P b [k-7] .
|8 poe” <O'Tb ) > o7 ”ﬂ@e'
(2.14)
~ - k)k
1 < eC-tRne/en® ¢ [k-j
||Al’]| poe e ( — k- 1)' ”p gk]| ﬂ,a,e’

forn=0,1,2and all I > k + 3. Now, we give estimates for [|ple-il 8kjllpoe-
Using the Taylor formula with integral remainder and the hypothesis (2.9), we get

. k=)t (t-s)ki!
p[k_]]gkff(t)| =G (k<— j 1)1)! -[k (P((s + ;)))Hk_j) Aol =

Hence, from the Fubini theorem and the identity

+00 (k=)
_(o'rb(ﬁ)/|€|)t(t _ )k—j—ldt — o—(ors(B)/lel)s k— 7)1 |€| (216)
e s e ! ,
] =D Gy

we deduce

+oo
J‘ e~ (re(P)/leDt |p[k_j]gk,j (t) |dt
k

(k1) roo
sch(k—j)(k_j)g<i> J' o-(on()/lehs ___1Bk(S)|
k

ory(p) (p(s+p)) "7

(2.17)
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and hence

Cu(k =) (k- j)! el
< Snlk=i)( ]).< €l > 10k poe: (28)

k=ilg, .(t
”/3 8k, (t) poe = (p(k+p)) 7 \om(p)

From (2.14) and (2.18), we obtain

k-1 k
2k ),ll o], chAk<"’|"€(|ﬁ)> 18kl s (2.19)
j=0

forn=0,1,2,all kK > 1, where

SEN(C) < e >("” 220
TRk I\on® ) (220

Now, we need to estimate Ax. Due to the Stirling formula, k! ~ kke* (Zark)l/ % as k tends to
infinity, there exists a universal constant C4; > 0 such that

OB L g+ BNk (on () o)’
(k+p)* p(k+p) i i1((ar(B) /1) p)*

(2.21)

for all k > 1. Using the hypothesis or,(B)p/|e| > 1, we have

2( )(k+#)]((0”b(ﬁ)/|€|)f’)] "i< )(kw)’ k(k+/4)__#"z‘f(k+#)"

J! ((O'rb(ﬁ)/|€|).0) j=0 (k- 1)! =0 /!
(2.22)

Using again the Stirling formula, we get a constant C;, > 0 (depending on ) such that

(k+p) - 1/2 k
kw < C4,‘uk e (223)

for all k > 1. Moreover,

S s

Z <p) = pekr, (2.24)

:O ' ]0 ]'

Hence,

(2.25)

S K0 (@nBIDD) et oy
]=o( it ((ory(B) /1elp)" < (Cunk )
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for all k > 1. Finally, we obtain a constant C4,, > 0 depending only on p, u such that

Ak < C4,‘u,p (226)

for all k > 1. From (2.14) and (2.18), we have

S x Gfb(ﬂ))k
- ChAkAk< 1Ak (S)lg s (2.27)
]Z]'(k ])'1;3“ lel g
where
+oo I-k (k-
A=Y <_"rb(ﬁ)> pe-tiyon@/e L= Z<M> tyianp)/ie) 1"
s\ el (I-k=-D1! =\ el (h- 1)
(2.28)

Now, we show that Ak, k > 1, is a bounded sequence. Again, by the Stirling formula,
we get a universal constant Cy, > 0 such that

AkSC4,2eXP<2%Tb(ﬁ))Z.O(| |r”(ﬂ)) exp< ( _%rb(ﬂ)>><h}—ll>h_l(2ﬂ-(hi1))1/2

< Cyp2 exp<2%rb(ﬁ))§<M Xp(l - %rﬂﬁ)))h‘

3

(2.29)

From the assumption (2.8) and the estimates that for all m;,m, > 0 two real numbers, we
have

supx™ exp(-mpx) = (%) e™, (2.30)
2

x>0

we get a constant 0 < 6 < 1 such that

~ 3 6
Aescar® <3(o/|ez|)rb(ﬂ)> (——rb(ﬁ)> < % (2.31)

forall k > 1.

Finally, from the equality (2.12) and estimates (2.13), (2.19), (2.26), (2.27) and (2.31),
we get a constant Cy,,1 > 0 depending only on y,p such that ||h(t)A](<k)(t)||ﬁ,U,€,d <
ChC4,#,p,1||A,(ck) (D)llp,o,e,a for all k > 1. It remains to consider the case k = 0.
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When k = 0, let f(t) = A¢(t) € L'(R,), with supp(Ao) € [0,1]. By definition, we can
write

IR(£) Ao(B)lloea = R(E) Ao(B)lge

C C
f Ih(t)IIAo(t)IeXp< ors(F) >dt < p_ZHAO(t)”ﬂ,o,e = P—;IIAo(t)IIﬁ,a,e,d-
(2.32)

O

In the next proposition, we study norm estimates for the multiplication by
polynomials.

Proposition 2.12. Let o and 3 > 0 such that

§| o (B)e! /1P <1 el <o (2.33)

and let s1,ky > 1 be integers. Then, for all f € %p Koo’
exists a constant Cs > 0 (depending on s1,0) such that

S /
one has r f(r) € 9 . Moreover, there

17 ) g g < Colel” (B+ D)™ | F ) | posr et (2.34)

forallfe%ﬁ kpo,c"

Proof. The proof is an adaptation of Proposition 2.11. Without loss of generality, we can
assume that f has the following form f(t) = A](Ck)(t) where A € LY(R,) with supp(Ax) €
[k, k + 1], for k > 1. We also put h(t) = t'. Let g ;(t) = h%=D(t) Ak (t). Then, supp(gx,j(t)) C
[k, k +1]. From the Leibniz formula, we get the identity

k
h(t)A® (1) = Z' K ——g) (). (2.35)
]:O] )

On the other hand, one can rewrite g(])(t) (plk- 7]gk,j)(k), where supp(lﬂ[k‘f]gk,j) € [k,+o0)
and pll denotes the gth iteration of p.

Due to Lemma 2.5, g( can be written g(l) Z (Al])( with Al] = Gijlyy, Gijj =
P(Gi-1,j1[1,400)) and Ggj = D[k il 8k j- Therefore, we get the following identity as:

() )& k! < 0
h(t) A7 (8) = (h(t) Ak (t)) +Z FICEnY k] %](k ])'ZZ A (2.36)

k+1
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(1) We first give estimates for ||(h(t)Ak(t))(k)|| poed- We write

ke
“(h(t)Ak(t))(k)“ﬁ’aerd: <Grb(ﬁ)> IO 7-91|Ak(7-)|exp(—%r;,(ﬂ)’r)dr

lel

i <M(fel_ k2)>k<rb<r;(—ﬁ L))

x J‘::H 75 exp (—% (r(B) — 1o (B - kz))T>

x |Ax(T)] exp<—%rb B- k2)7'> dr

_ ko k1 o
SA(e,ﬂ)<M> fk |Ak(T)|9XP<—Erb(ﬂ—k2)7>d7'

le]
(2.37)
where
k
A(e.p) =sup <<rb (r;(f’lz) > (k +1)" exp<—% (ro(B) - o (f k2))k>> @39
Now, we gives estimates for A(e, 3). We write
B\ e o
<m> (k+1) exp(—l?l(rb(ﬁ) -1 (B k2)k)
= (k+1)" exp(—k%(w(n, ) - 9 (8- K2)))) (2:39)

<29k exp <_k|%|((p(rb(ﬂ)) —-g(re(B- k2)))>/

where ¢(x) = x - (|e|/0) log(x) for all k > 1. From the Taylor formula applied to ¢ on [r,(f -
kz)/ rb(ﬂ)]/ we get that

_ _ _lel _ le| k2
ro) - pn(B-)) > (1= L) -np-k)> (1-T) Es o)
for all § > k,. Now, we recall that for all m;, my > 0 two real numbers, we have

sup x™ exp(—mpx) = (%) e, (2.41)
2

x>0
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From (2.39), (2.40) and (2.41), we deduce that
-1

51 s1€ B 51 bsy
Ae,p) <2 <—(1 — |e|/o)k20> le| (B+1) (2.42)

for all 8 > k,. From (2.37) and (2.42), we deduce that
|aawmn®| <o (e NP G N Ol 2
Boed (1 - |€|/O') ko Pkaoed
(2) We give estimates for ||Zl,,-||/;,ale forall0 < j<k-1andalll> k. From Lemma 2.6,

we have the estimates
EIRY
€ .
< k-ilo, .
ﬁ,o',e - <O'rb (ﬁ) ) ||p gkr]

T k))(ﬂlsl)m(ﬂ)%”lg[k j gk]”

||Ak+n,j

ﬂ,o,e’
(2.44)

2]

forn =0,1,2and all I > k + 3. Now, we give estimates for || k=71 8kjllpoe. Using the Taylor
formula with integral remainder, we have that

P 0)] < G, -9 @ fas (2.45)
and from the classical identity
" _o oykil gy (k=j)!
[ exp(-Zrn)a-sat=exp (- Zn(p)s )((O RS

we get from the Fubini theorem that

= f;w|/9[k‘”gk,j(t)| eXP<—%Tb(ﬁ)f>dt
< f+°°< ((Ii%)k;;e p<—%rb(ﬁ)t>dt>|h<k-f>(s)Ak(s)|ds

1 N o -j
i <m> (-3) .[k eXp<_E”’(ﬁ)5>|h(k ?(©)8k(9)|ds.

(2.47)
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Again, we write
o) o .
f exp <_Hrb (ﬂ)s) |h(k (s)Ak(s) |ds
k

_ f 169 s)| exp<—% (ro () - ro(B - kz))s> 1Ak(s)] exp<—%rb (p- kz)s>d5

(2.48)

From the expression of h, we have that

s1!s%1 sqls%t
SALGTRN Jut Ll
Sk—] kk—]

| (k=) (S)| <

(2.49)

foralls > k,if1 <k-j <sp,and h%=(s) = 0,if k —j > s1. Using (2.49) in the right-hand side
of the equality (2.48), we deduce from (2.47) that

— (k B ]) le] I s 51 o

||p[k ]]gk’j(t)”g,o,e < 51! Ik <O'Tb(ﬂ)> x J‘k s eXP<—H(7’b(ﬂ) - T’b(ﬂ— kZ))s>
x |Ak(s)| exp <_|Z_|rb('6 - kz)s> ds

(2.50)

if 1 <k-j<sp,and ||[p%T g i(t)llpoe = 0if k- j > s1.
(3) We give estimates for Z;‘;& k!||AI((’i;"])||ﬁged/(]l(k - ), for n = 0,1,2. From the
estimates (2.44) and (2.50), we get that

k-1 k-1 k—j
R (k) k! (k=7) (el

Z | k |“ k;/f dS Z i(k — i lsl! kk-i

=07 ]) poed = o5 ks 31 (k= j)! ory ()

x (m(m >k J’:l s exp<_%(n,(p) - (- kz))s>

lel

x |Ak(s)| exp (—%n,(ﬂ - kz)s) ds
(2.51)

From (2.37) and (2.42), we deduce from (2.51) that

k-1 1 S1
A (k+") 51 s1e 51 bsy
(k- ])'” fng ﬁ,a,e,dSAkz <(1—|€|/O')k20'> el B+ D)™ I Ollpse 06

j=0 ]'
(2.52)
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where
k-1 k=j
kisy! ( le| >
Ay = - , . (2.53)
j:k%,jzo]!(k —j = 1)Kk \ o (B)

forall k > 1,and n = 0,1,2. Now, we show that Ak, k > 1, is a bounded sequence. We have
A k' s1-1 ck=s1+m 554

< .
g Sl Z(k—51 +m)!(sy —m—1)! 54)

for all k > s;. From the Stirling formula which asserts that k! ~ k¥e % (2]1']()1/ Zask — +oo,
we get a universal constant C; > 0 and a constant C, > 0 (depending on s;, m) such that

k! _
& SCie krk)'/?,

kk—s1+m k!ek ek (2.55)
P S Ci 1/2 <G 1/2
(k —s1+m)! (k — 51 + m)!(27k) Y/ ?ksi-m (k)Y
for all k > 1. From (2.54), (2.55), we get a constant C3 > 0 (depending on s7) such that
A <C; (2.56)

forall k > 1.
(4) We give estimates for Z (k' /ilk = D)) 3%, ||Al(f}||ﬂ,0,e,d. From the estimates
(2.44) and (2.50), we get that

S S 5 et ()
57! (k- J)' poed ;>0,j2k—slj!(k_j_1)!kk_j ory(P)

(7 > [7s ep(-Z ) ~n(p-)s)

lel

<185 exp (= (= s ) ds

< S (Zn®) ew(e-a-)Znm) I

I=k+3
(2.57)

Again from (2.37) and (2.42), we deduce from (2.57) that

k-1 -1 S1
S1 Sle S1 bs;
]Z]u(k ])vl;SH poed = K2 <(1—|€|/O')k20'> e B+ DTN Ollproear
(258)
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where By = AkANk and

-3 <%m(ﬁ)>1_ exp(((2- 1= 1) 2, (ﬁ))%

1=k+3
(2.59)

hhl

=§(| |7‘b([3)> exp<(2 h) rb(ﬂ)) h—1)!

for all k > 1. Now, we remind from (2.31) that Ay is a bounded sequence.
Finally, from (2.31), (2.36), (2.43), (2.52), (2.56), and (2.58), we deduce a constant C5 >
0 (depending on s;, o) such that

[roaPw], ., <Csler @+1)™

Al (2.60)

p-ka,oe,d

which gives the result. It remains to consider the case k = 0.
When k = 0, let f(t) = A¢(t) € L'(R,), with supp(Ap) € [0,1]. By definition, we can
write

[R(#)AoD)lipoea = I-E) Ao()lpoe

- ({7 e (-2 0a(8) ~ra(p k)7 ot exp (- (B ko) e

0

(2.61)
Using (2.41), we deduce from (2.61) that
Sle S1 b51
() Ao ()06 < | " (+1) IAo(T)I exp ——Tb(ﬂ k)7 )d
(2.62)
1\ %1
Sle S1 bSl
=<ob>|aw+n 1Ol e
Hence there exists a constant Cs5; > 0 (depending on s1, 0) such that
S1 bsy
RO FONl55ea < Csalel™ B+ D) F Ol sty 00 (2.63)
which yields the result. O
Proposition 2.13. Let 0 > G > 0 be real numbers such that
3o Tr(p)e D <1, el <G (2.64)

2]el
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!

Let s1 > 0 be a nonnegative integer. Then, for all f € 915 5 o
exists a constant Ce > 0 (depending on s1, o, 6) such that

S1 !
one hasr' f(r) € D .c- Moreover, there

7 F ) | p e < Colel™ [1f (Dl 5.4 (2.65)

forall f €D .

Proof. The line of reasoning will follow the proof of Proposition 2.12. We start from the
identity (2.36).
(1) We first give estimates for ||(h(t)Ak(t))(k)|| poed We write

ke
||(h(t)Ak(t))(k)||ﬂ,g,€,d= <O'Tb(ﬂ)> J.O 7-51|Ak(7')|exp(—%rﬂﬁ)?‘)&h‘

lel

(BE) () [ o)
< |Ak(T)] exp(—%rbm)T)dT

< A(e,ﬁ) <6rb #) >k j:+1|Ak(T)| exp (—%rb (ﬂ)T)dT,

lel

(2.66)

where

A(e,p) = sup<<%>k(k +1)% exp <— (0|;|6) rb(ﬁ)k>>. (2.67)

k>1

Now, we give estimates for A(e, p). We write

k o~
(%) (k+1)" exp<— (0|€|0) 7 (ﬂ)k) = (k+1)" exp <—k”’l(Tf)(<p(o) — ¢(5)) >
(2.68)

< 29k exp <—k%(‘l’(0) - (p(&))>,

where ¢(x) = x — (le|/rp(B)) log(x), for all k > 1. From the Taylor formula applied to ¢ on
[6, 0], we get that

0(@) 9@ 2 (1)@ - (2.69)
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From (2.68), (2.69), and (2.41), we deduce that

~ -1 o
A(e,ﬁ)5251<(1_ °1¢ ~)> €. (2.70)

le|/o)(c—C

From (2.66) and (2.70), we get that

®) s sie”! T
|eroacen®| - <2 <(1_|€|/6)(0_6)> el £ )] 50 (2.71)

(2) We give estimates for ||51,]-||ﬂ,0,6, forall0 < j < k-1,alll > k. We start from the
formula (2.44) and (2.47). We write

f:o exp <_%Tb (ﬂ)s) |h(k_j)(5)Ak(S) |ds

f |h(k 1 (s) 'exp(

(2.72)

Dr(@)s ) Ialexp (- S (P)s )ds
We get that

[P 50,

)

if1<k-j<sy, and o [k=4] gk](t)Hﬂae =0ifk-j > s1.
(3) We give estimates for Z k'||A](<’:l"])||ﬂoed/(]'(k - ), for n = 0,1,2. From the
estimates (2.44) and (2.73), we get that

j k+1 (
f %! exp(
k

|_|6) () s) |Ak(s)| exp (—%rh (ﬂ)s) ds

(2.73)

k
DO |- ] P e L J>< B > ’
ETAC 7)' rillpoed = oSk =) KT\ o (B)

. <O'r|b€(|ﬂ)>k J-k+1 o (_(o'|;|5') o p)s) (2.74)

k
x |Ak(s)] exp<—%rb(ﬂ)s>ds
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From (2.66) and (2.70), we deduce from (2.74) that

k-1 -1 S1
F (k) < Aot s1e 5 )
]=0]'(k ])| || k+n,j f,0,e,d = Ak2 <(1 — |€|/6') (O' — 5_)> |€| ”f(t)”ﬂ,a,e,d’ (275)

where Ay is the bounded sequence given in the proof of Proposition 2.12.
We give estimates for Z kil (k=) 35, ||A ||p(,€d From the estimates (2.44)
and (2.73), we get that

el k1 k! s /ol \Y
]Zl]v(k ])vZ” |ﬂaed ]>0,;Zz;<—s1j!(k_j_1)!W<On’(ﬂ)>

k+1 . (0'—6')

J, srew(-Cgn)

. <"f|b€(|ﬂ) >k

x |Ax(s)] exp<—%rh (ﬂ)s>ds

+00 -k (l _ )1 k-1
x ,:%3< |€|rb(ﬂ)> exp<(2 - (- k)) rb(ﬁ)> A
(2.76)

From (2.66) and (2.70), we deduce from (2.76), that

< R0 sie”! R
]Z]v(k ]>.Z|| e < B <(1—|€|/6)(o—6)> e N Ollpzear  @77)

I=k+3

where By is the bounded sequence given in the proof of Proposition 2.12.
Finally, from (2.31), (2.36), (2.56), (2.71), (2.75), and (2.77), we deduce a constant C¢ >
0 (depending on s;, o, G) such that

(k)
Ak

||h(t)A‘k"> (t) ||ﬂm < Cylel ) (2.78)

B,Ged

which gives the result. It remains to consider the case k = 0.
When k = 0, let f(t) = A¢(t) € L'(R,), with supp(Ao) € [0,1]. By definition, we can
write

Ih(®) Ao ()0,

1 e ~
= 1) Ao (8 = fo  exp - | I") n(P)7 ) I0(r) exp(—%m (B )ar

(2.79)
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Using (2.41), we deduce from (2.79) that

o

sie\” o o
||h(f)A0(f)||p,a,e,dS< _5> le] f0|Ao(T)|eXP<—ETb(ﬁ)T)dT

N (2.80)
si1e”
- (25) PN Ol
Hence, there exists a constant C¢1 > 0 (depending on s, 0, 6) such that
||h(t)f(t)”ﬂ,0',e,d < C6'1|€|51 ”f(t) ||ﬂ,6,s,d’ (281)
which yields the result. O

2.2, Banach Spaces of Formal Power Series with Coefficients in
Spaces of Distributions

Definition 2.14. Let 6 > 0 be a real number. We denote by ®'(o, €, 6) the vector space of formal
series v(r, z) = szo vp (r)zP / B! such that vp(r) € %}me forall p>0and

5P
||'U(T, Z) ”(o,e,d,nS) = Z || ’Uﬂ (T) ||ﬂ,o‘,e,d E (282)
$20 :

is finite. One can check that the normed space (2'(0,¢€,6), || - |l(0,e,4,5)) is @ Banach space.

In the next proposition, we study some parameter depending linear operators acting
on the space 9'(o, ¢, 6).

Proposition 2.15. Let s1, s, k1, ky > 0 be positive integers. Assume that the condition

kz > b51 (283)
holds. Then, if
le| < o, wel—f’/ lel <1, (2.84)

the operator 751077 8.% is a bounded linear operator from the space (D' (0, €,6), ||||(ve,d,5)) into itself.
Moreover, there exists a constant C7 > 0 (depending on b, s1, ka, o) such that

oo )| <1l G o0 D) e (2.85)

forallv e D'(o,¢€,0).
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Proof. Letv(r,z) € (0, ¢, 6). By definition, we have

r19- k9 ke (r, z)” eis =y r51a;klvﬂ,k2(r)|| o (2.86)

foks poed ﬂ'

From Corollary 2.10 and Proposition 2.12, we get a constant C35 > 0 (depending on s1,0)
such that

r51a;kla;kzv(r’z)||(oed < C35Z|€|51+k1 (ﬁ 1)b51 (ﬂ )

>k2

(2.87)
folials
x ”vﬂ—kz(r)”ﬂ—kz,o',ed 6" (ﬁ ko)l

From the assumptions (2.83), we get a constant Cp s, k, > 0 (depending on b, sy, k) such that

bs1 (ﬁ ) < Chs i (2.88)

(B+1)
for all B > k,. Finally, from the estimates (2.87) and (2.88), we get the inequality (2.85). O

In the next proposition, we study linear operators of multiplication by bounded
holomorphic and C* functions.

Proposition 2.16. For all f > 0, let hg(7) be a C* function with respect to r on R, such that there
exist A, B, p, u > 0 with

19| < app— P4 (2.89)
A

forall r € R,. One consider the series

hr ) = S 2 o
p0

(2.90)
which is convergent for all |z| < B, all v € R,. Let 0 < 6 < B. Then, if

le] <o, el <po, w&f"/le‘ <1, (2.91)
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the linear operator of multiplication by h(r, z) is continuous from (9'(o,€,6),|| - |l(0,.e,5)) into itself.
Moreover, there exists a constant Cg (depending on y, p, B) such that

|h(r, 2)o(r, 2)|l (66,45 < CsAllV(T, 2) || (6,6,4,6) (2.92)

forall v(r,z) € D'(0, €, ) satisfying (2.91).

Proof. Letv(r,z) = szo vp(r)zﬁ /P! € D' (0, ¢€,6). By definition, we have that

pt o\ o
h(t, 2 (6 eds) < hg, 2 — )= 2.93
h(7,2)o(r, 2) || (6,605 < ﬂ;<ﬂﬁ%_ﬁll s (r)vp (r)llﬂ,(,,e,d ﬂ1!ﬂ2!> b (2.93)

From Proposition 2.11 and Remark 2.4, we deduce that there exists C4; > 0 (depending on
U, p) such that

|| hﬁl (T)Uﬂz (T) ||ﬂ,o,e,d < C4AB_ﬂl ﬂl ! ”Uﬁz (1") ||ﬂ,o‘,s,d < C4AB_ﬂ1ﬂ1 ! || Up, (7") ||[52,o,e,d (294)

for all 1, f» > 0 such that p; + » = p. From (2.93) and (2.94), we deduce that

5\°
I(r, 2007, 2l 1) < Coh <Z (3) > [0 Dl o0 (295)

$>0

which yields (2.92). O

2.3. Cauchy Problems in Analytic Functions Spaces with
Dependence on Initial Data

In this section, we recall the well-know-Cauchy Kowalevski theorem in some spaces of
analytic functions for which the dependence on the coefficients and initial data can be
obtained.

The following Banach spaces were used in [26].

Definition 2.17. Let T, X be real numbers such that T, X > 0. We define a vector space G(T, X)
of holomorphic functions on a neighborhood of the origin in C2. A formal series U(t, x) €
CIIt, x11,

thxP
Ue,x)=> Uiy ] (2.96)
1,520
belongs to G(T, X) if the series
u,
Z M'ﬂxﬁ (2_97)

1,620 (I1+p)!
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converges. We also define a norm on G(T, X) as

|”lﬂ| ]
Ut rx) = D, 7 T'XP. 298
0 1,620 (1+p)! (2:98)

One can easily show that (G(T, X), || - ||(rx)) is a Banach space.

Remark 2.18. Let U(t, x) be in G(Ty, Xp) for given Ty, Xy > 0. Then, U(t, x) also belongs to
the spaces G(T, X) for all T < Ty and X < Xj. Moreover, the maps T — ||[U(t, x)||r,x) and
X — |JU(t,x)||(r.x) are increasing functions from [0, Ty] (resp., [0, Xo]) into R..

We depart from some preliminary lemma from [26]. In the following, for u(t,x) €
C[[t, x]], we denote by d;'u(t, x) the formal series fg u(t, 7)dr.

Lemma 2.19. Let hy, hy € N such that hy < hy. The operator ai")a;’“ is a bounded linear operator

from (G(T, X), || - |lr.x)) into itself. Moreover, there exists a universal constant C1g > 0 such that the
estimates

oot ., < CoT X" U Dl (299)

hold for all U (t, x) € G(T, X).

Lemma 2.20. Let A(t,x) = 340 aypt'xP /1B be an analytic function on an open polydisc
containing D(0,T) x D(0, X) and let U (t, x) be in G(T, X). Then, the product A(t, x)U(t, x) belongs
to G(T, X). Moreover,

[ACE, UL, X) || 7x) < [AIT, X)IUE )] 7, (2.100)

where |A|(T, X) = 3 oo larg| T'XP/11pL.

Proof. Let
t xP
U(t,x) = Zuwﬁﬁ. (2.101)
Lp>0 P
We have
t xP
A(t, x)U(t, x) = Zvl,p—'ﬁ/ (2.102)
1,0 L
where
_ an.p, Ub,p,
=3 3 (i) (2103)

Li+h=1 pi+po=p
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for all [, § > 0. By definition, we have

ap, up,,
AT, X) Uzt Oy = S < DY %)TW’

1,620 \ li+h=1 p1+p2=p
(2.104)
npry Tixe
A, x)U(t, %)l 1) = 1,/5220 11§:1 o azfgl,llzjzﬁzf; (lTj;)'
On the other side, the next inequalities are well known:
mpt . (pr _ (1+p)! (2.105)

LWBIL!G! ~ (L + ) (L +B2)! ~ LIl (L+ Bo)!

for all lj, I, > O such that [y + I, =l and 4, > > 0 such that ; + 5, = p.
Finally, from (2.105), we deduce that [|A(t, x)U(t, x)||rx) converges and that the
estimates (2.100) hold. O

Lemma 2.21. Let hy, hy; € Nand let U(t,x) be in G(Ty, Xo) for given Ty, X > 0. Then, there exist
T,X > 0 small enough (depending on Ty, Xo) such that the formal series af“ O U(t, x) belongs to
G(T, X). Moreover, there exists a constant Cq1 > 0 (depending on hy, hy) such that

|@ a0, < CuT XUl 0 (2.106)

forall U(t, x) € G(Tp, Xo).

Let C; be a finite subset of N*. For all (Ip,11) € Cy, let i1, (t,X) = 3% 50 Clo s 158 xP /11!

be analytic functions on some polydisc containing the closed polydisc D(0, Tp) x D(0, X;) for
some Ty, Xp > 0. As in Lemma 2.20, we define

| 1o ,1,p|flxﬂ
lewul (%) = > —m— (2.107)
120 'p!

which converges on D(0,Ty)xD(0, Xo). We also consider d(t, x) € G(T,4, X4), for some Ty, X4 >
0. The following proposition holds.

Proposition 2.22. Let S > 1 be an integer. One make the following assumptions. For all (Iy,11) € C4,
one has

S>1, S>Ily+1. (2.108)
One consider the following Cauchy problem:

OSU(t,x) = D iy (t,x)0POMU(E, x) +d(t, x) (2.109)
(lo,11)eCy
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for the given initial conditions

(aiu) (t,0) =U;(t), 0<j<S-1, (2.110)

which are analytic functions on some disc containing the closed discD(0,Tp). If u(t) =
Sso Ut /14, we define [Uj|(t) = 350 [Ujlt /1, which converges for all t € D(0, To).

Then, there exist Ty > 0 with 0 < Ty < min(Ty, Ty) (depending on To,T4,C1) and Xy > 0 with
0 < X1 < min(Xo, Xy4) (depending on S, Ty, C1, max,i,ec, |ci,n | (To, Xo)) such that the problem
(2.109), (2.110) has a unique formal solution U (t,x) € G(T1,X1). Moreover, there exist constants
C121,C122,Ci123 > 0 (depending on S, Ty, Xo,C1) such that

Ut )1, x,) < max |Uj|(To)<C12,1 max_|cy, 1,|(To, Xo) + C12,2> + Craalld(t, ) ||, x.)-
0<j<5-1 (o) Cy

<

(2.111)
Proof. We denote by p the linear operator from C[[t, x]] into itself defined by
P(H(t,x)) = 03H(t,x) = D ¢, (t,x)0L 0L H(t, x), (2.112)
(Io1)€Cy
and # denotes the linear map from C[[¢, x]] into itself:
JHx) = D e (t,x)000 S H(t, x) (2.113)

(lIo,1)eCy

for all H(t,x) € C[[t, x]]. By construction, we have that /) 0 0;° = id — </, where id represents
the identity map H — H from C[[t, x]] into itself.

Now, we show that for any given T7 > 0 such that 0 < T; < Ty, there exists X4, > 0
with 0 < X471, < Xo (depending on S, T, C1, max,iec, |ci,,n | (To, Xo)) such that id — & is
an invertible map from G(Ti,X) into itself for all 0 < X < X4 1,. Moreover, the following
inequality

. -1
|dd-enTcn], <2l (2114)

holds for all C(t,x) € G(T1,X), for any 0 < X < X4 71,. Indeed, from the assumption (2.108)
and Lemmas 2.19 and 2.20, we get a universal constant Cy; > 0 such that

(Io,h)€Cy

||J(C(f/x))||(rl,x)5C10,1< > Iczo,hl(Tl,X)T;’()XS"l)||C<t,x>||m,x>

. (2.115)
< Cyo1 max_ |cy, 1, 1(To, Xo) Z T X5 7 JICE ) ,x)
(lo,1)eCy (Io,11)€Cy '

= NT]/XJ,Tl ”C(t, .X') ”(Tl,X)
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for all C(t, x) € G(T1,X). Since S > I, for all (Ip,[1) € Cy, for the given T7 > 0 one can choose
Xy, small enough such that N, x,,, < 1/2. Therefore, the inequality (2.114) holds.
Letw(t,x) = Zf;ol Lll-(t)xf/j!. From the hypothesis (2.110), we deduce that D(w(t, x))
and w(t, x) belong to G(T1, Xy), for some 0 < T; < Tj (depending on Cy, Tp). Indeed, from
Lemmas 2.20 and 2.21 we get constants C111 > 0,0 < Ty < Ty (depending on C4, Ty) such that

(Io,11)€Cy

S-1-1 Xj
D@Dy < |czozl|<T1,Xo><Z lobun o], ],>

(lo,h)eC

<Cnp Y, ey, |(Th, Xo) Ty Z Ut Ol 7, ) = i

L 55k X) (2.116)
<Cug ), |Clo,ll|(T11X0)TllO< Z |Uj, | (To) i >

(lo,1)eCy

<C max |c To, Xo) max |U;|(T,
< 11’1(10,ll)ecl| 1011 (To, 0)05i55—1| ]|( 0)

. S-1-4 Xé
X Z " Z - )
(o) €C: i J*
S-1 S-1 Xé
”(w(tfx))||(T1,Xo) < Z”u ( )”(Tl Xo) Z ]|(T1)7
=0 i=0
: (2.117)
s-1x
< 0?1<asxl|u |(To) Z—'

:0

Now, for this constructed T; > 0 satisfying (2.116) that we choose in such a way that T; < Ty
also holds, we select X; > 0 such that0 < X; < min(X 1, X4). From the estimates (2.116) and
Remark 2.4, we deduce that O(w(t, x)), w(t, x), and d(t, x) belong to G(T3, X1). From (2.114),
we deduce the existence of a unique H (¢, x) € G(T;, X;) such that

(p o a;S)H(t,x) = —P(w(t,x)) +d(t, x). (2.118)

Now, we put U(t,x) = 9;°H(t,x) + w(t,x). By Lemma 2.19, we deduce that U(t,x) €
G(T1,X1) and solves the problem (2.109), (2.110). Moreover, from (2.114) and (2.116), we
get constants Ci2,1, C122, C123 > 0 (depending on S, Ty, Xo, C1) such that (2.111) holds, which
yields the result. O

3. Laplace Transform on the Spaces 9'(o,¢,0)

We first introduce the definition of Laplace transform of a staircase distribution.
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Proposition 3.1. (1) Let p > 0 be an integer, o > 0 a real number, and € € &. Let
+00 K
f(r) = k}_émk(r))( e, (3.1)

and choose 0 € [—ur, 7). Then, there exist pg > 0, p > 0 such that the function

+oo eie k+l reie
‘E@(f)(t)zz<7> jAk(f)(r)exp<—T>dr (3.2)

k=0 0

is holomorphic on the sector Sg 5, 1ep = {t € C*/|0 —arg(t)| < pe, |t| < |e|p} for all € € E. Moreover,
for all compacts K C Sg p, |e|p, there exists Cx > 0 (depending on K and o) such that

[26(F) D] < Ccll fllpoea (3.3)

forallt € K.
(2) Let 6 > Oand let f(r, z) = X550 fp(r)ZP /Bl € D' (0, €, 6). We define the Laplace transform
of f(r,z) in direction 6 € [-ur, r) to be the function

Zﬂ
2o(f(r,2) (0 = 3 2 OF

= p! , (3.4)

which defines a holomorphic function on Sg p,elp x D(0,0), for some pg > 0, p > 0, for all e € &.
Moreover, for all compacts K C Sg p, |e|p, there exists Cx > 0 (depending on K and o) such that

|-2o(f(r,2))(t)| < Ck|| f(r,2) “(U,e,d,ﬁ) (3.5)

forall (t,z) € K x D(0, ).

Proof. We prove part (1). The second part (2) is a direct application of (1). We have

2N 0] < 3 ﬂwlAkU)(r)l exp<—"”’(”) r>

k=0 [t] le]

xexp(—r<w - IZ—|rb(,6)>>dr.

We choose 61 > 0 and pg > 0 such that cos(0 — arg(t)) > 61 for all t € Sg, ||p- Moreover, we
choose 0 < 6, < 61 and p > 0 such that

(3.6)

5, -6, |e|e02/ 1t
[t < el

on(®)  Ion(®) < 67
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for all t € Sg p, jcp- Let k > 0 an integer, for r € [k, k + 1], we get that

cos(f —arg(t)) o k
eXP<‘7<T - Erb(ﬁ)>> < EXP(—

We deduce that for k =0,

29

6>
W) (3.8)

oo or cos(6 — ar o
e Yo )

< %”Ao(f)(")” poe

and fork >1,

- " 0 —ar
[Tl enp (T ) enp (o (L)

0 lel It

1/ |e|e=®/M . K
SH<M> (2n®) 18Ol
|€|e—52/|t| 2
= (Pors(p) (i

k
1(0)) 18K Ol

From the estimates (3.9) and (3.10) we get the inequality (3.3).

- lglrb(ﬂ)>>dr

(3.10)

O

In the next proposition, we show that if f is a function, then the Laplace transform of

f introduced in Proposition 3.1 coincides with the classical one.

Proposition 3.2. Let f(r) € Lgo/2.e. Then, from Proposition 2.7, one knows that f € 9}505' The
Laplace transform Lg(f) (t) coincides with the classical Laplace transform of f in the direction 0 defined

by
i6 ptoo i0
To(f)(t) = eT IO f(r) exp<—%>dr

forallt € 56,p0,l¢lp-

(3.11)

Proof. From Proposition 2.7, the staircase decomposition of f = 3,.,(Ax( N® has the
following form Ay (r) = Gi(r) 1k k+1), With Gk = P(Gr-11[k+00)) and Go(r) = f(r) for all k > 0.

We have to compute the integrals

0\ k+1 .
(619) k+1 rel@
Ak = tk+1 jk Ak(T‘) exp —T dr

(3.12)
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for all k > 0. For k = 0, we have that

0 (1 i6
Ay = eT f(r)exp (— ret >dr. (3.13)
0

For k =1, by one integration by parts, we get that

i0 O\ 0 (2 i0
A = _eT I:Gl(r) exp <—%>] + eT f(r)exp <—%>dr, (3.14)
1 1

and using successive integrations by parts, we get that
k o\ " o 1T e skl i0
Ag = Z -( = Gm(r) EXP(—z) + < f(r)exp € Nar (3.15)
m=1 t t K t )i t

for all k > 1. On the other hand, from the hypothesis that f(r) € Lg /2. and from the fact that
G (r) = 0 for all r < m, we have that the next telescopic sum

+00 eie m reie k+1
> - — ) |G exp(-—-) (3.16)

k

is convergent and equal to zero for all m > 1. Finally, we deduce that 3;., Ax = To(f)(t). O

In the next proposition, we describe the action of multiplication by a polynomial and
derivation on the Laplace transform.

Proposition 3.3. Let f(r) € D | . Then, the following relations

2 (eiea;l f)(t) =tLo(f)(t), Lo <eier f(r))(t) - (t2at + t).ﬁg (f) () (3.17)

hold for all t € Sg p, j|p- Let s, ko > 0 be two integers such that s > 2ko. Then, there exist a finite subset
Osk, C N? such that for all (q,p) € Osx,, q+p = s — ko and integers afy’ € Z, for (q,p) € Osx,
(depending on s, ko) such that

tsai‘%e(f)(t)=£e<e“5"‘°>9 > aZ:ﬁ“rqaZ"f<r>><t) (3.18)

(a:p)€0s

forall t € Sg el

Proof. First of all, we have to check that the relations (3.17) and (3.18) hold when f € ®(R,).
Since D(R,) is dense in (D __,I| - llpoeq), from the inequality (3.3) and with the help of

Boe’

Corollary 2.10 and Proposition 2.12, we will get that (3.17) and (3.18) hold for all f € 9@/ e
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Now, let f € D(R,). The first relation of (3.17) is obtained by integrating once by parts and
the second formula of (3.17) is a consequence of the equality

i6 p+oo i0
at<eTf0 f(r)exp<—%>dr>

, ' ' . (3.19)
:—et—lze (:wf(r)exp<—$>dr+et2—;9 ;wrf(r)exp<—$>dr
for all t € Sg py,|elp- To get the formula (3.18), we first show the following relation:
O (Lo (f (M) (t) = Lo(e7™® (702 +0,) f(r)) (1) (3.20)
for all t € Sg p, jc|p- Indeed, using one integration by parts, we get that
' eif [ rei®
Ly <e‘19 <ra$ + 6,)]’(1’)) t) = = Jo O, f(r)rexp <—T> dr. (3.21)

By a second integration by parts on the right-hand side of (3.21) and by comparison with
(3.19), we get (3.20). Now, let 5, kg € N be such that s > 2ky. Applying the first relation of
(3.17) and (3.20), we get that

tsafo’ae (f) (t) = Lo <ei(sfko)98;5 <Ta$ + ar> (kO)f(T)> (1). (3.22)

Now, we recall a variant of Lemmas 5 and 6 in [2].

Lemma 3.4. For all kg > 1, there exist constants axx, € N, kg < k < 2ko such that

kU Zko
(rd?+a,) u(r) = Y, ackr*dfu(r) (3.23)
k=ko

for all C* functions u : R, — C.

Lemma 3.5. Let a,b,c > 0 be positive integers such that a > band a > c. Weput 6 = a+b—c.
Then, for all C* function u : R, — C, the function 3;%(r’0Su(r)) can be written in the form

o-a <rba$u(r)> = 3 apertofuln), (3.24)

(V',c)€0s

where Og is a finite subset of 72 such that for all (b',c') € O, b'—c1 =6,b' >0,c' <0,and ay o € Z.

Finally, we observe that the relation (3.18) follows from (3.22) and Lemmas 3.4 and
3.5. O
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The next proposition can be found in [25, Appendix A], see also [8].

Proposition 3.6. Let « > 1 and f(r) € 9, __ with |e| < ory(p). Then, for every I > 0, the

expression (f(t — al)l[al,m))(l) belongs to %;i,a,e' Moreover, there exist a universal constant A > 0
and B(o, b, €) > 0 (depending on o, b, €) such that

,0,€

|- adtga)®| < AB@ LN IOl (3.25)

with B(o,b,e) — 0 when e — 0.

In the forthcoming proposition, we explain the action of multiplication by an
exponential function on the Laplace transform.

Proposition 3.7. Let « > 1and f(r) € D e with |e| < ory(P). From the latter proposition, one
knows that F(r) = (f(r - al)l[a1,+oo))(l) belongs to %’ﬂ,o,s‘ The following formula

. 1 .
Lo(Fi)(t) = <§> exp <—%ea>£e (f)(®) (3.26)

holds for all t € Sg s, e)p-

Proof. Since D(R,) is dense in %;5 o it is sufficient to prove that

o\ ! i0
Lo(Fr)(t) = <67> exp<—$>Te(f)(t) (3.27)

for all f € D(R,), all t € Sgpyelp- Then, we get the inequality (3.26) by using (3.3) and
Proposition 3.6. Now, let f € D(R.). We write

(f(r = al)1fatee) = 07 (F (7 = )L 00)) ", (3.28)

where r > 0 is an integer chosen such that al € [I + 7,I + r + 1]. From our assumption, we
have that 7 — f(7 — al)1{ax,+0) belongs to L'(R,) and that supp(f (7 — al)1{a+e0)) C [[+7, +00).
By Lemma 2.5, we deduce that (f(7 - le)l[a1,+oo))(l+r) is a staircase distribution 3}, Zgll)(r)
where the functions A 11 (T) are constructed as follows:

Ajp(r) =0, for0<j<l+r—1, App(t) = f(T—al)l{aro0)Lieriers1, (3.29)

and for all n > 1, we have ZWM,Z(T) = Gu(T) 1 fsr+nler+ns1] Where

Gu(T) = 0. (Gt (T) L tsr4m400) ) Go = f(T — al) 1 [a1400)- (3.30)
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By definition, we have

w /i \ M o i0
Ly ((f(T - “Z)l[ul,+oo))(l+r)> (t) = Z <eT> I Ah,l(T) exp <_%>d7—' (3.31)

h=0 0

Now, we will compute the integrals Aj,; = (e /t)"*" [7% Ayi(7) exp(-7e™® /t)dr for all h > 0.
By construction, we have that A; =0forall0<h <I+r—-1.Forh=1+r, we get

o\ Frl e i0
Alir) = <eT> f f(T —al)exp (—%)d?‘
al
i lrr+l ale® (1-a)l+r+1 seif
= <—> exp(——>f f(s)exp(— >ds.
t t 0 t

For h =1+ r + 1, by one integration by parts, we get that

eie I+r+1 Teig
Al+r+1,l =1~ T exp —T Gy (T)
I+r+1
0\ H a2 i0
(& f f(r—al)exp “I Nar
t l+r+1 t
ei@ lr+l Tei@ I+r+2
= _<T> exp<— 7 >G1(T)
I+r+1
i ler+l ale® (-a)l47+2 s
+| — exp( ——— f(s)exp| ——— )ds.
t t A-a)l+r+1 t
For h =1+ r +n, with n > 1, by successive integrations by parts, we get that
. I+r+q .
n et Tei?
Al+r+n,l = Z [_<T> exp <_T>GEI (T)]
4=1 l+r+n (334)
ei9 br+l leeie (1-a)l+r+n+1 seie
+| — exp( ——— f(s)exp| ——— )ds.
t t (I-a)l+r+n t

Since G4(I +7 +¢q) =0, for all g > 1, we deduce that the telescopic sum

(3.32)

l+r+2

(3.33)

l+r+n+1

l+r+n+1

» eie I+r+q Teie
n=q

l+r+n
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is equal to 0. From the formula (3.32), (3.33), (3.34), and (3.35), we get that

ﬁe((f(r - al)l[a1,+oo))(l+r)> t) = ZwAh,I
h=0

io\ " B\ L0 (+oo i0
= <e_> exp <__ale >e_ f(s)exp <—£>ds.
t t )t ), t

(3.36)

From Proposition 3.3, we have that
2o(F) () =t ()" Lo ((f (7~ al)lfarer) ") (1) (3.37)
Finally, from (3.36) and (3.37), we get the equality (3.27). O

4. Formal and Analytic Transseries Solutions for a Singularly
Perturbed Cauchy Problem

4.1. Laplace Transform and Asymptotic Expansions

We recall the definition of Borel summability of formal series with coefficients in a Banach
space, see [27].

Definition 4.1. A formal series
~ s a]- .
X(t) = 2,57t € EI[H] (4.1)
j=0 J*

with coefficients in a Banach space (E, || - ||z) is said to be 1-summable with respect to ¢ in the
direction d € [0, 2r) if
(i) there exists p € R, such that the following formal series, called formal Borel
transform of X of order 1,

(5o -3

a;7
j=0 (j!)z

€ E[[7]] (4.2)

is absolutely convergent for |7| < p;

(ii) there exists 6 > 0 such that the series B(X)(T) can be analytically continued with
respect to 7 in a sector Sy = {T € C* : |d —arg(7)| < 6}. Moreover, there exist C > 0
and K > 0 such that

||73()2)(T)||IE < CeKI (4.3)

for all 7 € S, 5. We say that B(X)(t) has exponential growth of order 1 on Ss.
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If this is so, the vector valued Laplace transform of order 1 of B(X)(r) in the direction
d is defined by

14 (B(f()) (t) =t f B(f() (r)e /D dr (4.4)

L,

along a half-line L, = R,e" C Su5 U {0}, where y depends on t and is chosen in such a way
that cos(y —arg(t)) > 61 > 0, for some fixed 61, for all  in a sector

SaoR = {t eC*:|t| <R, |d-arg(t)| < g}, (4.5)

where r < 0 < o +26 and 0 < R < 61/K. The function 1‘1(8(5())(1!) is called the 1-sum
of the formal series X (#) in the direction d. The function .£4(B(X))(t) is a holomorphic and
a bounded function on the sector S, r. Moreover, the function ﬁd(B(X))(t) has the formal
series X (t) as Gevrey asymptotic expansion of order 1 with respect to t on S, r. This means
that for all 0 < 01 < 0, there exist C, M > 0 such that

£(5(X))0- 5, %0

p=01"

< CM"nljt]" (4.6)
E

foralln >1,allt € Sp, r.
In the next proposition, we recall some well-known identities for the Borel transform
that will be useful in the sequel.

Proposition 4.2. Let X(t) = Dus0 Ant™ /nland G(t) = > s but™ /m! be formal series in E[[t]]. One
has the following equalities as formal series in E[[T]]:

(Tai + aT) (73 (X) (T)) = B(é)f((t)) (r), o' <B (X)) (1) = B(tf{(t)) (1),
m(fc) (1) = B((tzat + t)i(t)) (7).

(4.7)

4.2, Formal Transseries Solutions for an Auxiliary Singular Cauchy Problem

Let S > 1 be an integer. Let S be a finite subset of N° and let

bs o ke p(€) 2P
bk (2, €) = ZL

2= (4.8)
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be holomorphic and bounded functions on a polydisc D(0, p) x D(0, €p), for some p, ey > 0,
with ey < 1, for all (s, ko, k1) € S. We consider the following singular Cauchy problems:

T2705Y(T,z,€) + (T+ DAY (T,z €)= 3 bosoi (2,€)e T (8105 Y)(T,2,6), (40
(s,ko,k1)€S

for given formal transseries initial conditions

P exp(-hA/T) _ :
(alY)(1,0,e) = Z%%(ﬂ e) 0<j<S-1, (4.10)
h>0 ’

where ¢y, i (T, €) = 3,50 @n,jm(e)T™/m! € C[[T]] forall e € £and A € C*.

Proposition 4.3. The problem (4.9), (4.10) has a formal transseries solutions

Y(T,z€) = ZM%(I z,€), (4.11)

h>0 h!

where the formal series Yi,(T, z,€) € C[[T, z]], for all € € &, all h > 0, satisfy the following singular
Cauchy problems:

T20r03Yy(T, z,€) + (T + 1 + Ah)0S Y, (T, z, €)

= > bon(ze) <e"0‘STS(a’;°6’;1?h)(T,z,e)

(s,ko,k1)€S
ko! ké k! k Kl K2 <
+ ) WZ@)(M)% s 08 Y(T, z, €)
ki +k2=ko,k>170°"0" g=1
(4.12)
with initial conditions
LY, )(T,0,€) = 6n:(T,e), 0<j<S—1, (4.13)
Ph,j ]

kl
for some real numbers c,, for 1 < q < ky and 1 < kj < ko.

Proof. We have that

or <exp (—%)ffh(T, z, e)> = exp(—%) <%f/h(T, z,€) + anfh(T, z, e)), (4.14)
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and from the Leibniz rule we also have

AN - ko! .kl AN k2o
of (ow(- 7 )0Tz0) = 3 di(en(-7) )aNmze.  wi)
ko 070"

kb +ka=

On the other hand, by the Faa Di Bruno formula we have, for all ké > 1, that

. Ai
K Kl _1)1+1 (hl/THl)
" h\ 0 Ah LT <(
A (ow(-7))=2ew(-7) = W1 %
q_l (/\1,...,J\k1 )EAq,k1 i=1
b kg (4.16)
Kkl
B hA [ <& k()1
= eXp( T ) <§Cq Tké‘*‘l] 7

where Ag i1 = {(A1,..., A1) € Nko / Zﬁl’l Xi=gq, Zﬁl i\; = kj} and csé €R, forallg=1,...,k}.
Using the expressions (4.14), (4.15), (4.16), by plugging the formal expansion Y (T, z, €)

into the problem (4.9), (4.10) and by identification of the coefficients of exp(-hA/T) we get

that Y, satisfies the problem (4.12), (4.13). O

4.3. Formal Solutions to a Sequence of Regular Cauchy Problems

Proposition 4.4. One makes the assumption that

S >k, s > 2kg (417)

for all (s, ko, k1) € S. Then, the problem (4.12), (4.13) has a unique formal solution Yu(T,z,€) €
CI[T, z]] forall € € &. Let

Yi,m(z,€)T™
m!

Y (T, z,€) = Z

m>0

, (4.18)

where Y, (z, €) € C[[z]], be the formal solution of (4.12), (4.13) for all € € £. One denotes by

Vi(7,2,6) = 3 Vim(2, €)<;_T>2 (4.19)

m>0
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the formal Borel transform of Y, with respect to T. Then, for all h > 0, Vi, (7, z, €) satisfies the problem

(T+1+Ah)A2Vi(T,2,€) = Z s ok, (z,€) | €7° Z alprra;palz‘th(T, z,€)
(skoReS (rp)e0l .

k
e kllkglz e (e

kb+k2=ko k=170

x oy ar,,T’a POk Vi, (T, 2, €)

(r,p) 6(95 -
(4.20)
with initial data
(aivh)(r,o,e) = opj(T,€) = Z(ph]m(e e eC[[r]], 0<j<S-1, (4.21)
m>0
where O | is a finite subset of N? such that (r,p) € O} x, implies v +p = s — ko and 0% ko—q is a

finite subset of N? such that (r,p) € O ko-q impliesr +p = s — ko — q, and a,p, ar,Z are integers.

Proof. The proof follows by direct computation on the problems (4.12) and (4.13), using
Proposition 4.2 and the following two lemmas from [2].
Lemma 4.5. For all kg > 1, there exist constants ax i, € N, ko < k < 2ko, such that

k() Zko
(r82+8:) u(r) = >, g M0ku(r) (4.22)

k=ko

for all holomorphic functions u : Q — C on an open set Q C C.

Lemma 4.6. Let a, b, ¢ > 0 be positive integers such that a > band a > c. We put 6 = a+b—c. Then,
for all holomorphic functions u : Q — C, the function 9;%(t°0%u(t)) can be written in the form

6;a<7b6$u(‘r)>: > apertou(r), (4.23)
(V,C)e05

where Og is a finite subset of 72 such that forall (W', c') € Os,b'=c' =6, >0, <0,and ayy » € Z.
O

4.4. An Auxiliary Cauchy Problem

We denote by Q; an open star-shaped domain in C (meaning that Q; is an open subset of
C such that for all x € Q;, the segment [0, x] belongs to ;). Let £, be an open set in C*
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contained in the disc D(0, €p). We denote by Q = €; x €,. For any open set ® C C, we denote
by O(9) the vector space of holomorphic functions on ®.

Definition 4.7. Let b > 1 a real number and let r,(f) = Zﬁ:o 1/(n +1)" for all integers f§ > 0.

Let € € Q) and o > 0 be a real number. We denote by Eg .. the vector space of all functions
v € O(Qq) such that

2
[0(7)llp .00 = suplo(T)| <1 + ﬂ> exp (-%m(ﬂ)lﬂ) (4.24)

TeQ |€|2
is finite.
Proposition 4.8. One makes the assumption that

S > k1, s> 2k0 (425)

forall (s, ko, k1) € S. Moreover, one makes the assumption that there exists ¢',8' > 0 such that

lT+1+hA >CT+1]>68, VreQ VheN. (4.26)
Forall h >0, all € € Q,, the problem (4.20) with initial conditions

(aivh)(r, 0,€) =vn (r,€) €O(Q), 0<j<S-1 (4.27)

has a unique formal series

B
z!
Vh (T/ z, €) = th,ﬂ (TI 6) rn

5 € 0@z, (4.28)
p>0 '

where vy, 3(7, €) satisfies the following recursion:

(T +1+h\)vppis(T,€)

be ko ki pr (€) 4 _ o Uh pyiky (T, €)
— ﬁ' oﬁl : 1 €kU s Z ai,pTran 2 ﬂl,
(s,ko,k1)€S Pr+pr=P 1 (r,p)€0! 2

s—ko

(4.29)

kl
ko! & bs ko ki, (€) Kt
DY 02.2 2 P ’ cq’ (hA)?

1y |
kb +ka=ko,kj>1 kO'kO' q=1 pr+p=p ’61'

—p Oh,Bo+iq \T, €
x eko=s Z afngran P+ (7€)

1
(rpeo, p2

forall T € Qq, all € € Q.
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Proposition 4.9. One makes the assumption that

S>ky, s > 2k (4.30)

forall (s, ko, k1) € S. Let also the assumption (4.26) holds. Let us assume that

0nj(7,€) € Ejen, Yh>0,Y0<j<S-1, Ve € Q. (4.31)

Then, one has that v p(T,€) € Epeoa forall p > 0, all h > 0, all e € Q). We put vpp(e) =

lon,p(T, €)lp o forall h >0, all p >0, and all € € Q. Then, the following inequalities hold: there
exist two constants Cly, Ci¢ > 0 (depending on S,0,S) such that

onpes(e) <D D) ﬁzw

|
(8,ko,k1)€S P1+pr=p ﬂl .

x Clg ((ﬂ +S+ 1)b(s_k0) +(p+S+ 1)b(s_k0+2)> Ok 1) i

P!
. (4.32)
k()! 9 |bs,k0,k1,ﬂ1 (€) | kl
+ D kl!kzlz > ﬂ!—ﬁll ¢y’ [T
Kl+k2=ko,k1>1 500" g=1 p1-+pr=p

« |€|—qC%8 <(ﬂ +S+ 1)b(s—k0—q) + ([5 +S+ 1)b(S—k0—q+2)> vh,ﬂ;;k!l (6)

forall h>0,all p>0.

Proof. The proof follows by direct computation using the recursion (4.29) and the next
lemma. We keep the notations of Proposition 4.8.

Lemma 4.10. There exists a constant C1g > 0 (depending on s, 0, S, ko, k1) such that

ra"P
70, v T, € ”
T h,ﬂ2+k1( ’ ) B+S,0,0

(4.33)
< |€|r+pC18<(ﬂ + S+ 1)b(r+P) i (ﬂ +S+ 1)b(r+P+2)> ||Uh,ﬂ2+k1 (T, €)||ﬂ2+k1,e,0',§2

forallh >0, and all > 0,0 < p < B, all (r,p) € N> withr +p < s — k.

Proof. We follow the proof of Lemma 1 from [2]. By definition, we have that 8;'vy, ,+x, (T, €) =
j‘g Unp,+k, (T1, €)dTy for all T € Qq. Using the parametrization 71 = hi7 with 0 < h; <1, we get
that

1
6;1vh,p2+kl (1,€) = TJ‘

Onpyki (M7, €)My (h1)dhy, (4.34)
0
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where M (h;) = 1. More generally, for all p > 2, we have by definition:
_ T ATy Tp-1
anUh,p2+k1 (t,€) = f f . f O pyeky (Tp, €)dTpdTy 1 -+ - ATy (4.35)
0Jo 0

for all T € Q;. Using the parametrization 7; = h;7j_1, 71 = i, with0 < h; <1,for2 < j <p,
we can write

1 1
07 Onpy+k, (T, €) :T”f f O poiky (p - -7, €)My (ha, ..., hy)dhydhy_ ---dhy,  (4.36)
0 0

where M, (hy, ..., hy) is a monomial in hy, ..., h, whose coefficient is equal to 1. Using these
latter expressions, we now write

|Tra;pvh,ﬂz+k1 (7, €)|

o |hp---h1’r|2 o
T ’”I f On ook (Bp - T, €) [ 14+ —F— exp<——rb([52 +k1)|hp~--h17'|>
o Jo le] 2le]

><exp((O'/2|€|)rb([52 +ki) |hp )
1+ |hp .. h17-|2/|€|2

M, (hy, ..., hy)dh,...dh|.

(4.37)
Therefore,
r NP |T|2 %
7707 U gk, (T, e)) 1+ W exp —mrb(ﬂ+ S)|t]
2
, T o
R GO PN . <1 + %) eXP<—m(Tb (B+S)—1(p2 + kl))|T|>~
(4.38)
By construction of r,(f), we have
b3 1 B-Pr+S -k S—ki
nw(p+S)-n(f+k) = 3 ;2 b 2 ; (4.39)
n=priki+1 (M +1) (B+S+1) (B+S+1)
for all g > 0. From (4.38) and (4.39), we get that
r NP |T|2 o
7707 O gk, (T, e)| 1+ W exp(—mrb(ﬂ + S)|T|>
(4.40)

|T|2 o S —kq
< \[onpyak (T, €) TP 1+ Jexp( —=— ———1 |7
” Patki ”ﬁ2+k1,6,o,£2 |€|2 P 2|€| (ﬂ LS+ 1)b
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for all § > 0. From (2.41), we deduce that

2 pa—
|T|Hp <1 + %) exp <_iL1b|T|>
le] 2lel (B+5+1)

2(r +p)e '\ b(r+p)
< r+p S A 1 r+p
< el << oG k) (B+S+1) (4.41)
T 2
2(7' + p + 2)8_1 P b(r+p+2)
—~ r 7 S+1 P
+< o5 k) (B+5+1)
for all T € Q. From the estimates (4.40) and (4.41), we deduce the inequality (4.33). O

Proposition 4.11. Assume that the conditions (4.26) and (4.31) hold. Assume moreover, that

S > b(S - ko + 2) + kl, s> 2k0 (442)

forall (s, ko, k1) € S and that the following sums converge near the origin in C,

h
u .
Wi(u) := Y sup||og(z, e)||].,€,g,gm eClu}, 0<j<S-1 (4.43)

h>0 €62
One make also the hypothesis that for all (s, ko, k1) € S, one can write

bojo ki (2,€) = €%bg ok (2,€), (4.44)

where Es,ko,kl (z,€) = X0 Es,ko,kl,p(e)zﬂ /P! is holomorphic for all e € D(0, €p) on D(0, p). Then, the
problem (4.20) with initial data

(3LVi)(r,0,€) = vnj(r,e), 0<j<S-1 (4.45)

has a unique solution Vi, (7, z, €) which is holomorphic with respect to (T, z) € Q1 x D(0, x1/2) for
all e € Q.

The constant xy is such that 0 < x; < p and depends on S, uy (which denotes a
common radius of absolute convergence of the series (4.43)), S, b, o, |A|, max(s i, k;)eS|bls ko i (X0),

maX(s ko k1)es|bls ko ki (X0), where xo < p and |bls i, ik, |bls ko k, are defined below.
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Moreover, the following estimates hold: there exists a constant uy such that 0 < u; < uy
(depending on ug, S, and b, ¢) and a constant Cy9 > 0 (depending on maxo<j<s-1Wj(uo) (where W;

are defined above), |A|, maXs ky ky)e3|bls ko ki (X0), MaX(s ky ky)e 1Pl ko ki (X0), S, o, X0, S, b) such that

Cio 2\"/ P\ o 44
iz () (1) en(gfom) 6

forall (1,z) € Q1 x D(0,x1/2),all € € Ly, and all h > 0.

Proof. We consider the following Cauchy problem

EWwx)= > Cly((xde+S+1)"*)
(S,ko,kl)e.s

@B+ S+ D)) (bl ()3 W (1, x) )

g k3 k2! 2,

ky+k3=ko,kj>1 0° g=1

kg
Cq

A (4.47)

x (0 + 8+ PR 4 (3, + § 1)1

x ('E|s,ko,k1 (x) (udy) 10K W (u, x))

for given initial data

. h
(W) (w,0) = Wj(w) = 3, sup|vh,,-(e)|% eClu}, 0<j<S-1, (4.48)

h>0 €€€20

where

P -
Ploo @) = 3, sup [bsnp@| g [Pl

- xP
Sup (x)=>, sup |bs,ko,k1,ﬂ(€)|ﬁ (4.49)
ﬂZOE ,€0 .

s,ko k1 >0 €€D(0,e0)

are convergent series near the origin in C with respect to x. From the assumption (4.42) and
the fact that b > 1, we also deduce that

S>b(s—-ko—q+2)+q+k (4.50)

for all (s, ko, k1) € S and all 0 < g < ko. Since the initial data (4.48) and the coefficients
(4.47) are analytic near the origin, we get that all the hypotheses of the classical Cauchy
Kowalevski theorem from Proposition 2.22 are fulfilled. We deduce the existence of U; with
0 < U; < Uy, where Uy denotes a common radius of absolute convergence for the series
(4.48), which depends on Uy, S and b, and X; with 0 < X; < p (depending on S, Uy, S, b,
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0, |\, max(s ko k1)es1bls ko ki (X0), MaX(s ko k1)e31bs ko k: (X0), where X < p) such that there exist a
unique formal series W (1, x) € G(U;, X1) which solves the problem (4.47), (4.48).

Now, let W (u,x) = X, 550 wip(u"/h!)(xP/B!) be its Taylor expansion at (0,0). Then,
by construction the sequence wy, g satisfies the following equalities:

SUPcep(oje )|bs,,k0,k1,p1 (e)| .
Whpes = Z Z p! Oﬂ 1 Cis
(8,ko,k1)ES Pr+p2=p 1!

x <(ﬁ +S+ l)b(ska) + (ﬂ +S+ 1)b(s—k0+2)> Wh,p,+ky

P!
_ | (4.51)
B b (€)
ko! SUP cp(0,e9) | Ps/ko k1 b k!
+ > —k1|k21z > p b cg’ [T
ki +k3=ko,kj>1"0""0" g=1p1+po=p '
w
xCl((B+8+1)" 4 (B S+ 1)"CH70) hﬁ/;k
forall h > 0 and all § > 0, with
wy,j =sup|opi(e)|, Yh>0, V0O<j<S-1. (4.52)

eeQy

Using the inequality (4.32) and the equality (4.51), with the initial conditions (4.52), one gets
that

sup|onp(€)| < whp (4.53)

eeQn

forall h > 0, all § > 0. Using the fact that W (u, x) € G(U1, X;) and the estimates (2.111), we
deduce from (4.53) that there exist a constant C19 > 0 (depending on maxo<j<s-1W;j(Uo),|Al,

MAX (5 ko, k1 )€ |Bls ko ky (X0), MAX(s5 ky k1)e3|Bls ko ki (X0), S, Uo, Xo, S, b, 0) such that

sl < uti () () (148 (o)

cconn(&) () (1+25) eo(izrom)

forallT € Qp,alle € Qp,allh >0,and all g > 0. ]

(4.54)
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4.5. Analytic Solutions for a Sequence of Singular Cauchy Problems

Assume that the conditions (4.42) and (4.44) hold. We consider the following problem:

T?0r03Yys, (T, z,€) + (T + 1+ Ah)0 Yy, s, ¢(T, z, €)

= Z bs ko ki (2, €) <€k0_sTs <a§0 alz<1 Yh,sdr“') (T, z€)

(s/ko,k1)eS

1

ko! & ko q ko-sps—(ki+q) AKs Ak

+ > kl'kzvzc" (hA)TeRsTs 6t 5 0081y, 5, « (T, 2, €)
ki +k2=ko,kj>1"0""0" g=1

(4.55)
with initial conditions

(a];Yh,sd,e>(T, 0,€) =njs,e(Te), 0<j<S-1 (4.56)

The initial conditions ¢y, js,e(T,€), 0 < j < S~ 1 are defined as follows. Let S; be an open
sector centered at 0, with infinite radius and bisecting direction d € [0,2r), D(0, 1) an open
disc centered at 0 with radius 7p > 0, and & an open sector centered at 0 contained in the
disc D(0, €p). We make the assumption that the condition (4.26) holds for the set Q; = (S4 U
D(0,79)). We consider a set of functions vy, ; (7, €) € Ej¢,6,0(0,m)x(D(0,e0)\(0}) for all € € D(0, ep) \
{0} such that

uh

Wize () =D,  sup ||Uhrf(T’€)||j,e,o‘,D(0,’rg)><(D(0,eo)\[0])m

h>0 €€D(0,€0)\{0}

eClu}, 0<j<S-1.

We also assume that forall h > 0 and all 0 < j < S -1, vy, (7, €) has an analytic continuation
denoted by vy, s, (T, €) € Ejeo,(5,uD(0,1))x¢ for all € € € such that

h
u .

Wj,Sd,é (u) = ZSUP”Uh,;‘,Sd,é (T/ E') ||]',€/U,(5(1UD(0,T0))><5W € (C{u}r 0< ] <S-1. (458)

h>0 €€ :

Let
)) -

Un,ji(T,€) = D ¥njm(€)——= 4.59
2P Gy (459

be the convergent Taylor expansion of vy, ; with respect to 7 on D(0, 1) for all e € D(0, €0)\ {0}.
We consider the formal series

P10 = Sipuim(@) (4.60)

m>0
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for all e € D(0, ) \ {0}. We define ¢y, s, (T, €) as the 1-sum (in the sense of Definition 4.1)
of ¢;n(T, €) in the direction d. From the hypotheses, we deduce that T — ¢y, j s, (T, €) defines
a holomorphic function for all T € U 4¢,¢|, for all € € &, where

Uapel = {T eC :|T| < e, |d - arg(T)| < g} (4.61)

for some 6 > o and some constant ¢ > 0 (independent of €) forall 0 < j < S-1.

Proposition 4.12. Assume that the conditions (4.26), (4.31), (4.42), and (4.44) hold.

Then, the problem (4.55), (4.56) has a solution (T, z) — Yy s, (T, z, €) which is holomorphic
and bounded on the set U g9,u¢| x D(0, x1/4), for some v > 0 (independent of €), for all € € &, where
0 < x1 < p depends on S, ug (which denotes a common radius of absolute convergence of the series
(4.57), (4.58)), S, b, 0, ||, max(s k, k)es|bls ko ki (X0), MAX(5 ko k1) e8|bls ko 1y (X0), where xo < p.

The function Y,s,.¢(T, z, €) can be written as the Laplace transform of order 1 in the direction
d (in the sense of Definition 4.1) of a function Vi s, (T, 2, €), which is holomorphic on the domain
(SaUD(0, 7)) x D(0, x1/2) x & and satisfies the following estimates.

There exists a constant uy such that 0 < uy < ug (depending on ug, S and b,c) and a
constant Cqoa,ey > 0 (depending on maxo<j<s-1Wis, e (o) (where Wis, ¢ are defined above), |Al,
MAX(s ko k1)e8|ls ko ky (X0), TAX (5 ko k1)e3|Bls ko ko (X0), S, 1o, X0, S, b) such that

-1
Cawe) 2 \" |T|2 o
< %9 (2 L — 4.62
Vis,e(r 2.0 < i o) (1455 ) ew(Gppeeinl) e

forall (1,z,¢) € (S4UD(0,19)) x D(0,x1/2) x &, all h > 0.

Moreover, the function Vi s, (T, z,€) is the analytic continuation of a function V(7 z, €)
which is holomorphic on the punctured polydisc D(0,7y) x D(0,x1/2) x (D(0, o) \ {0}) and verifies
the following estimates.

There exists a constant Cq, . > 0 (depending on maxo<j<s-1Wi e, (4o) (where Wiy, o, are

70.€0
defined above), ||, max(s iy k;)e3|bls ko ki (X0), MaX(s ko k1)e8|Pls ko 1 (X0), S, Uo, X0, S, b) such that

Ca. . 2N/ R\ o
— (= L — 4.63
[Vi(T, 2, €)| < 1 —2|z|/x1h <u1> <1 + o exp<2|€|§(b)|7'|> (4.63)

forall T € D(0,70), all z € D(0,x1/2), all € € D(0, &) \ {0}, and all h > 0.

Proof. From the hypotheses of Proposition 4.12, we deduce from Proposition 4.11 applied
to the situation Q = D(0,7)) x (D(0,¢) \ {0}) the existence of a holomorphic function
Vi (T, 2, €) satisfying the estimates (4.63), which is the solution of the problem (4.20) with
initial conditions (0. V4)(,0,€) = vp,j(1,€),0 < j < 5-1, 0on the domain D(0, 79) x D(0, x1/2) x
(D(0, €0)\ {0}). Likewise, from Proposition 4.11 applied to the situation Q = (S;UD(0, 1)) x&,
we get the existence of a holomorphic function Vi, s, ¢(7, z, €) satisfying (4.62), which is the
solution of the problem (4.20) with initial conditions (OLVi)(1,0,€) = Vn,j,5,,¢(T,€),0<j <51
on the domain (S; U D(0,7p)) x D(0,x1/2) x €.

With Proposition 4.3, we deduce that the formal solution }A’h(T, z,€) of the problem
(4.12), (4.13) is 1-summable with respect to T in the direction d as series in the Banach space
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O(D(0,x1/4)), for all € € £&. We denote by Yy s, ¢ (T, z, €) its 1-sum which is holomorphic with
respect to T on a domain Ugg . due to Definition 4.1 and the estimates (4.62). Moreover,
from the algebraic properties of the x-summability procedure, see [27, Section 6.3], we deduce
that Yy, s, ¢(T, z, €) is a solution of the problem (4.55), (4.56). O

4.6. Summability in a Complex Parameter
We recall the definition of a good covering.

Definition 4.13. Let v > 2 be an integer. For all 0 < i < v — 1, we consider open sectors &;
centered at 0, with radius ey, bisecting direction «; € [0,2sr) and opening o + 6;, with §; > 0,
such that & N &1 #0 forall 0 < i < v —1 (with the convention that &, = &j) and such that
Uy & = U\ {0}, where U is some neighborhood of 0 in C. Such a set of sectors {&;}ocic,_q iS
called a good covering in C*.

Definition 4.14. Let {&;} <, 1 be a good covering in C*. Let T be an open sector centered at 0
with radius r¢ and consider a family of open sectors

Uy peore = {t € C:|t| < eore, |di —arg(t)] < g}, (4.64)

where d; € [0,20r), for 0 <i < v -1, where 8 > or, which satisfy the following properties:
(1) Forall0<i<v-1,all h € N, arg(d;) # arg(-1 — Ah).
(2) Forall0<i<v-1,forallt € T,and all € € &;, we have that et € U4, 0,¢,r -
(3) (3.1) We assume that dy < arg(A) < di. We consider the two closed sectors

* *

C
arg(7)

Mg, = {T € € [do,arg(1)] }, My, = {T € € [arg(L), d1] } (4.65)

arg(7)
We make the assumption that there exist two constants ¢, §' > 0 with

lT+1+ Ak >C|T+1]>6 (4.66)

forallT € My U M4 UD(0,7p) and all h > 0.

(3.2) There exists 0 < 6¢ < or/2 such that arg(\/(et)) € (- /2 + 6¢, /2 — 6¢) for all
ec€céynéandallt € T

We say that the family {{Ug,6.erc}o<icr-1, C A} is associated to the good covering
{éi }0<i<v—1 .

Now, we consider a set of functions ¢;,;;(T,e) for0 <i<v-1,0<j<S5-1,h >0,
constructed as follows. Forall 0 <i < v -1, let S;, be an open sector of infinite radius centered
at 0, with bisecting direction d; and with opening n; > 6 — or. The numbers 6 > o and n; > 0
are chosen in such a way that -1 - Ah & Sy, forall 0 <i <v—1and all h > 0. Now, we put

#n,ij (T, €) := pnjs, (T €) (4.67)
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forall T € Ug, 0, and all € € &;, where @5, ¢,(T, €) is given by the formula (4.56). Recalling
how these functions are constructed, we consider a set of functions

Vn,j (T, €) € Eje,0,0(0,7)x(D(0,e0)\{0}) (4.68)

forall e € D(0,€p) \ {0} such that

uh

l|on (7, 6)||j,e,o,D(0,TU)><(D(O,eo)\[0])E € Cluj,

Wine (1) := Z sup

h0 €€D(0,60)\ {0} (4.69)

0<j<S-1.

We also assume that forall h > 0,all 0 < j < § -1, v,;(7,€) has an analytic continuation
denoted by vy, s i (7,€) €Ejeo,s 4,UD(0,70))x&; for all € € &; such that

h

Wis, e (u) = ZSUP”Uh,,’,sdi,ei (7,€) Clu}, 0<j<S-1. (470

) — €
5 ece, j,€,0,(S4UD(0,m)x¢; h!

Let

Tm
vh,i(T,€) = mZZO(Ph,j,m(e)W (4.71)

be the convergent Taylor expansion of vy, ; with respect to 7 on D(0, 1) for all e € D(0, €9) \{0}.
We consider the formal series

Pri(T0) = S pujm(e) @72)

m>0

foralle € D(0,e9)\ {0}. We define ¢y js, ¢, (T, €) as the 1-sum (in the sense of Definition 4.1) of
@j(T, €) in the direction d;. We deduce that T — ¢y, s, ¢,(T, €) defines a holomorphic function
forall T € Uy, 0, and for all € € &;, where

0
U%Md:{TeC*ﬂﬂ<4qLL—mgTﬂ<§} (4.73)

for some 0 > 7 and some constant ¢ > 0 (independent of €) forall0 < j < S-1.
From Proposition 4.12, for all 0 < i < v — 1, we consider the solution Yy, s, ¢ (T, z, €) of
the problem (4.55) with the initial conditions

(0Yns,e ) (T,0,€) = puij(T,e), 0<j<S-1, h20, (4.74)

which defines a bounded and holomorphic function on U, g,uje| x D (0, x1/4) x &;.
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Proposition 4.15. The function defined by
Xni(t,z, €) = thsdwéi(et, Z,€) (4.75)

is holomorphic and bounded on (TN D(0,(")) x D(0,x1/4) x &;, forallh > 0,all 0 <i<v -1, and
forsome 0 <" < (.

Moreover, the functions Gp; : € +— Xpi(t,z,€) from &; into the Banach space O((T N
D(0,(")) x D(0,x1/4)) are the 1-sums on &; of a formal series Gn(e) € O(T n D(,!")) x
D(0,x1/4))[[e]]. In other words, for all h > 0, there exists a function gy (s, t, z) which is holomorphic
on D(0,sp) x (TND(0, (")) x D(0, x1/4) which admits for all 0 < i < v —1, an analytic continuation
gni(s, t, z) which is holomorphic on (G, U D(0,sy)) x (CND(0, (")) x D(0, x1/4), where Gy, is an
open sector centered at 0 with infinite radius and bisecting direction x; such that

Xh,i (t/ z, €) = 6_1 I gh,i(s/ t/ Z)e_S/Sds (476)
Ly

along a half-line L, = R.e™ C G, U {0}.

Proof. The proof is based on a cohomological criterion for summability of formal series with
coefficients in a Banach space, see [27, page 121], which is known as the Ramis-Sibuya
theorem in the literature.

Theorem (RS). Let (E, || - ||[z) be a Banach space over C and {&;}y.;c,_1 a good covering in C*. For
all 0 < i <v -1, let G; be a holomorphic function from &; into the Banach space (E, || - ||g) and let the
cocycle Ai(€) = Gi1(€) — Gi(€) be a holomorphic function from the sector Z; = £i,1 N E; into E (with
the convention that &, = &y and G, = Go). We make the following assumptions.

(1) The functions G;(e) are bounded as € € &; tends to the origin in C forall 0 <i<v -1

(2) The functions A;(e) are exponentially flat of order 1 on Z; for all 0 < i < v — 1. This means
that there exist constants C;, A; > 0 such that

Ai(e)||g < Cie™/1 (4.77)

forallee Z;all0<i<v-1

Then, for all 0 <i < v -1, the functions G;(e) are the 1 -sums on &; of a 1 -summable formal
series G(e) in e with coefficients in the Banach space E.

By Definition 4.14 and the construction of Yy, 5 di/g,.(T, z,€) in Proposition 4.12, we get
that the function Xj,;(t, z,€) = Yis i (et, z, €) defines a bounded and holomorphic function
on the domain (CND(0,1)) x D(0,x1/4) x & forallh >0all0 <i<v—-1, where0 < x; <p
depends on S, 1y > 0 (which denotes a common radius of absolute convergence of the series
(4.69), (470)), S, b, 0, |A|, maXxskyky)es|bls ok (%0), MaX(s i k)esbls ik (X0), where xo < p.
More precisely, we have the following.

Lemma 4.16. Consider the following:

(1) There exist a constant 0 < (" < [, a constant uy such that 0 < wy < ug (depending
on ug, S and b, o), a constant x1 such that 0 < x1 < p (depending on S, ug, S, b, o,
|A], max(s ko k1)e3|Bls ko ki (X0), MaAX(s ko k1 )es|Pls ko, (X0), Where xg < p), and a constant
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C; >0 (depending on maxosjgs_le,sdi,g,.(uo) (where Wis, e are defined above), |\|,
maX(S,ko,k1)65|b|s,k0,k1 (xo), max(s,ko,k1)65|b|s,k0,k1 (x()), S, ug, x9, S, b) such that

h
sup 1Xni(t, z,€)| < 2C;h! <u3) (4.78)
1

t€TND(0,1"),z€D(0,x1 /4)

foralle € &, forall0<i<v-1,andall h>0.

(2) There exist a constant 0 < (" < [, a constant uy such that 0 < uy < ug (depending
on ug, S and b, o), a constant x; such that 0 < x1 < p (depending on S, uy, S, b,
0, [\, Max(s o k1)es|Blo ko (X0), MaX(s ko k)es|Pls ko b (X0), Where xo < p), a constant
M; > 0, a constant K; > 0 (depending on maxogjss_le,sdq,gq (uo), for g = i,i +1
(where Wi s 4q/q ATC defined above), maxo<j<s-1Wjm,e, (U0), ||, MaX(s kq ky)es1bls ko by (X0),

maxX(s ko k;)e$|bls ko ki (X0), S, Uo, X0, S, b) such that

2 h
sup |Xniv1(t, z,€) — Xpi(t,z,€)| < h! <—) 2K e~ Mi/lel (4.79)
t€TAD(0,"),z€D(0,x1 /4) Uy

foralle € &N, forall 0 < i <v—1,andall h > 0 (where by convention Xp,, = Xp ).

Proof. (1) Let i be an integer such that 0 < i < v — 1. From Proposition 4.12, we can write

Xp,i(t,z,€) = (Gt)_lj Vs, e (T, z,€)e ™ dr, (4.80)
L?’i

where L, = R.eV™1 ¢ S, U {0} and Vi, s 4.,& 18 @ holomorphic function on (S4, U D(0, 7)) x
D(0,x1/4) x &; for which the estimates (4.62) hold. By construction, the direction y; (which
depends on €t) is chosen in such a way that cos(y; — arg(et)) > 61, for all e € &;, all t €
TN D(0,!), and for some fixed &; > 0. From the estimates (4.62), we get

+00 h 2 -1
|Xh,i(tr z, €)| < |€t|—1f CQ(di,éi) h'< 2 ) <1 n T_> eog(b)r/2|e\e—r/|e\|t|cos(yﬁarg(et))dr

o 1-2lz/x1 \m e

+00 h
< et _Cowen (2N Jotwrz-sime/ie) gy
- o 1-2|z[/x; Uy

__Cow h'<£>h 1 < Cows h|<£>h
1=2z|/x1 \uy/ 61-(04(b)/2)IH = 62(1-2Jz/x1)  \w
(4.81)

forallt € TND(0,(), with [t| < 2(61—62)/ (c{(b)), for some 0 < 6, < 61, and for all € € £;,1NE;.
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(2) Let i an integer such that 0 <i < v — 1. From Proposition 4.12, we can write again

Xni(t z,€) = (et) ™! J‘ Vs, e (T,2,€)e”™ “dr,
L,
' (4.82)
Xi (t/ z, €) = (Et)_l -[ Vh/Sdi+1/éi+1 (T, z, e)ef'r/etd,z_l
L

Yitl

where L), = R,eV™1 c Sy U {0}, Ly, = R eVl c Sa;q U {0}, and Vi, ¢, (resp., Vis, &)
is a holomorphic function on (S, U D(0, 1)) x D(0,x1/4) x &; (resp., on (S4,, U D(0, 79)) x
D(0,x1/4) x &i41) for which the estimates (4.62) hold and which is moreover an analytic
continuation of a function V} (7, z, €) which satisfies the estimates (4.63).

From the fact that 7 — V}(7, z, €) is holomorphic on D(0, 7p) for all (z,€) € D(0, x1/4) x
(D(0,€0) \ {0}), the integral of T — Vj,(7, z, €) along the union of a segment starting from 0
to (7o/ 2)eﬁ”+l, an arc of circle with radius 7y/2 connecting (75/ 2)e*ﬁ1”+1 and (1p/ 2)eﬁ”‘
and a segment starting from (7/2)e¥~" to 0 is equal to zero. Therefore, we can rewrite the
difference X}, i1 — Xp,i as a sum of three integrals:

Xpin1(t,2,€) = Xpit,z,€) = (et) ™ <'[ iy & (T,2,€)e7dT
L

70/2Yix1

- f Vi,s4,6(T, 2, e)e/¢dr (4.83)
L

T0/2)Y;
+ f Viu(T, 2, e)e‘T/eth> ,
C(10/2)yi/yis1)

where Ly 2, = [10/2, +oo)e*ﬁ17f, Loy, = [10/2, +oo)e*ﬁ1”"+1, and C(19/2,7i,vi+1) is an
arc of circle with radius 7y/2 connecting (7y/ 2)eﬁ” with (7o/ 2)e‘EYi+l with a well-chosen
orientation.

We give estimates for I} = |(et)_] fL Vs, en(T, z, e)e /etdr|. By construction,

T0/2,Yi41 i+l
the direction yi.1 (which depends on €t) is chosen in such a way that cos(yi+1 — arg(et)) > 61,
foralle € £, Né; allt € TN D(0,u), and for some fixed 6; > 0. From the estimates (4.62),

we get

+00 h 2 -1
I < Jet|”! f Cowin ) 4, <£) Lo D) QobOn 20l /el cost ) g
w2 1= 2|2|/x1 U le|

+ h
< |€t|—1f ” Mh(l) p(08®)/2-51 /1) (r/1eD) 4,

w2 1=2]z|/x1 U (4.84)
~ Cowingin)

| 2 he—((él/Itl—oé(b)/2)(ro/2))(1/|e\)
S 1-2z/x ( ) 61— (o¢(b)/2)|H|

h
< _Coudnin) h!< 2 ) o~ (6:1/2)/lel!
= 6,(1-2z/x1) \m

Uu

forallt € TND(0,(), with || < 2(61—62) / (c{(D)), for some 0 < 6, < 61, and for all € € £;,1NE;.
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We give estimates for I, = |(€i‘)71 ILTO/2,~ Vis i (T,z,€)e "/¢dr|. By construction, the
direction y; (which depends on et) is chosen in such a way that there exists a fixed 6; > 0 with
cos(y; —arg(et)) > 61, foralle € .y Né;and all t € TN D(O, (). From the estimates (4.62), we
deduce as before that

h
I < CQ(di,f-i) m(g) e—(621-0/2)/|e|1’ (4.85)
= 62(1-2z[/x1) U

forallt € TND(0,(), with |t] < 2(61—62) /(c{(b)), for some 0 < 6, < 61, and for all € € £;.1N¢E,;.

Finally, we get estimates for I3 = |et|‘1|_fC(T0 o) V(T2 €)e /¢ dr|. From the

estimates (4.63), we have

ir h 2\ !
I < |et|™" J 1 Co,. h'( 2) <1+ (To/f) > ea@(b)Tg/4\e|e—(To/2|e\|t|)cos(e—arg(et))%de.

y 1=20=7x0 \m el

(4.86)

By construction, the arc of circle C(7/2,Yi,¥i+1) is chosen in such a way that that cos(6 —
arg(et)) > 61 for all 0 € [y, yin] (f yi < yis1), 0 € [y, yi] (f yi1 < y3) forall t € T, all
e € &;Né&;yq. From (4.86), we deduce that

Ca,. 2\"7 1
I < |yis1 - 1] 00 1( > 0 _= o ((61/1H-04(0)/2)(70/2))(1/le])

1-2z|/x1 \w/ 2 |et|

(4.87)

Ca 2\"7 1 ,
< lviig — v 70,€0 (= ‘o _e—(6270/4)/|et|e—(6z7'o/4)/\e|t
< i =yl <u1> 2 ef]

forallt € TND(0,(), with [t| < 2(61—62) / (c{(b)), for some 0 < 6, < 67, and for all € € £;,1NE;.
Using the inequality (4.87) and the estimates (2.41), we deduce that

Co 2 \"2¢e7! ,
In < |yiuy — | ——00  pif £} 2= o= (Gamo/4)/lelr 4.88
2 [rin Yl|1—2|2|/xl <u1> 5, ¢ (4.88)

forallt e TN D(0,!), with |t| < 2(61 — 62)/(0¢(b)), and for all € € £;,1 N &,
Finally, collecting the inequalities (4.84), (4.85), and (4.88), we deduce from (4.83), that

|Xi+1 (t, z, €) - Xi(t/ z, €)|

h _
h!(2/uy) <CQ(d,~+1,é,~) +Caw,e) o~ (6:10/2)/lel! 2e7! e-(52T0/4)/|e|1'>

= 1-2z/x 5, + [y~ 1l Can, =5
(4.89)

forall t €e TN D(0,!), with [t| < 2(61 — 62)/(0¢(b)), for some 0 < 6, < 61, forall € € €41 N &4,
and for all 0 < i < v — 1. Hence, the estimates (4.79) hold.

Now, let us fix h > 0. For all 0 < i < v -1, we define Gp(¢e) := (t,z) — Xpi(t, z, €),
which is, by Lemma 4.16, a holomorphic and bounded function from &; into the Banach space
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E = O(Tn D(0,1")) x D(0,x1/4)) of holomorphic and bounded functions on the set
(TND(0,1")) x D(0, x1/4) equipped with the supremum norm. Therefore, the property (1) of
Theorem (RS) is satisfied for the functions Gy,;, 0 < i < v — 1. From the estimates (4.79), we
get that the cocycle A; = Gy i+1(€) — Gp,i(€) is exponentially flat of order 1 on Z; = &4 N ¢&; for
all 0 < i < v-1. We deduce that the property (2) of Theorem (RS) is fulfilled for the functions
Gpni, 0 <i < v —1. From Theorem (RS), we get that G, ;(¢) are the 1-sums of a formal series
Gh(e) with coefficients in [E. In particular, from Definition 4.1, we deduce the existence of the
functions gy (s, t, z) which satisfy the expression (4.76). O

4.7. Analytic Transseries Solutions for a Singularly Perturbed
Cauchy Problem

We keep the notations of the previous section.

Proposition 4.17. The following singularly perturbed Cauchy problem

el?d05Z0(t,z,€) + (et + 1N Zo(t,z, ) = D, boon (2 O)F (8°05 Z0) (L z,€) (400
(s,ko,k1)€ES

for given initial data

. exp(—hl\/et .
<a]zZO>(t/ 0,€) =yt e) = Z%(ph,o,j(et, e), 0<j<S5-1, (4.91)
h>0 '

which are holomorphic and bounded functions on (TN D(0,1")) x (€9 N &1), has a solution

exp(—hi/et)

ZO(tl z, E) = Z I

h>0

Xh,O (t/ z, e)l (492)

which defines a holomorphic and bounded function on (TND(0,(")) x D(0,6z,) x (9N &q), for some
l”, 620 > 0.

Proof. Let h > 0and 0 < j < S - 1. By construction, we have that ¢, (et, €) = (aiXh,o)(t, 0,¢)
forall t € Tand all € € &). From Lemma 4.16, (1), we get that there exist a constant
" > 0, a constant u; such that 0 < u; < uy (depending on uy, S and b, 0), and a

constant Cy > 0 (depending on maxo<j<s-1Wjs io/0 (1) (where Wjs 4o,E0 ATE defined above),

|A], max(s,kg,k1)€5|b|s,kg,k1 (x0), maX(S,kO,k1)€5|b|s,k0,k1 (x0), S, ug, x9, S, b) such that

2 h
sup |gnoj(et,€)] < h!<—> Co (4.93)
teTND(0,1") Uy
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foralle € &, all0 < j < S-1,al h > 0. From (4.93) and from the property (3) of
Definition 4.14, we deduce the estimates

<2exp(—(|A|/€ol") cos(or/2 - 67)) >h

u

sup |10t €)] < CoD,

teTND(0,1") h>0

(4.94)

for all € € &N é&y. This latter sum converges provided that ep is small enough. We deduce that
Y0, (t, €) defines a holomorphic and bounded function on (TN D(0,1")) x (&9 N &1).

Likewise, from (4.78) and from the property (3) of Definition 4.14, we deduce that
there exist a constant ( > 0, a constant u; such that 0 < u; < wuy (depending on
up, S and b, o), a constant x; such that 0 < x; < p (depending on S, uy, S, b,
0, |Al, maX(sky k)es|blskok (X0), max(sk,k)es|blsk, ki (X0), where xp < p) and a constant
Co > 0 (depending on maxo<j<s-1Wijs, ¢ (o) (where Wijs, ¢ are defined above), |A],
MaX (s ky ke8| bls ko ki (X0), MaX(s ko kr)e81Bls ko ks (X0), S, o, X0, S, b) such that

sup |ZO (t/ z, E)l <
t€TND(0,1"),z€D(0,67,) 1- 2520 /x1 h>0

Co Z(Zexp(—qM/Eol")COS(]I'/Z—6t))>h

u
(4.95)

for all € € &y N &q. Again, this latter sum converges if ¢j is small enough and if 0 < 6z, <
x1/4. We get that Zy(t, z, €) defines a holomorphic and bounded function on (TN D(0, (")) x

D(0,6z,) x (&9 N &1). By construction, we have that (GQZO)(t, 0,¢e) = Yo,j(t, €),for0<j<S-1
Finally, from Proposition 4.3, we deduce that Zy(t, z, €) solves (4.90). O

5. Parametric Stokes Relations and Analytic Continuation of
the Borel Transform in the Perturbation Parameter

5.1. Assumptions on the Initial Data

We keep the notations of the previous section. Now, we make the following additional
assumption that there exists a sequence of unbounded open sectors S, s, such that

Sdg C Sdo,ﬁn C ./’ldo U Sdo (5.1)
for all n > 0 and a sequence of real numbers ¢,,, n > 0 such that

ei@r‘ = Sd()/an’ nlir?mén = arg()t) (52)

with the property that arg(eigﬂ /et) € (- /2+6¢,m/2—06¢) foralle € £gnéq, allt € T, and for
all n > 0 (where T and 6¢ were introduced in Definition 4.14). We also make the assumption
that for all n > 0, the function v, s, ¢,(7, €) can be analytically continued to a holomorphic
function 7 — vy, 4 & (T, €) on S 9, for all € € & such that

Uh,j Sy om0 (Tr €) € Eje,0,(Say0,UD(010))xE0 (5.3)
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with the property that

Wi,sdo,ﬂn £o (u) = Z sup ‘vh,]',sdo,an o (T/ 6)

= ceéo 1,€,0,(Sg,8,UD(0,70))x&0 !

and has a common radius of absolute convergence (denoted by u¢, > 0) for all #n > 0. From the
assumption (5.4), we get a constant u; > 0 (depending on j € {0,...,S —1}) and a constant
Cy,j >0 (depending onnand j € {0,...,S - 1}) such that

sup 'Uh,]',sdg,an o (Tr 6)

€€y

h
L> h! (5.5)

. < n,j
7,€,0,(Sdg,8,UD(0,10))xEo Ug,j

for all h > 0. We deduce that

h
|Uh,f,sdg,6n,5o (Telgn, €> | < Cn,j <E> h! exp (m?‘b (])T) (56)

forallr > 0,alle € &, all0 < j < S-1,and all h > 0. In particular, we have that
T = Upjs du,ﬂn,;_o(rei@",e) belongs to the space Lgg/2e for ¢ > orp(S — 1). Moreover, from
Proposition 2.7, we deduce that r — vy, ;s im0 (re', e) belongs to the space %&ae and that
there exists a universal constant C; > 0 such that

~ <G ” ’Uh/]'/sdo,ﬂn <o (relén ’ €)

ign
Oh i re €
|| h,j,Sagn ,50( s ) 05.ed

0,6/2,€

h
2le| 1
<—————CCil — ) R

T o-or(S-1) ! ’]<u0,]->

forall0<j<S-1,allh>0,and alln >0, all € € &.

We make the crucial assumption that for all 0 < j < S — 1, there exists a sequence of
distributions vy j,_n, &, (1, €) € %615,6, for h > 0, a constant u; > 0 and a sequence I,,; > 0 with
lim;, -, 4o I,; = 0 such that

(5.7)

sup
€eéy

h
; 1
. iGn — . < h! — 5.8
|vh,],5d0,ﬂn,‘go(re ,€) Uh,],_/ndO,gO(T, €) ||0,5,€’d < I jh! <“i> (5.8)
for all n > 0 and all h > 0. From the estimates (5.7) and (5.8), we deduce that

h
— < g _
05ed Tl €eCl{u}, 0<j<S-1 (5.9)

2. sup ” hj a0 (77 €)
h>0 €€&o



56 Abstract and Applied Analysis

Lemma 5.1. Let G > or,(S—1). One can write the initial data yy ;(t, €) in the form of a Laplace trans-
form in direction arg(\),

Yo,j (t,e) = ,Earg(A) (Vj,arg(f\),sd(],éo (r, €)> (et), (5.10)

where V]-,arg(k),sdogo(r, €) €D, andforall0<j<S—1,andalle € EgNéy, allt € TND(O,1).

Proof. For 0 < j < S -1, from the definition of the initial data, we can write

exp(—hA/et) 1 T
Yo,j (t, e) = ZPTE JL Uh/]‘,sdoﬁn,go (T, E) exp<—g>d7‘
: Qn

h>0
- % exp(—(hle: 5V /et) % f :o OnSaponst(r€, €) exp <_r eei >dr
(5.11)
foralle € &gnéy,allt € TN D(O,r), and all n > 0. Now, we can write
L, (vh,jfsdo,ﬁn &0 <rei§n, €>> (et) = Largn) (vh,j,sdoﬂn,éo (reién, 6)) ( ot eiars( M—én)) 512

foralle € &N éy,allt € TN D(O,v), all n > 0. From the continuity estimates (3.3) for the
Laplace transform, we deduce that for givent € TND(0, ), € € £yNéq, there exists a constant
C.; (depending on ¢, t) such that

| Lasy (Uh,j,ﬂdo,eo(rf €)> (et) = Losgry (vh,j,sdo,a,,,eo (T eitn, e)) <€tei(arg()t)—§n)>|

S Ce,t

(Onjtay 0T/ €) = UhjSy 0.0 (re', e) | (5.13)

0,0,e,d

+ |/~)arg()L) <vh,j,/ndo,eo(7‘, €)> <€t€i(argm_§")> = Larg()) <Uh,j,/nd0,f_o(7’, €)> (Et)|

for all n > 0. By letting n tend to +oo in this latter inequality and using the hypothesis (5.8),
we get that

£, (Uh,j,sdo,ﬂ,,,ao (reién, e)) (et) = Largn) <Uh,j,_/fld0,éo(r/ €)> (et) (5.14)

foralle e égNéq,allt €e TN D(0,/), and all n > 0.

On the other hand, from Corollary 2.10, we have that for all & > 0, the distribution
" (onjn 4.0 (1, €)) belongs to D .~ and that there exists a universal constant C3 > 0 such
that

h
le]

<G = “v 7, € ” 5.15

0,G,ed ~ 3( G Mo (T €) 0,5,6,d (5.15)

—-h
o; (vh,j,./’ldg & (7€)



Abstract and Applied Analysis 57

forallh>0,all0 < j < S-1. From (5.14) and using Propositions 3.3 and 3.7, we can write

exp(=h|A|e'?B8MN) /et) gitn (+ . eitn
( ) — f Oh,j,Sug om0 (relé", e) exp( —-r dr

h! et )y et
. h ;
elas) \ " exp (—h|A|efasW /et _ (5.16)
() T 3o nae) e
= Larg() <Vh,j,x,/nd0,ao (, €)> (et),
where
(h)
(fh,j,x,/ndo,ao (r = AR, €)1 [ajh ro0) (T)) (5.17)

!
Vi jd sy 0 (1, €) = i €Dy s

with fija .2 (1, €) = a;h(vh,]‘,_/ndo,éo(r, €)) € By;. forallh >0andall0 < j <S-1 From
Proposition 3.6, we have a universal constant A > 0 and a constant B(G, b, €) (depending on
0, b, and ¢, which tend to zero as ¢ — 0) such that

<A (3(5,}1f:,€))h ||fh,j,1,ﬁld0,éo r,e) ”Ola’ad_ (5.18)

0,0,e,d

HVh,j,)x,,/'ldo o (7", 6) |

From the estimates (5.9) and using (5.15), (5.18), we deduce that the distribution

Viarg), 50,60 (7€) = D Vi g e0(r,€) € Dys . 4 (5.19)
720

forall 0 < j < S-1,if e > 0 is chosen small enough. Finally, by the continuity estimates
(3.3) for the Laplace transform £,()) and the formula (5.11), (5.16), we get the expression
(5.10). O

On the other hand, we assume the existence of a sequence of unbounded open sectors
Sa.6, with

Sd1 C Sdl,én C ,/ﬂdl U Sd1 (5.20)
for all n > 0 and a sequence of real numbers ¢,, n > 0 such that

eitn ¢ S5, n]ir?oogn = arg(d) (5.21)

with the property that arg(e’s" /et) € (-or/2+6¢,w/2—6¢) forall e € EgNéy, all t € T, and all
n > 0 (where T and 6¢ are introduced in Definition 4.14). We make the assumption that for
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all n > 0, the function vy s, ¢, (7, €) can be analytically continued to a holomorphic function
T Unjs, 5.4 (T, €) on Sq, 5, for all e € &; such that

Uh,jSuy i1 (T €) € Eje0,(Suy 5,0D(010)) x4 (5.22)

with the property that

Wis, s () = Zsup”vh,j,sd1 o1 (T, €)

hS0eeés j,6,0,(Say,6,UD(0,70))x&1 h!

and has a common radius of absolute convergence (defined by u¢, > 0) for all n > 0. From the
assumption (5.23), we get a constant u; ; > 0 (depending on j € {0,...,5~1}) and a constant
Cy1, >0 (depending onn and j € {0,...,S - 1}) such that

h
1
i , <Cui1il — ) R 5.24
i‘;{’ 'vh”’s"“‘”"él (7.€) 60,8 UDOT)xEr <u1,,~> (524
for all h > 0. We deduce that
1 h
. (2 .
'Uh,j,Sdl,ﬁn,& (Te“j",€>| < Cuj <E> h!exp<mrb (])r> (5.25)

forallr > 0,alle € &,all0 < j < S-1,and all h > 0. In particular, we have that
T Vs sé (re®é, e) belongs to the space Loz, for ¢ > orp(S — 1). Moreover, from
Proposition 2.7, we deduce that r — vyps, ; ¢, (re'*", €) belongs to the space D) 5, and that
there exists a universal constant C; > 0 such that

” Un iy 0. (7 €) | <G ”Uh,i,sdl,an & (ret,e)

0,6,ed 0,6/2,

h
2|e| 1
<———CCyri| — ) K
T o-orp(S-1) 1mli <u1,]->

forall0<j<S-1,allkh>0,alln>0,and all € € &;.
Now, we make the crucial assumption that for all 0 < j < S -1, there exists a sequence
Jnj > 0 with lim,, _, 4 Ji,,j = 0 such that

(5.26)

sup

)UO,j,Sd1,5n,61 (re®,€) = Vjarg(1),54,¢ (1, €) ” 0seq <Tni (5.27)
e€é&onéy /05

for all n > 0, where V; 51,5 io/0 (r, €) are the distributions defined in Lemma 5.1.
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5.2. The Stokes Relation and the Main Result

In the next proposition, we establish a connection formula for the two holomorphic solutions
Xo0(t, z,€) and Xg1(t, z, €) of (4.90) constructed in Proposition 4.15.

Proposition 5.2. Let the assumptions (5.1), (5.4), (5.8), (5.20), (5.23), and (5.27) hold for the initial
data. Then, there exists 0 < 8p,, < Oz, such that one can write the following connection formula:

exp(—hi/et)

Xoa(t, z,€) = Zo(t, z,€) = Xop(t, z,€) + Z W

h>1

Xno(t, z,€) (5.28)

foralle € Egnéy,allt € TND(0,1("), and all z € D(0,6p,, ).

The proof of this proposition will need two long steps and will be the consequence of
the formula (5.79) and (5.124) from Lemmas 5.5 and 5.7.

Step 1. In this step, we show that the function Zy(t,z,€) can be expressed as a Laplace
transform of some staircase distribution in direction arg(\) satisfying the problem (5.80),
(5.81).

From the assumption (5.4), we deduce from Proposition 4.12 that the function
ViS4.60 (7, z, €) constructed in (4.80) has an analytic continuation denoted by V}, 5 do6m 0 (1,z,€)
on the domain (Sg4,,s,UD(0, 1)) x D(0, 6¢,) x £o which satisfies estimates of the form (4.62) for
all n > 0, where 6¢, > 0 depends on S, u¢, (Which denotes a common radius of convergence
of the series (5.4)), S, b, 0, |A|, max(s ky k,)e3|8ls ko ki (X0), MAX(s ko k) S 1Pls ko ki (X0), Where xg < p.
This constant O, is, therefore, independent of n and h. Now, one defines the functions

Vh,sdolﬂn,;_o (r,z,€) = Vh,sdolﬂ",‘go <rei§”, z, e> (5.29)

forallr >0, all z € D(0,6¢,), all e € &y, and all n > 0.

Lemma 5.3. Let & > G > ory(S — 1). Then, there exists 0 < 6p < b¢, (depending on S, b, &, |A|, uj,
0<j<S—1(introduced in (5.8)), S, ug,, p, u, A, B (introduced in Lemma 5.4)), there exist My > 0
(depending on S, S, &, ||, uj, for 0 <j<S—-1,p, u, A, B), M| > 0 (depending on S, S, 5, |A|, p, u,
p', W (introduced in Lemma 5.4), A, B, u; for 0 < j < S —1) and a constant U (depending on S, S,
G, A, p, 4, A, B, ug,, uj for 0 <j < S—1)such that for all h > 0 all n > 0, there exists a staircase
distribution Vh,ﬂdo,éo(r, z,€) € D'(F,¢,6p) with

sup
eeéy

2 h
< j ! [ =
(Ged,6p) (Mlo?fé’fll"'f * MlD”)h <U1> ’

|Vh,5d0'%,50 (1’, z, 6) - Vh,_/nd()/go (T, z, €)
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where 1, is a positive sequence (converging to 0 as n tends to oo) introduced in the assumption (5.8)
and D,, is the positive sequence (tending to 0 as n — +oo) introduced in Lemma 5.4. Moreover, one
has

h
sup||V r,ze — e C{u}. '
% eeéIZ | Ity ol ) (5,e,d,6p) h! {u} (5.31)
Proof. From the estimates (4.54), we can write
zP
Vh'sdo’a" <o (T/ Z 6) = th'ﬂlsdo,ﬂn <o (T/ €) ﬁ’ (532)
p0 !

where Vi, g5, . ¢ (7, €) are holomorphic functions such that there exists a constant u1 such that
0 < w1 < ug, (depending on ug,, S, and b, o), a constant x; such that 0 < x; < p (depending
on S, ug,, S, b, o, [A|, maxs kyky)es|bls ki (X0), MaX(s ko ki)es|bls ko ki (X0), Where xo < p), and a
constant Cq(d,&,),» > 0 (depending on maxo<j<s-1Wj,s dom 0 (ug,) (Where Wi s do,n 0 ATE defined

in (5.4)), |Al, maX(s ko k1)e31bls ko ki (X0), MaX (s ko k1)es|Pls ko ey (X0), S, Ugy, X0, S, b) with

2\"/ 2\* 7| - o
Vh:ﬂfsdo,ﬂn'éo(Tle) SCQ(do,io),nh!:B!<_) <_> <1+u> exp(mrb(ﬂ)ho (5'33)

u1/ \x le|?
forall T € S48, UD(0,79), € € &y, all h > 0,all > 0, and all n > 0. We deduce that

. 2\"/ 2\’ o
|Vig sugan.ea (re, €)| < cmdo,%),n(u—l) <x_1> h!p!exP(mrb(p)r> (5.34)

forallr >0,alle € &y, all p>0,all h >0, and all n > 0. In particular, r — V8,54 0080 (re', e)
belongs to Ly From Proposition 2.7, we deduce that r — Vi g5, . ¢ (re'r, e) belongs to

%}5 s ¢+ From Proposition 2.7 and (5.34), we get a universal constant C; > 0 such that

<G ” ViufSugonsia (1€ €)

|| Vh/ﬂ/sdo,ﬂnxéo (Teign/ €) |

B,0.e,d B,6/2,e

5.35
o 2e| <2)h<2>ﬂhlﬁl (539

—_ 1 Q(do,éo),né -0 ul xl M

forall > 0,all h >0, and all n > 0. From (5.35), we deduce that the distribution
i, Zﬂ 1 «
Vh,sdo,an,éo (r,z,e) = th,ﬂlsdo,anléo <rgl " €> F €D (O’, €, 5) (5.36)
$>0 :

foralle € &, all b < x;/2,allh >0,and all n > 0.
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One gets from (4.20), (4.21) and the assumption (4.44) that the following problem
holds:

<rei§n +1+ Ah) agvh,sdoﬁn,go (r,z,€)

= Z ekOES,kO,k1 (z,€)eko—seilsRo)én Z ai,llprma;”a’;wh,sdolﬁméo(r, z,€)
(s koR)es (mp)eol.,,
ko! Kl - y e ot (5.37)
N 0 q =S ,1(S—ko—q)Gn
+ khklee °bs ok, (2, €)cg’ (HA) TR0 57h
ki +ka=ko ky>1"0""0" g=1
2, _
x Z am7prma,”a’; Vi,Sum.60 (T, 2, €)
(m/P)Eog,ko,q
with initial data
(MY 1080 ) (1,0, €) = Vs 0 (re™,€), 0<j<S-1. (5.38)
On the other hand, we consider the problem
(reiarg()‘) +1+ Ah) ath,ﬂdOI;_O(r, Z,€)
= Z eko Es,ko,k1 (Z, 6') ekg—sei(s—kg) arg(4) Z a}n,prma;pa,zq Vh,ﬂdo,éo (T, z, 6)
(s ko)es (mp)eol,,
ko! K} . y e ok o) (5.39)
: 0 q  ko—s ,i(s—ko—q) arg
+ > kl!k2!Z€ "Dy o ko (2, €)cq’ (RA) TR0~ 'R0
kp+ka=ko,kj>1"0""0" g=1
2, _
X Z a”ﬁprmarpalz(l Vh,_/’ldo o (rl z, 6)
(mp)ed?,
with initial data
(Vi sy e0) (r,0,€) = Onj g o (rye), 0<j<S-1, (5.40)
In the next lemma, we give estimates for the coefficients of (5.37) and (5.39).
Lemma 5.4. Let
~ ~ 2P
bs ko ki (2,€) = st,kg,kl,ﬂ(e)_ (5.41)

50 p
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the convergent Taylor expansion of Do ok, With respect to z near 0. Let a € R be a real number. Then,
there exist positive constants A, B, p, p', u, p' and a sequence D,, > 0 such that lim,, _, ,,,D,, = 0 with

50 <bs"‘“”“'ﬂ (et > ‘ < apb__ P

"\ reiasW) + 1+ \h (p(r + H)>q+1’
- (5.42)
iagy
az bs,kf),kl,ﬂ (E)e < ABip ﬂ'q' )
rein + 1+ Ah (p(r+/4))q+l
b ok (€)™ by ple)e™ pig!
N — —of( SRk V| <p,Bf—ET (5.43)
retas) + 1 4 AR reion + 1+ Ah (p'(r+ #,))qﬂ

forallg>0,all p>0,alln>0,allh>0,allr >0,and all € € &.

Proof. We first show (5.42). From the fact that ES/kOrkl (z, €) is holomorphic near z = 0, we get
from the Cauchy formula that there exist A, B > 0 such that

Bk p(€)| < ABFP! (5.44)

forall p > 0, and all € € &j. On the other hand, from Definition 4.14(3.1), there exist p, u > 0
such that |re®®" + 1+ Ah| > p(r + p) for all ¥ > 0, all h > 0, and all n > 0. Hence,

q! q!

iag,
e . < 5.45
<re’§n+1+./\h>‘ - |rei§n+1+)th|q+l - (p(r+#)>q+l ( )

forallr >0,and all h >0, all g > 0, all n > 0. We deduce (5.42) from (5.44) and (5.45).
Now, we show (5.43). Using the classical identities ab — cd = (a — ¢)b + ¢(b — d) and
b1l — a1l = (b-a) x 37 a°b7~°, we get the estimates

aq Lrg()w) - aq —ei"‘é"
"\ reiasM 1 1 + Ak "\ rei +1+Ah

eixarg(d) pigarg(l) £1%n piqSn

(retars® + 1+ An)™! ) (reitn + 1+ Ah)™!

q+1
< q' |ei§n B eiarg(l\)| x Z ; 1—:—2—5 ; s
1 |retas™ + 1+ Ah|T77 |reien + 1+ Ah|

|eiaarg(l) _ eiagn + |eiarg()L) _ eig,, (q + 1)
|retars) +1 + )Ll’l|q+1 .

On the other hand, again from Definition 4.14 (3.1), there exist p1, 1 > 0 such that

< g!

(5.46)

+

re'sM 41 4+ .)Lh' >pi(r+m), |rei§" +1+ )Lh| > p1(r+m) (5.47)
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forallr > 0,all h > 0, and all n > 0. Using (5.46), (5.47) and the fact that g + 1 < 29*! for all
q > 0, we deduce the estimates (5.43).

In the first part of the proof of Lemma 5.3, we show the existence of a staircase
distribution solution of the problem (5.39), (5.40), which satisfies the estimates (5.31). As
a starting point, it is easy to check that the problem (5.39), (5.40) has a formal solution of the
form

Vit 20 (1, 2,€) = D Vg g, 0 (T &)= L (5.48)
= ﬁ

where r — V5 1 a0 (r, €) are distributions on R, for which the next recursion holds:

€ b Ko,k ( )
Vipesgea(re)= >3 pI—l B ks

(s, ko1 €S pr+fa=p prt
ei(s~ko) arg(h) 1 myp Vi parkyay 20 (1 €)
el 4 14 Ak fmpT Cr P!
( p)eo‘; ko

€ "Dy o k. i (€) &
O e

g (R

1172 ]
k3+k§:ko,kg>1k kO =1 pi+p= ﬁ pr
o ei(s—ko=q) arg(\) Z amp e pVh,ﬂz+k1,./'ld0,5o (r,€)
iarg(1) !
re +1+Ah (mp)eor, P2
(5.49)
forall p >0, h > 0, with initial conditions
Va0 (1,€) = Onjmy&(r,€), 0<j<S-1,h2>0. (5.50)

Using Corollary 2.10, Propositions 2.11 and 2.12, the estimates (5.9), and Remark 2.4, we
deduce that Vi g n, ¢, (1, €) € %;5,6,6 for all h,f > 0 and that the following inequalities hold

for the real numbers Vg n, (€) = |[Vigny (7 €)|lpseaq: there exist constants Craor Casp
(depending on S, &, S, p, p) with

- ko Y o, My, (€)
Vh!ﬂ+srﬂd0 (e) < Z Z C;EJO:[;'AB P (ﬂ +S+ 1)(5 ko)’:’ﬂﬁ#
(s,ko,k1)€S P1+f2=p ‘[32_
_ 1=
* Z kl k2 Z Z C2; 0 BIABP1|c,0|[A|7h1 (5.51)

kb +ka=ko,kj>1"0 q=1 p1+p=p

ko-a)b Y pakr, My, (€
X (p+5+1)CH ‘”b%‘fﬂ()
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for all p,h > 0, where A, B > 0 are defined in Lemma 5.4. We define the following Cauchy
problem:

S _ 1 b(s—ko) ke
OBIW o, (u,x) = D, Chyo(x0x+S+1) (max W, (u,x)>
(S,ko,k1)€5
0 2 b(s—ko—q)
+ chm g’ |[M7(x0x + S +1) 1 (5.52)
kg +kg=ko k=1 70°70" =1
A K
(T (0105 W (1)
for given initial data
; h
<6xW/nd0>(u,0) =Won,,,i(u) = Zsup |Uh,]‘,_/nd0,éo(r,€) ioed Tl C{u}, 0<j<S5-1
130 ecéo ,0,€, !
(5.53)
From the assumption (4.42) and the fact that b > 1, we deduce that
S>b(s-ko—q) +q+k (5.54)

for all (s, ko, k1) € S and all 0 < g < ko. Hence, the assumption (2.108) is satisfied in
Proposition 2.22 for the Cauchy problem (5.52), (5.53). Since the initial data Wz, ;(u) is
an analytic function on a disc containing some closed disc D(0,Uyp), for 0 < j < S -1 and
since the coefficients of (5.52) are analytic on C x D(0, B), we deduce that all the hypotheses
of Proposition 2.22 are fulfilled for the problem (5.52), (5.53). We deduce the existence of a
formal solution Wz, (u,x) € G(U_n,, X n, ), where 0 < U g, < Uo (depending on .5) and
0< X, < B/2 (depending on S, &, |A|, p, p, Up, S, A, B).

Now, let W, (1, %) = 3, g0 Whpny, (4" /h1)(xP /1) be its Taylor expansion at the
origin. Then, the sequence wy,p _n,, satisfies the next equalities:

_ —ko)b Wh,fao+ky, M
Wh,p+S, May = Z Z CloB'ABP (B +S+ 1)(5 ko)b%
(5/ko,k1)€S pr+po=p 2:
kO' & 2 B K}
. - 0
* ) ZZ k1!k2!Z Z Ca30B!ABP |, |[A|Th1 (5.55)
ki+k3=ko,k}>170"0" g=1 pr1+po=p

Wh,pa+ky, Mg,

R

forall B, h > 0, with

. = . > <7< —
Wh,j, My, iggiivh,],mdo,ao(r, e)||]_,é,€, s h20,0<j<5-1. (5.56)
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Gathering the inequalities (5.51), the equalities (5.55) with the initial conditions (5.56), one
gets

sup| Vi, (€)] < wn g, (5.57)

€e&y

for all h, p > 0. From (5.57) and the fact that W », (1, x) € G(U_n,,, X n,), we get a constant
C.n,, > 0 such that

ivh'p’ﬂdo (7€) ” B,5e,d

h B h B
1 1 2 2
< ! < 1B!
— C./ndo (h+ﬂ) <uﬂd0> <X_/fld0> — C./’(dohﬂ <uﬂd0> <X,/’ld0>

for all h,f > 0. From this last estimates (5.58), we deduce that for all h > 0, V}, 4 do,;_o(r, Z,€)
belongs to '(5, €,6.n,,) for 0 < 6.n,, < X n, /4 and moreover that

sup
ecéy

(5.58)

h

u
Gebng) B Clu) (5.59)

Z sup

h>0 e€&o

'Vh,./'ldo & (1,2, €)

holds. This yields the property (5.31).
In the second part of the proof, we show (5.30). One defines the distribution

A .
V”l/sdo,ﬂnléo (r/ z, €) = Vh,_/’ldo,éo (T, z, €) - Vh,Sdo,g",éo (T, z, €) (560)

forallr >0,all z € D(0, 6/;%) ND(0,8), with 0 < & < x1/2, all € € &. If one writes the Taylor
expansion

p
A A Z
Vi Sy omito 172/ €) = %Vh,ﬂ,sdo,»n,éo (r,€) Bl (5.61)
>
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for z € D(0,6.1,,) N D(0, 5), then the coefficients Vﬁ BSu 0 /E0 (r, €) satisfy the following recur-
B/Sdy n
sion:

kj (ko)

€705 ko k1,1 (e) Ko— e

Vi pes.5u o 60 (7€) = Z Zﬁ! e i
P+SSag8m,€0 (kTS priach P! reié +1+ Ah

(r,€)

5 A
—p  WpPatki,Say,8, <0
1 ma~P 0/%n
X E Ay p? o,

|
(mp)eol P

Kk

1 % koEs
+ Z kO- Z Z ﬁ' € ko, k1,p1 (6) C,,;é (l’l)t)q

1172y |
K ekioky kix1 Ko Ko 431 p o pamp b

ei(s—ko=0)n

ko—S
€t —— x
rein + 1+ Ah

A
2,4 m —pVh,ﬁ2+k1,5d0,ﬂn,5o (r,€)
Z op? " Or

(m,p) €0? ﬁz'

+Brpn(r,e),
(5.62)

where

kg'l; i(s—ko) arg () i(s—ko)én
€705 ko k1,1 (6) ko— 5 e
Biga(r,e) = > > e

(hThes e B! relaeM) + 1+ kb refo +1+\h

o Vi ok, &0 (7, €)
» Z a}n/pr"’arp Potki, May,Eo\Ts

|
(mp)eol P!

' Kk} kog 1
. Z ko! Z Z ﬂ!e S,korkl,ﬂl(e)cso(h)t)q (5.63)

1112 1
Kiki=ko ko1 Ko!Ko! 551 gy dp-p A
ei(s—ko=q) arg(}) el(s—ko=q)én
x gho~s . - —
retasM) + 14+ \h  reln +1+\h

) — >hﬂ +k & (]I )
/) My, €
% Z ,7 ma P 2TK] dy <0

|
!
(m,p)eOikOiq '[5
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for all h > 0 and all p > 0. Now, we put Vhﬂn(e) ||Vhﬂsd . & T Olps.ca- Using
Corollary 2.10, Propositions 2.11 and 2.12, and Lemma 5.4, we get that there exist constants

C)s,,C3;, (depending on S, &, S, p, p) such that the following inequalities:

Vi ()
- ~ko)b ~ h,potks,

Vipsa@ < 3 3 ChyplABP (B S +1) 2R
(s/ko,k1)€ES pr+po=p 2:

Y

kl k2 Z Ca, BIAB™P (5.64)
ki +k2=ko,kj>1"0

0° q=1 pr1+fo=p

Vi ek (€)
A

+ B pn(e)

hold forall k, > 0, where A, B > 0 are defined in Lemma 5.4 and By, 3, (€) is a sequence which
satisfies the next estimates: there exist constants C3, ,,C;,, > 0 (depending on 3,5,5,0',4')
with

Bugn(e) < D> D, Ca DB

(s,ko,k1)ES Pr+p2=p

'Vh,ﬂﬁkl,./fldo,éo (1’, 6)

P!

ﬂ2+k] ,5‘,6,01

x(B+S+ 1)(S_k°)b

(5.65)

Yy

K +k2=ko k2170

Z C351p'D,B"
kl ké 471 B +a=p

| | Vh,ﬁ2+k1 My o (r,€)

P!

Po+ky,Ge,d

SATRI (B + S +1) 0T

forall h, 3, n > 0, where D,,, n > 0 is the sequence defined in Lemma 5.4.
We consider the following sequence of Cauchy problem:

Wy (u,x) = > c;al(xax+5+1)b<sf’<0><

—Bakl W4 (u, x))
(s,ko,k1)€S

/

|7(20y + S + 1)PleRomd) (5.66)

+ k1 kz Zczsl

ky+k2=ko,kj>1"07"0" g=1

A
q ki A
« (1 (B, )0 (u,x)> +Dy(u, ),
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where

Du(u,x) = > Chyy(x0y +S+1)"7 <D—/Ba’<lw o (1, x)>
(S,ko,kl)e.s

e |\ (xBy + § + )P0 (5.67)

+ k1,ké,zczsl

k}+ka=ko,k}>1"0

D
n 9 k1
x <1_x/B(u6u) Oy Wﬂdo(u,x)>

and Wz, (u, x) is already defined as the solution of the problem (5.52), (5.53), for given initial
data

(8kwi) (1,00 = W2, ()

= ZSUP”Uh;/ndO & (1 €) — Uh,j,S a0 om0 & (ré! iGn e)” dﬁ € Clu}, (5.68)
>0 €€y /G€
OS]SS_lr

which are convergent near the origin with respect to u due to the assumption (5.8) and
Remark 2.4. Moreover, the initial data satisfy the estimates

forall u| <u;,0<j<S-1,alln>0.
From the assumption (4.42) and the fact that b > 1, we deduce that
S>b(s-ko—q)+q+k (5.70)

for all (s, ko, k1) € Sand all 0 < g < ko. Therefore, the assumption (2.108) is satisfied in
Proposition 2.22 for the problem (5.66), (5.68).

On the other hand, from Lemmas 2.20 and 2.21, there exist a constant D 4 o >0
(depending on S, 5, S, p', ', |\, B, UﬂdO,Xﬂdo), a constant 0 < U1, < U.n,, and a constant
0 < Xi,m, <X, such that

1D 04,201,y 3,0 < DDt || W, ()| <DuDp,Coyy  (571)

X
( Mg My )

for all n > 0, where the constant C g, is introduced in (5.58).
Since the initial data W].An(u) is an analytic function on some disc containing the closed

disc D(0, u;j/2),for 0 < j < S -1 and the coefficients of (5.66) are analytic on C x D(0, B), we
deduce that all the hypotheses of Proposition 2.22 for the problem (5.66), (5.68) are fulfilled.
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We deduce the existence of a formal solution W4 (1, x) € G(Uy, X1) of (5.66), (5.68), where
0 < LI1 < min(llllﬂdo,minosiss_luj/Z) (depending on 5) and 0 < X1 < m1n(B/2, Xl,./’ldo)
(dependingon S, &, |A|, u;, for0<j<S-1,5, A, B, p, u).

Moreover, from (2.111) and (5.71), there exist constants M; > 0 (dependingon S, &, A,
uj, for0<j<S5-1,5,A,B,p,u) and M > 0 (dependingon S, u; for 0 < j < S-1, B, S) such
that

||WA(u x)|| < My max L + DyM2D y Cotay (5.72)

for all n > 0. Now, let W3 (1, %) = 3, 550 wﬁﬂn(uh/h!)(xﬁ /P!) be its Taylor expansion at the
origin. Then, the sequence wﬁ s Satisties the following equalities:

A
w
_ (s=ko)b ~ h,patkin
wﬁ,ms,n = Z >, CunfIABP(B+S+1) ﬁzv :
(s koK) €S fr +fa=p >

A
Wy pyrkn

+S 4 1)t
(p ) X

TS Z C2, pLAB P |l

1172
kg+k§:ko,k},>1k ko 9=1 pi+p2=p

+ Dnpn,
(5.73)

where

ko)b Whpa+ki, M
D pn = Z Z C3;.f\DnB (ﬁ+5+1)(s ! jﬁ |1 -
(s kon)€S pr +Pa=p >

)(s ko— q hﬂ2+k1 ./hdo
P!
(5.74)

+ Z Z C§3.1ﬁ!DnB"’1

11721
Kl ko k11 Ko ko 1 B +Pa=p

forall h, ,n >0, with

A

i = S0P [on 0 €) = Oy e | VR0, V0 <51 (575

ey j.oe,

w

Gathering the inequalities (5.64), (5.65) and the equalities (5.73), with the initial conditions
(5.75), one gets that

sup|V
€€y

hp (S)I < whﬁn (5.76)

forallh,f>0and alln > 0.
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From (5.76) and the estimates (5.72), we deduce that

A
<P | Vi)

ey ﬁ 06,4

1\"/ 1V
< (Mlog]l'gas)illn’j + DanD_/ndo C./’ldo > (h + ﬁ)'(m) <X_1) (577)

2\"7 2\F
< <M1 maxlIn,]- +D"M2D./"doc./’ld0>h!ﬂ!<i> (X_l>

0<j<S- 1

forall h, >0, all n > 0. From (5.77), we get that

sup || Vi Sig o %0 (r,z,€) =V, May o (r,z,€)

ey (&,6,d,5p)
(5.78)
2 \"
< (Mlogl'gas)illn’j + DanD_/ndO C./’ldo > h! <E>
forall h > 0 and all 0 < 6p < X;/4. This yields the estimates (5.30). O

In the next lemma, we express Zy(t,z,€) as a Laplace transform of a staircase
distribution.

Lemma 5.5. Let & > G > or,(S —1). Then, one can write the solution Zy(t, z, €) of (4.90), (4.91) in
the form of a Laplace transform in direction arg(A)

Zy(t,z,€) = —Earg(A) <Varg(x),5d0,éo (r,z, €)> (et) (5.79)

forall (t,z,¢) € (CND(0,(")) x D(0, 6p,z,) x (9N é&1), where Varg(A),SdU,éo (r,z,€) € D'(5,¢,06p,z,)
(with 6p,z, = min(6p, 6z,)) solves the following Cauchy problem:

<reiarg()~) + 1) agVarg(/\),st,éo (r,z,€)

ko— i(s—k A 1 P Ak
= Z e’ Sbs,ko,kl (Z/ 6) el(s v arg(d) Z am,prmar azlvarg()t),sdo,éo (1’, z, 6) ’
(s/kok1)€S (mp)eol,,

(5.80)

1

mp Are introduced in (4.20), with initial data

where the sets O}, and the integers a
0

<5iVarg(A),sd0,eo>(r, 0,€) = Vjarg),s4,4 (1, €), 0<j<S-1 (5.81)
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Proof. From Proposition 4.17, we can write the solution Zy(t, z, €) of (4.90), (4.91) in the form

exp(—h\/et) 1

T
Zy(t,z,€) = Z o g J Vi,S40 0.0 (T, 2, €) exp<—5>dr

h>0 Lg,
exp(—h|A|e'BW) /et) giln (+ . eitn
= — Vi <rel§", z, e) exp| -r dr
% h! et J, hoSag om0 P et

forall (t,z,€) € (CTND(0,(")) x D(0,6z,) x (&9 Né&q) and all n > 0. Now, we write
L, <Vh,5d0,ﬂn,;’0 <rei§", z, €>> (et) = Larg(n) (Vh,sdolﬂwgo (reié", z, €>> (etei(arg()‘)_g”)> (5.83)

for all (t,z,¢) € (TN D(0,(")) x D(0,62,) x (£ N &1) and all n > 0. Now, we define 6p,z, =
min(6p, 6z,). From the continuity estimates (3.5) for the Laplace transform, we deduce that
for givene € 9N éq, t € TND(O,1"), there exists a constant C,; (depending on ¢, t) such that

ﬂarg(J\) (Vh,_/'ldo,éo (r,z, €)> (et) — ﬂarg()t) <Vh/5d0,a,,,<‘-o <rei§", z, €>> <€tei(arg(l)*§n)> |

< Ce,t

Vh,,/’ldo,éo (7', z, €) - Vh,sdoyan o (reign/ z, 6) (584)

(6,€,d,6p,7y)

+ |‘£arg()t) <Vh,ﬂtdo,f.0(r, Z/€)> <€tei(argm_§")> = Larg(1) <Vh,_/nd0,éo (r,z, €)> (et)|

for all z € D(0,6p,z,), all n > 0. By letting n tend to +oo in this latter inequality and using the
estimates (5.30), we obtain

L4, (Visagn o (re™,2,€) ) (€8) = Lag) (Vi 0 (r,2,€) ) (et) (5.85)

forall (t,z,€) € (CTND(0,(")) x D(0,6p,z,) x (€9 Né&1) and all n > 0.

On the other hand, from Corollary 2.10, we have that for all & > 0, the distribution
O (Vi m 440 (T, 2, €)) belongs to D'(5, €, Op,z,) and that there exists a universal constant C3 > 0
such that

(5.86)

a;h (Vh,./’idgléo (r,z,€))

lel\"
<G 5 ||Vh,_/fld0,éo(T,Z,€)

G,€,d,6p,7, 6,e,d,6p,7,

forall h > 0.
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From (5.85) and using Propositions 3.3 and 3.7, we can write

eXp(—hMleiarg(l) /et) pitn (o0 ' "
h! E 0 Vh’sdofﬁnr“«n <r61€n, z, €> exp| —-r o dr

. h -
a8\ “exp (~h|A|etsM) /et) B (5.87)
= < of > il ‘Earg()») <ar " <Vh,./'ldo,éo (r,z,€) >> (et)
= Larg(1) <Vh,1,ﬂd0,éo (r,z, €)> (et),
where
(h)
(fnrtag s (r = X1, 2, €) i seey (1)) (5.88)

Vi, 20 (1, €) = € 9'(5,€,6p,z,)

h!

with fua e (1, z,€) = a;h(Vh,/ndO,;_O(r, z,€)) € D(5,€,0p,z,), forall h > 0,all 0 < j <
S — 1. From Proposition 3.6, we have a universal constant A > 0 and a constant B(5, b, €)
(depending on &, b, and €, which tend to zero as € — 0) such that

< 4 (B@D

, € ) ) " || ( ) ( 5 89)
Gedbpzy h! fh')t/'/ndo SN .

”Vh,)L,_/ndo,éo (r,z,€)

6,€,d,6p,7,

From the convergence of the series (5.31) near the origin and using (5.86), (5.89), we deduce
the distribution

Varg),50,,60 (1 2,€) = D Vi sy, (1,2, €) € D' (5,€,6p,2,), (5.90)
70

if 9 > 0 is chosen small enough. Finally, by the continuity estimates (3.5) of the Laplace
transform L1y and the formula (5.82), (5.87), we get the expression (5.79). Moreover, from
the formulas in Proposition 3.3, as Z (¢, z, €) solves the problem (4.90), (4.91), we deduce that
the distribution Varg1),s i0/60 (r,z, €) solves the Cauchy problem (5.80), (5.81). ]

Step 2. In this step, we show that the function Xy (¢, z,€) can be expressed as a Laplace
transform of some staircase distribution in direction arg(1), satisfying the problem (5.80),
(5.81).

From the assumption (5.23), we deduce from Proposition 4.12, that the function
Vo5, (T, z, €) constructed in (4.80) has an analytic continuation denoted by Vj 5 iy o (1,z,€)
on (Sas, U D(0,1)) x D(0,6¢,) x (&9 N &1) and satisfies estimates (4.62) for all n >
0, where 6¢, > 0 depends on S,us (which denotes a common radius of absolute
convergence of the series (5.23), .S, b, o, |A|, maX(s k, k;)e5|bls ko k1 (X0), MaAX(s ko k1 )e 5Pl ko k1 (X0),
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where xg < p. This constant ¢, is, therefore, independent of n. Now, one defines the
functions

Vo,sdl/ﬁn,;,l (r,z,€) = VO,Sdl,gn,él (reig", z, €> (5.91)

forallr >0, all z € D(0,6¢,), and all n > 0.

Lemma 5.6. Let & > G > o1,(S — 1) as in Lemma 5.3. Then, there exists 0 < 6p,, < min(b¢,, 6p,z,)
(depending on S, S,5,|A|, A, B, p, p and A, E, p, pi introduced in Lemma 5.7), there exist Ml,My
(dependingon S, S, 5, |\, A, B, p, p, A, B, p, i and p', ji' introduced in Lemma 5.7) such that

sup |V0,sd1,5n,é1 (1,2, €) = Varg(1),54,& (1, 2, €)

e€&oné,

<(M -+ MoD
(é’s’d"SDoJ)_( 1051'%>51]”'1+ 1 "> (5.92)

forall n > 0, where Varg(1),s 10 (r, z, €) is defined in Lemma 5.5 and solves the problem (5.80), (5.81)
and D, is the sequence (which tends to zero as n — +oo) defined in Lemma 5.7.

Proof. From the estimates (4.54), we can write

B

ye

VO Say s (T,2,€) = D Vo5 506 (T, €) Ik (5.93)
B0 :

where Vo5, ;. ¢ (7, €) are holomorphic functions such that there exist a constant u; with 0 <
U < ug, (depending on ug¢,, S, and b, 0), a constant x; such that 0 < x; < p (depending
on S/ uélr 5/ b/ O./ |-)L|/ maX(S,ko,k1)€3|b|S,k0,k1 (xO)r maX(S,ko,k1)€5|b|S,ko,k1 (xO)/ Where xO < P)/ and a
constant Cod, &,),» > 0 (depending on maxo<j<s-1Wis, 5,.¢ (Ue,) (Where Wi, ; ¢, are defined

in (5.23)), |Al, max(s kg k;)e3|bls ko ki (X0), MaX (s ko k1)e8|Pls ko ke (X0), S, Ug,, X0, S, b) with

2\’ T - o
) < 2B — 1+ — — 5.94
VO,ﬂ,Sdl,bn,& (r,€)| < Cad &), p (xl ) < + |€|2> eXP<2|€| Ty (ﬂ) |T|> ( )

forallT € 54,6, UD(0,7), € € &1, all > 0, and all n > 0. We deduce that

. 2\* o
|Vopsiyanes (re €)| < CQ(dl,an,n(x—l) p! exp(mrb (ﬂ)r> (5.95)

forallr >0,alle € &, all p >0, and all n > 0. In particular, r — Vg 55 i1 61 (re's, e) belongs to
Lg,s/2,e- From Proposition 2.7, we deduce that r — Vg 55 im0 (re', e) belongs to %"5 5o From
Proposition 2.7 and (5.95), we get a universal constant C; > 0 such that

< Ci[|Vopsiynes (re, €)

|| Vorﬂ/sdl,ﬁnrél (reign/ €) |

poed B5/2,€

2lel /2 b
< C1Cg(d1,él),nm<x_l> P

(5.96)
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forall > 0 and all n > 0. From (5.96), we deduce that the distribution

N
Vo,50,0060 (1:2,€) = D Vo5 5061 (Telg”,e") b e (0, €, 5) (5.97)
0 !

foralle € &N &y, all b < x;/2,and all n > 0.
From (4.20), (4.21), we have that the distribution Vo s, ; ¢ (7, 2, €) solves the following
problem:

<rei§n + 1>65V0,Sd1,6n/61 (r,z,€)

= Z eko‘sbs,ko,kl(z,e) elsko)én Z cxin,prma;palz‘lVo,sdlﬁn,‘gl(r,z,e) ,
(s,ko,k1)€S (m,p)eOl

s—ko
(5.98)
where O;_ko is the set and a}n,p are the integers from (5.80), with initial data
<5£V0,5d1,5,,,51>(7’, 0,€) = 0,754, 501 <r€i§",e>, 0<j<S-1 (5.99)

In the next lemma, we give estimates for the coefficients of (5.98) and (5.80). The proof is
exactly the same as the one described for Lemma 5.4.
Lemma 5.7. Let

B
z
bs!kolkl (Z/ €) = st,ko,k1 ,ﬁ(e) T

2. i (5.100)

be the convergent Taylor expansion of bsy,k, with respect to z near 0. Then, there exist positive
constants A, B, p, p', i, i’ and a sequence D,, > 0 such that lim,, _, .o.D,, = 0 with

b, i(s—ko) arg(\) — Ig!
ag< ,ko,hﬁfj}g‘f}l) > < AB™P ~ﬂ—q~q+1,
re +1 (P(r+H))
b, i(s—ko)én —— Ig!
5 < ,ko,kl,ﬂi(:)e . >‘ < AB* ~ﬁ—q~qw
rein + (P(r+m))

p'q!

@ (r+ )™
(5.101)

<D,B*

o7 bslko’klrﬂ(e)ei(s—ko)arg()L) 4 b ko 5 (€) i(5—ko)
" retas) 41 r reitn +1

forallg>0,all p>0,alln>0,allr >0andall e € Eg N &y
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Now, we consider the distribution

Vo5 me (T 20 €) = Varg1) 500 (1, 2,€) = Vo5, (1, 2, €) (5.102)

forallr >0,all z € D(0,6p,z,) N D(0,8), with 0 < 6 < x1/2 and 6p,z, defined in Lemma 5.5,
for all € € &9 N &4. One writes the Taylor expansions as follows:

p
A _ A Z
VO,Sdl,ﬁn,c‘-l (rze) = ZVO,ﬂ,Sdl,ﬁn & (r,€) E'
20 :
(5.103)

Varg),540,0 (1 2, €) = DV parg(1), 5,80 (T €)= [3"
p20

for z € D(0,6p,7,) N D(0, 5) ; then the coefficients V@ 6,50 5,61 (, €) satisfy the next recursion:
B,y s

ei(s=ko)én

A _ S ko k1,p1 (6) ko
Vo’p+s’sd1r5nfél (r/ e) - Z Z ﬁ' ﬁ] . Teign + 1

(8/ko,k1)€S p1+p2=p

A
-p V0 P2tk Say 601 (r.€)

x "0,
( Z 1 ﬂzl
m,p)eOs
. Z Z Bl s ko ko b (e) ca-s ei('sfkg)arg(z\) ~ ei(-S ko)én
P! retsM) + 1 refon +1

(s,ko,k1)€S pr+p2=p

(5.104)

—p Vi, ik arg (1), Su 0 (75 €)
X D A" “ 1argﬁ2'do —

(m,p)e0!. Ko

forall h > 0, all p > 0. We put VOﬁné (e) = ||V0ﬂsd . ¢,(1,6)llps,ea. Using Corollary 2.10,

Propos1t10ns 2.11 and 2.12 and Lemma 5.7, we get a constant C),, > 0 (depending on
S,5,5,p,ji) and C3;, > 0 (depending on 3,5, S, ', ji') such that the next inequalities:

v (e)
e b(s—ko) Otk mé
Vopisne €< D, D, CopflABP(p+S+1)7 %
(s/ko,k1)ES Pr+po=p 2:

b(s—k
+ Z Z c2 32’ﬁlD B (ﬂ+5+1) (s7ko) (5.105)
(s/ko,k1)eS r+pa=p

” Vipytks arg(1), 540 0 (1, €)

p-!

ﬂ2+k1,5',€,d

hold for all g > 0, where A, B > 0and the sequence ﬁn, n > 0 are defined in Lemma 5.7.



76 Abstract and Applied Analysis

We consider the following sequence of Cauchy problems:

_ A ~
RWhe ()= D, Chy(xdx+S+1)7C <—~a§1Wﬁ,el <x>> +Du(x),  (5.106)
(s,ko,k1)€S 1-x/B
where
- . D
Du(x) = > Clyp(xdy +S+1)H) <—"~a§1wargm,éo(x)> (5.107)
(s,ko k1 )ES 1-x/B
with
Warg(1),¢, (%) = D sup ‘V arg(1), 54y (x)” e (5.108)
e pa0ecéonés Pargh)Sa o poed Pl ’
for given initial data
(dkwd, ) ()
= W].A,n/él = sup |Vj,arg(x),sd0,eg(r, €) = V0,j,54, 5,61 (re'®, ¢) o 0<j<S-1,
ec&onéy 7€,
(5.109)

which are finite positive numbers due to the assumption (5.27) and Remark 2.4. Moreover,
the initial data satisfy the estimates

|8, | < T (5.110)

forall0<j<S-Tlandalln>0.
On the other hand, we have that Wg(1) ¢, (x) is convergent for all |x| < X g " /4 (where
Xon,, is chosen in (5.58)). Indeed, we know, from (5.90), that

=P
Vi gy &0 (1, 2,€) = D Vipa g, (7€) B (5.111)
0 :

is convergent for all |z| < ép,z,, all ¥ > 0, and all & > 0. From (5.86) and (5.89), we know that

(le|B(5,b,e)/&)"
h!

||Vh,ﬂ,)L,_/fld0,f,0 (r,€) nﬂ,é,e,d <GA ”Vh/ﬂ,ﬂdméo (r,€) ||p,a,s,d (5.112)
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forall h > 0 and all § > 0. From (5.58) and (5.112), we deduce that

||Vﬂ,arg(l),sdo,éo(r/€)|| = D0 Vi, (i €)
p,G.e,d >0

p,G.e,d
(5.113)
2 V< /2elB@,b,e) \"
< C3AC 4, B! ZlelPto,0.€)
’ do,ﬁ <X—/’zd0> %;)< Ou—mdo >

and this last sum is convergent provided that ey is small enough. We deduce that Wog(1) ¢, (x)
belongs to G(ll, X./’ldg /4), for any U > 0. Let Cﬂdo = ||Warg()l),£o (x)H(U'X-/"dD /4)-

From Lemmas 220 and 2.21, we get constants D 4 .» > 0 (depending on
S,6,5,p, BUXﬂd)O<LI1ﬂd <Uand0<X1ﬂd < X n,, /4 such that

(2

L <D,Dy, C
PP it R (5.114)

for all n > 0.
From the assumption (4.42) and the fact that b > 1, we deduce that

S > b(S = k()) + ky (5.115)

for all (s, ko, k1) € S. Hence, the assumption (2.108) is satisfied in Proposition 2.22 for the
problem (5.106), (5.109). Moreover, the initial data W].A’n can be seen as constant functions
(therefore analytic) with respect to a variable u on the closed disc D(0,U) for any given
U > 0 and the coefficients of (5.106) are analytic with respect to x on D(0,B/2) and constant
(therefore analytic) with respect to u on D(0,U). We deduce that all the hypotheses of
Proposition 2.22 for the problem (5.106), (5.109) are fulfilled. A direct computation shows
that the problem (5.106), (5.109) has a unique formal solution W2 nés (x) =3, p20 prn ‘ xP /B!,

with wﬂ ¢ € C. From Proposition 2.22, we deduce that W4 e, (x) € G(LIl,Xl) where
0 < Iy < u1,./}1d0 (depending on S) and 0 < X, < m1n(B/2,X1,/nd0) (depending

on S,S,3, A, E, P, ii). Moreover, from (2.111) and (5.114), there exist constants Ml > 0
(depending on S, S, 6, A, B, p, ji) and M, > 0 (depending on S, B, S) such that

[, | < My max Juj + DuM>D o, C o, (5.116)

(LI1 Xl) 0<] S-1

foralln > 0.
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Now, the coefficients wl?,n, ¢, satisfy the following equalities:

A
~~ w
WﬂA+S,n’él = Z Z Cl,BAB P (B+S+ 1)b(s_k0)—ﬂ2;5kl,’n'él
(s/ko,k1)€ES pr+po=p 2:

~ b(s—ko)
D D G DB (B Ss+1) (5.117)
(s,ko,k1)€S pr+p2=p

'Vﬂf"klrarg(/\)/sdo/én (r,€)

P!

su
peEégﬂf.l ﬁz+k] ,,e,d

X

forall > 0 and all n > 0, with
Wi e = Wi 0<j<S-1 (5.118)

Gathering the inequalities (5.105) and the equalities (5.117), with the initial data (5.118), one
gets that

sup |Vay,e,(e)| <wh, ., (5.119)

ee&yné,

forall g,n > 0.
From (5.119) and the estimates (5.116), we deduce that

A
sup |Vo,ﬂ,sd1,an & (1) |

ee&onNé,

p
— N 1

. = 5.120

o S <M102?5>51 Jnj + DuM,D g, C /ndo> ﬁ'<>~<1> (5.120)

for all §,n > 0. From (5.120), we get that

sup ||Vo,sd1,5n,f.1 (r,2,€) = Varg(1) 54,8 (1, 2, €)

e€&oné, (6.,4,6p,,)
(5.121)
< 2<M10g1_gas>§1]n,,- + DanD_/ndO C/nd())
for all n > 0 and for all 0 < 6p,, < X4 /2. This implies the estimates (5.92). O

In the following lemma, we express the function X 1(t, z, €) as Laplace transform of a
staircase distribution.

Lemma 5.7. Let & > G > or,(S — 1) as in Lemma 5.3. Then, one can write the function Xo1(t, z, €),
which by construction of Proposition 4.12, solves the singularly perturbed Cauchy problem

ePBi05Xo(t,z,€) + (et + DI Xoa(t,2,6) = > boks (2,08 (805 Xo1) (2, )
(s,ko,k1)eS
(5.122)
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for given initial data

(8101 (£,0,€) = gus(et,e), 0<j<S-1 (5.123)
in the form of a Laplace transform in direction arg(\)

Xo:1(t,2,€) = Largy (Varg(a)s1.0 (72 2, €) ) (€t) (5.124)

forall (t,z,€) € (TN D(0,1")) x D(0,6p,,) x (€0 N 1), where Varg(1y 5,2, (1, 2, €) € D' (5, €,0p,,)
solves the Cauchy problem (5.80), (5.81).

Proof. From Proposition 4.12 and the assumption (5.23), we get that the function X (t, z, €)
can be expressed as a Laplace transform in the direction ¢,,

1 T
Xo,l (tl z, €) = E I, VO,Sdl,vSn,:‘-l (T; z, €) exp <_E> dr

elsn (** ~ rein
= Vi <rel‘5“, zZ, e) exp|( - dr
et -[O 0,54y,6n 1 P et

for all (t,z,e) € (TN D(0,1")) x D(0,6¢,) x (9N é&q), all n > 0. Now, let t € TN D(0,1"),
€ € {gNéy. For all n > 0, we can rewite X1 (t, z,€) as a Laplace transform in the direction
arg(\) as follows:

(5.125)

XO,l (t/ z/ 6) = ‘ﬁarg(.}l) (VO,Sdllgn ,51 (T, Zl €)> <€tei(arg(l\)_§n)> (5126)

for all z € D(0, 6¢,). Using the expression (5.126), we deduce that from the estimates (3.5),
there exists a constant C(; ) > 0 such that

|X0,1 (t,z,€) = Largn) <Varg()t),5do,éo (r,z, €)> (et) |

< C(t,e)

A\Y ; r,z,e) -V r,z,€
O,Sdl,on,él( 74y ) arg()L),SdO,éo( 74y ) (6.6 50y,)

+ |£arg()«) <Varg()t),5d0,éo (T, z, €)> (Etei(arg(l)7§”)> - ‘Zarg()n) <Varg()t),5d0,éo (T, z, €)> (Et) |
(5.127)

foralln >0 and all z € D(0,6p,, ). By letting n tend to +oo and using the estimates (5.92), we
get the formula (5.124). O

Now, we are in the position to state the main result of our work.

Theorem 5.8. Let the assumptions (4.42), (4.44), (4.67), (4.69), (4.70), (5.1), (5.4), (5.8), (5.20),
(5.23), and (5.27) hold. Then, if one denote by op;(Gy,) (resp. op(Gx,)) the opening of the sector
Gr, (resp. Gy,), one has that for all t € TN D(0,("), z € D(0,6p,,), the function s — go(s,t,z)
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(constructed in Proposition 4.15) can be analytically continued along any path I in the punctured
sector

. c* o - @ [ Ak
Skt = {s € o OP(g ) <arg(s) <x1 + @} \ kL_Jl{T}, (5.128)

as a function denoted by gg’t’z(s). Moreover, for all k > 1, and any path Tox C Sxy 1 from 0 to a
neighborhood of Ak /t, there exists a constant Cy > 0 such that

Lok tz

|0 "%()| < Ci

log<s - )L—tk)| (5.129)

as s tends to Ak /t in a sector centered at Ak /t.

Proof. The proof is based on the following version of a result on analytic continuation of Borel
transforms obtained by Fruchard and Schifke in [3]. This result extends a former statement
obtained by the same authors in [28].

Theorem (FS). Let r > 0 and let g : D(0,r) — C be a holomorphic function that can be analytically
continued as a function g* (resp., g~) with exponential growth of order 1 on an unbounded sector
Si+5+ (resp. Sy s-) centered at 0, with bisecting direction x* (resp. k™) and opening &6* (resp. 67).
Let C > r be a real number and let m > 1 be an integer. Let {ax € C*,1 < k < m} c D(0,C) be a
set of aligned points and let & > 0 with arg(ax) = a € (x~, k"), for all 1 < k < m. For all integers
1 < k < m, let Sy be an unbounded open sector centered at ay, with bisecting direction which is
parallel to k=, and opening p > 0 such that the S, N D(0, C) do not intersect for all 1 < k < m.

Now, forall 1 < k < m, let gi be a holomorphic and bounded function on a small neighborhood
of 0 and with exponential growth of order 1 on the sector Sy —ay = {s € C/s+ay € Sk} with bisecting
direction x~. We consider the Laplace transforms

f+(€) = JL g+(s)e—s/€ds, f_(g) = IL _ g‘(s)e‘S/Eds, fl;(e) — J‘L _ gk(S)E_s/edS
K K (5.130)

K

forall k > 1, where Ly is the half-line starting from 0 in the direction k* and L, is the half-line
starting from 0 in the direction x~. The function f* (resp. f~) defines a holomorphic and bounded
function on an open sector E* (resp. £7) with finite radius, with bisecting direction k™ (resp. k™) and
opening gt + 6* (resp. ot + 67). The sectors £¥, & are chosen in such a way that £ N E™ is contained
in a sector with direction a and with opening less than sr. Assume that the following Stokes relation

—ax/e

f1(©) = f(0)+ X, fi(e) + O(e7"7) (5.131)
k=1 :
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holds for all e € £* N E™, where O(e’ceia/ €) is a holomorphic function R(e) on E* N E™ such that there
exists a constant H > 0 with

|R(€)| < H|e_ceia/e _ He—(C/\eI)cos(a—arg(e)) (5'132)

foralle e EXNé.
Then, the function g : D(0,r) — C can be analytically continued along any path T in the
punctured sector

S —{seg<CK’—§<ar (s)<x++§}\6{a} 5.133
x,xt,C = |S| ’ 2 g ki ( : )

Moreover, for all 1 < k < m, and any path To C Sx- x+ ¢ from 0 to a neighborhood of ay, if we denote
by g% (s) the analytic continuation of g along Tqx, then there exists a constant Cy > 0 such that

|gr0,k (S)' < Ck|10g(5 — ak)l (5134)

as s tends to ay in a sector centered at ay.

Proof. For the sake of completeness, we give a sketch of proof of this theorem. In the first step,
let us consider the following sums of Cauchy integrals

2igr T-—1t

1 &1 T—a
ht) = 7= o j ST =) o (5.135)
k=1 : Lak x=,C

where L, «c is the segment starting from aj in the direction x~ with length C. The
multivalued function h(t) can be analytically continued along any path T'in C \ {ay,..., am}
by deforming the path of integration L,, . c in the sector Sy and keeping the endpoints of
the segment L,, ¢ fixed for all 1 < k < m. Moreover, let 1 < k <mandt € L, , \ {ak},
where L,, - denotes the half-line starting from ay in the direction x~. We denote by hlaxte (£)
the analytic continuation of h(t) along a loop I', 1, around ay constructed as follows: the loop
follows a segment starting from ¢ in the direction ay then turns around aj along a circle I';, ,
of small radius p > 0 positively oriented and then goes back to t following the same segment.
We have that

h(t) - et (£) = @. (5.136)

Indeed, by the Cauchy theorem, one can write h(t) — h'=# (t) as a Cauchy integral

1 8k(T — ax)
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where C,, ¢ is a positively oriented closed curve enclosing t starting from aj and containing
the point ay + Ce™™ . By the residue theorem, one gets that I = gi (t—ax)/k!. From the relation
(5.136), we also deduce the existence of a holomorphic function b(t) near ay such that

_gk(t - ax)

) ===

log(t — ax) + b(t) (5.138)

for all t near ay, for a well-chosen determination of the logarithm log(x).
In the second step, let us define the truncated Laplace transforms and Laplace trans-

forms
He,(e) = f h(s)e™'“ds,  Hg,(e) = f h(s)e™*/<ds,
LK*,C/ LK’,C:
(5.139)
H*(E) = f h(S)e’S/é’dS, H7(€) — h(s)efs/edsl
L+ L,

where Ly ¢ is the segment starting from 0 to C'e®" and L, ¢ is the segment starting from 0
to C'e™™ , for any fixed C' > C. By the Cauchy formula, one can write the difference H, (€) —
H_, (€) as the sum

H (e) - Ha (e)

= —g Jr h(s)e—s/ecls + fL <h(s) _ Wl (S)>€_S/€ds N O(g_ceia/E,),

akp ayp,C

(5.140)

where L, 0. is the segment starting from ai + pe™ to ax + C'e™™ for any p > 0 small
enough. Due to the decomposition (5.138), h(s) is integrable at ai. By letting p tending to 0
and C’ tending to infinity, using the relation (5.136) in (5.140), ones gets that

- < | -s/e —Cel®/e
H*(e)-H (e):ZFIL gk(s —ax)e™ ds+(9<e Ce?/ )
k=1"" ap, Kk~
/: (5.141)
— e -s/e —Ce® /e
= 2 ILK gk(s)e ™ “ds + (')(e ),

where L, , is the half-line starting from ay in the direction ™.
Now, one considers the differences D" (e) = f*(e) — H*(e) and D™ (¢) = f~(e) - H™ (e).
From the Stokes relations (5.131) and (5.141), one deduces that

D*(e) - D () = o(e*@““/ ) (5.142)

for all e € £ N &7 Using a similar Borel transform integral representation as in the proof of
Theorem 1 in [28], one can show that the difference g(s) — h(s), which is by construction
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analytic near the origin in C, can be analytically continued to a function G(s), which is
holomorphic on the sector S+ c = {s € C*/[s| < C,x~ < arg(s) < «x*}. Since h can be
analytically continued along any path in C \ {ay,...,a,}, one gets that the function g can
be analytically continued along any path in Sy« c and from the decomposition (5.138) one
deduces the estimates (5.134).

Now, we return to the proof of Theorem 5.8. From the formula (4.76) and
Proposition 5.2, the following equality

f gO,l(S, t,z)e—S/eds = J‘ go,o(s,t, Z)e—s/eds
Ly, Ly,

h\/et (5.143)
* Zw J‘ gno(s,t,z)e ™ ds

! L,

h>1

holds foralle € &N éy,and allt € TN D(O,("), all z € D(0,6p,,). Lett € TN D(0,(") and
z € D(0,6p,,) fixed. Let m > 1 be an integer. From the estimates (4.78), we get that

exp(—h\/et) J‘
h! LKO

h>m+1

gno(st, z)e*s/eds
<2C Z

h
exp(—hi) <£> (5.144)
h>m+1 et ke

~ 2 m+1 A 1
SZC()(—) exp<—(m+1)—>‘
U et/ |1-2|exp(-\/et)|/m

forall € € £y N é&y. From (5.143) and (5.144), we deduce that the following Stokes relation

f 8oa(s,t,z)e/¢ds = J goo(s,t,z)e*/%ds
Ly L
(5.145)

< exp(—hA/et /e —m .
+ %% L gno(s,t,z)e/ + (9<e (m+DA/( ”).
= L]

Holds, where O(e~("+*D/(¢D) js a holomorphic function R(e) on &y N & such that there exists
a constant H > 0 with

IR(e)]| < H|e-<m+1W (et (5.146)
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forall e € £gNéq. We can apply Theorem (FS) with ai = kA/t, for1 < k <m, C = [A|(m+1)/|t]
to get that the function s — gy(s,t,z) (constructed in Proposition 4.15) can be analytically
continued along any path in the punctured sector

S Ko, K1,E,A,m

' m+1 . D[ Ak
= {SEH<%"CO_%<M§(S)<K1+%}\U{_}

(5.147)

as a function denoted by gg ’t’z(s). Moreover, for all 1 < k < m, and any path I'gx C Soxitdm

from 0 to a neighborhood of Ak/t, there exists a constant Cx > 0 such that | gg["k’t’z(s)| <
Ck|log(s —Ak/t)| as s tends to Ak/t in a sector centered at Ak/t. Since this result is true for all
m > 1, Theorem 5.8 follows. O

In the next result, Onee show that under the additional hypothesis that the coefficients
of (4.90) are polynomials in the parameter ¢, the function gy(s,t,z) solves a singular linear
partial differential equation in C.

Corollary 5.9. Let the assumptions of Theorem 5.8 hold. We assume moreover that, for all tuple
(s, ko, k1) chosen in the set S, the coefficients bsy, k, (z,€) belong to C{z}[e] with the following
expansion in e:

ds,ko,kl

bs ik, (2, €) = Z bglik()/kl (z)e™ (5.148)

m=ko

for some dg i, k, > ko. Then, for all K € N with K > 1 and K > max{ds,x, € N/(s, ko, ki) € S},
the function go(u, t, z) (constructed in Proposition 4.15) satisfies the following singular linear partial
differential equation

£20;05 105 g0 (u, t, z) + 0K 3 g0 (u, t, 2)

sy iy (5.149)

= —tK DSty + S Db ()F (af—mafoa’; g())(u, tz)
(S,ko,kl)E.S m=ko

for all (u,t,z) € D(0,sp) x (TN D(0,1")) x D(0,6p,,). From Theorem 5.8, for all (t,z) € (TN
D(0,1")) x D(0,6p,, ), this solution go(u,t,z) can be analytically continued with respect to u along
any path in the punctured sector Sy, x, 1\ with logarithmic estimates (5.129) near the singular points
Ak/t forall k > 1.

Proof. From Proposition 4.15, we have that the function

Xoo(t, z,€) = €71f g00(s,t,z)e™/ ds (5.150)
Ly,
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solves (5.122) on (TN D(0,(")) x D(0,6p,,) x &. From the formulas in Proposition 4.2, we
deduce that the function gpo(u, t, z) solves the singular integrodifferential equation

tzata;l aggo,o(u/ t/ Z) + afgo,o(ur t/ Z)

ds ko ky . (5.151)
= 3,05 g0, t, )+ YD) b;',‘ko,kl(z)ts<6;m6t°a’;1go,0>(u,t,z)

(s,ko,k1)€S m=ko

for all (u,t,z) € (Gx, UD(0,s0)) x (TN D(0,(")) x D(0,6p,,). Since go(u,t, z) is holomorphic
on D(0,s9) x (TN D(0,1")) x D(0, 6p,,) and has g (u, t, z) as analytic continuation on (G, U
D(0,50))*x(TND(0,1"))xD(0, 6p,, ), we get that gy (u, t, z) also solves (5.151). By differentiating
K times of each hand side of the equation with respect to u, one gets that gy(u, t, z) solves the
partial differential equation (5.149). O
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