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We present a boundary integral equation method for the numerical conformal mapping of
bounded multiply connected region onto a circular slit region. The method is based on some
uniquely solvable boundary integral equations with adjoint classical, adjoint generalized, and
modified Neumann kernels. These boundary integral equations are constructed from a boundary
relationship satisfied by a function analytic on amultiply connected region. Some numerical exam-
ples are presented to illustrate the efficiency of the presented method.

1. Introduction

In general, the exact conformal mapping functions are unknown except for some special
regions. It is well known that every multiply connected regions can be mapped conformally
onto the circle with concentric circular slits, the circular ring with concentric circular slits, the
circular slit region, the radial slit region, and the parallel slit region as described in Nehari
[1, page 334]. Several methods for numerical approximation for the conformal mapping
of multiply connected regions have been proposed in [2–16]. Recently, reformulations of
conformal mappings from bounded and unboundedmultiply connected regions onto the five
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canonical slit regions as Riemann-Hilbert problems are discussed in Nasser [12, 13, 17]. An
integral equation with the generalized Neumann kernel is then used to solve the RH problem
as developed in [18]. The integral equation however involves singular integral which is
calculated by Wittich’s method. Murid and Hu [11] formulated an integral equation method
based on another form of generalized Neumann kernel for conformal mapping of bounded
doubly connected regions onto a disk with circular slit but the kernel of the integral equation
involved the unknown circular radii. Discretization of the integral equation yields a system
of nonlinear equations which they solved using an optimization method. To overcome this
nonlinear problem, Sangawi et al. [19] have developed linear integral equations for conformal
mapping of bounded multiply connected regions onto a disk with circular slits. In this paper,
we describe an integral equation method for computing the conformal mapping function f
of bounded multiply connected regions onto a circular slit region. This boundary integral
equation is constructed from a boundary relationship that relates the mapping function f on
a multiply connected region with f ′, θ′(t), and |f |, where θ is the boundary correspondence
function.

The plan of the paper is as follows. Section 2 presents some auxiliary materials.
Derivations of two integral equations related to f ′ and θ′(t) are given in Sections 3 and 4,
respectively. Section 5 presents a method to calculate the modulus of f . In Section 6, we give
some examples to illustrate our boundary integral equation method. Finally, Section 7 pre-
sents a short conclusion.

2. Notations and Auxiliary Material

LetΩ be a boundedmultiply connected region of connectivityM+1. The boundary Γ consists
ofM+1 smooth Jordan curves Γj , j = 0, 1, . . . ,M, such that Γ

̂j , ̂j = 1, . . . ,M, lies in the interior
of Γ0, where the outer curve Γ0 has counterclockwise orientation and the inner curves Γ

̂j ,
̂j = 1, . . . ,M, have clockwise orientation. The positive direction of the contour Γ =

⋃M
j=0 Γj is

usually that for which Ω is on the left as one traces the boundary (see Figure 1). The curve
Γk is parametrized by 2π-periodic twice continuously differentiable complex function zk(t)
with nonvanishing first derivative

z′k(t) =
dzk(t)
dt

/= 0, t ∈ Jk = [0, 2π], k = 0, 1, . . . ,M. (2.1)

The total parameter domain J is the disjoint union of M + 1 intervals J0, . . . , JM. We
define a parametrization z of the whole boundary Γ on J by

z(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z0(t), t ∈ J0 = [0, 2π],

...

zM(t), t ∈ JM = [0, 2π].

(2.2)
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Figure 1: Mapping of the bounded multiply connected region Ω of connectivityM + 1 onto a circular slit
region.

Let H∗ be the space of all real Hölder continuous 2π-periodic functions ω(t) of the
parameter t on Jk for k = 0, 1, . . . ,M, that is,

ω(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ω0(t), t ∈ J0,
ω1(t), t ∈ J1,
...

ωM(t), t ∈ JM.

(2.3)

Let θ(t) (the boundary corresponding function) be given for t ∈ J by

θ(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

θ0(t), t ∈ J0,
...

θM(t), t ∈ JM.

(2.4)

Let μ (a piecewise constant real function) be given for t ∈ J by

μ(t) =
(

μ0, μ1, . . . , μM
)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

μ0, t ∈ J0,
...

μM, t ∈ JM.

(2.5)

Let ̂A(t) be a complex continuously differentiable 2π-periodic function for all t ∈ J . The
generalized Neumann kernel formed with ̂A is defined by

̂N(t, s) =
1
π

Im

(

̂A(t)
̂A(s)

z′(s)
z(s) − z(t)

)

. (2.6)
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The kernel ̂N is continuous with

̂N(t, t) =
1
π

(

1
2
Im

z′′(t)
z′(t)

− Im
̂A′(t)
̂A(t)

)

. (2.7)

Define also the kernel ̂M by

̂M(t, s) =
1
π

Re

(

̂A(t)
̂A(s)

z′(s)
z(s) − z(t)

)

, (2.8)

which has a cotangent singularity type (see [18] for more detail). The classical Neumann
kernel is the generalized Neumann kernel formed with ̂A(t) = 1, that is,

N(t, s) =
1
π

Im
(

z′(s)
z(s) − z(t)

)

. (2.9)

The adjoint kernelN∗(s, t) of the classical Neumann kernel is given by

N∗(t, s) =N(s, t) =
1
π

Im
(

z′(t)
z(t) − z(s)

)

. (2.10)

The adjoint function to the function ̂A is given by

˜A(t) =
z′(t)
̂A(t)

= z′(t). (2.11)

The generalized Neumann kernel ˜N(s, t) formed with ˜A is given by

˜N(t, s) =
1
π

Im

(

˜A(t)
˜A(s)

z′(s)
z(s) − z(t)

)

. (2.12)

If ̂A = 1, then

˜N(t, s) = −N∗(t, s). (2.13)
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We define the Fredholm integral operators N, ˜N,N∗ by

Nυ(t) =
∫

J

N(t, s)υ(s)ds, t ∈ J, (2.14)

˜Nυ(t) =
∫

J

˜N(t, s)υ(s)ds, t ∈ J, (2.15)

N∗υ(t) =
∫

J

N(s, t)υ(s)ds, t ∈ J. (2.16)

Note that ˜N = −N∗, if ̂A = 1.
It is known that λ = 1 is an eigenvalue of the kernelN with multiplicity 1 and λ = −1

is an eigenvalue of the kernelN with multiplicityM [18]. We define the piecewise constant
functions

χ[j](ξ) =

⎧

⎨

⎩

1, ξ ∈ Γj , j = 0, 1, 2, . . . ,M.

0, otherwise.
(2.17)

Then, we have from [18]

Null(I −N) = span{1}, Null(I −N) = span
{

χ[1], χ[2], . . . , χ[M]
}

. (2.18)

Lastly, we define integral operators J and ̂J by

Jυ =
∫

J

1
2π

M
∑

j=1

χ[j](s)χ[j](t)υ(s)ds,

̂Jυ =
∫

J

1
2π

M
∑

j=0
χ[j](s)χ[j](t)υ(s)ds,

(2.19)

which are required for uniqueness of solution in a later section.

3. Homogenous and Nonhomogenous Boundary Relationship

3.1. Nonhomogeneous Boundary Relationship for Conformal Mapping

Suppose that c(z), Q(z), and H(z) are complex-valued functions defined on Γ such that
c(z)/= 0, H(z)/= 0, Q(z)/= 0, and H(z)/(T(z)Q(z)) satisfies the Hölder condition on Γ. Then,
the interior relationship is defined as follows.

A complex-valued function P(z) is said to satisfy the interior relationship if P(z) is
analytic in Ω and satisfies the nonhomogeneous boundary relationship

P(z) = c(z)
T(z)Q(z)

G(z)
P(z) +H(z), z ∈ Γ, (3.1)
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where G(z) analytic inΩ, Hölder continuous on Γ, and G(z)/= 0 on Γ. The boundary relation-
ship (3.1) also has the following equivalent form:

G(z) = c(z)T(z)Q(z)
P(z)2

|P(z)|2
+
G(z)H(z)

P(z)
, z ∈ Γ. (3.2)

Let the function LR(z̃) be defined in the region C ∪ {∞} \ Γ by

LR(z̃) =
1

2πi

∫

Γ

c(z̃)H(w)

c(w)(w − z̃)Q(w)T(w)
dw, z̃ ∈ Ω−, (3.3)

where Ω− is the complement of Ω. The following theorem gives an integral equation for
an analytic function satisfying the interior nonhomogeneous boundary relationship (3.1) or
(3.2). This theorem generalizes the results of Murid and Razali [9] and can be proved by
using the approach used in proving Theorem 3.1 in [20, page 45].

Theorem 3.1. Let U and V be any complex-valued functions that are defined on Γ. If the function
P(z) satisfies the interior nonhomogeneous boundary relationship (3.1) or (3.2), then

1
2

[

V (z) +
U(z)

T(z)Q(z)

]

P(z) + PV
∫

Γ
K(z,w)P(w)|dw| + c(z)U(z)

×
[

∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

]conj

= −U(z)L−
R(z), z ∈ Γ,

(3.4)

where

K(z,w) =
1

2πi

[

c(z)U(z)

c(w)(w − z)Q(w)
− V (z)T(w)

w − z

]

,

L−
R(z) =

−1
2

H(z)
Q(z)T(z)

+ PV
1

2πi
∫

Γ
c(z)H(w)

c(w)(w − z)Q(w)T(w)
dw.

(3.5)

The symbol “conj” in the superscript denotes complex conjugate, while the minus sign in the
superscript denotes limit from the exterior. The sum in (3.4) is over all those zeros a1, a2, . . . , aM of G
that lie inside Ω. If G has no zeros in Ω, then the term containing the residue in (3.4) will not appear.

Proof. Suppose that P(z) and G(z) are analytic functions in Ω and G has a finite number of
zeros at a1, a2, . . . , aM in Ω. Then, by the calculus of residues, we have

1
2πi

∫

Γ

P(w)
(w − z̃)G(w)

dw =
∑

aj∈Ω
Res
w=aj

P(w)
(w − z̃)G(w)

, z̃ ∈ Ω−. (3.6)
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Since P and G satisfy the Hölder condition on Γ and G(z)/= 0 on Γ, then P/G also satisfies the
Hölder condition on Γ. Taking the limitΩ− � z̃ → z ∈ Γ and applying Sokhotski formula [5],
we get

−1
2
P(z)
G(z)

+ PV
1

2πi

∫

Γ

P(z)
(w − z)G(w)

dw =
∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

, z ∈ Γ. (3.7)

By taking conjugate to both sides and using (3.1), we get

− 1
2

P(z)

c(z)Q(z)T(z)
+
1
2

H(z)

c(z)Q(z)T(z)
− PV

1
2πi

∫

Γ

P(z)

c(w)(w − z)Q(w)

dw

T(w)

+ PV
1

2πi

∫

Γ

H(z)dw

c(w)(w − z)Q(z)T(z)
=

⎡

⎣

∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

⎤

⎦

conj

, z ∈ Γ.

(3.8)

Multiplying both sides by −c(z) and the fact that dw = T(w)|dw|, after some arrangement,
yield

1
2

P(z)

Q(z)T(z)
+ PV

1
2πi

∫

Γ

c(z)P(z)

c(w)(w − z)Q(w)
|dw| + c(z)

⎡

⎣

∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

⎤

⎦

conj

= −
[

−1
2

H(z)
Q(z)T(z)

+ PV
1

2πi

∫

Γ

c(z)H(z)

c(w)(w − z)Q(z)T(z)
dw

]conj

, z ∈ Γ.

(3.9)

Applying Sokhotski formulas again to the expression inside the bracket of the right-hand side
yields

1
2

P(z)

Q(z)T(z)
+ PV

1
2πi

∫

Γ

c(z)P(z)

c(w)(w − z)Q(w)
|dw| + c(z)

⎡

⎣

∑

aj∈Ω
Res
w=aj

P(w)
(w − z)G(w)

⎤

⎦

conj

= −L−
R(z), z ∈ Γ.

(3.10)

Since P(z) is analytic in Ω, then by Cauchy integral formula, we have

1
2πi

∫

Γ

P(z)
w − z̃dw = 0, z ∈ Ω−. (3.11)

Taking the limit ω− � z̃ → z ∈ Γ and applying Sokhotiski formulas, we get

−1
2
P(z) + PV

1
2πi

∫

Γ

T(w)P(z)
w − z |dw| = 0, z ∈ Γ. (3.12)

Multiplying (3.12) by v(z) and subtracting it from (3.10)multiplied by u(z) yield (3.4).
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3.2. Homogeneous Boundary Relationship for Conformal Mapping

Letw = f(z) be the analytic function which mapsΩ in the z-plane onto a canonical region of
the circular slit region in the w-plane. Let 0 and a be a fixed point in Ω such that a/= 0. Then,
the mapping function is made uniquely determined by assuming that f(a) = 0 and f(0) = ∞
such that the residue of the function f at 0 is equal to 1 [1]. Hence, the function f can be
written in the form

f(z) =
(

1
z
− 1
a

)

ezg(z), (3.13)

where g is analytic in Ω [12, 13]. Note that the boundary value of f can be represented in the
form

f
(

zp(t)
)

= μpeiθp(t), Γp : z = zp(t), 0 ≤ t ≤ βp, p = 0, 1, . . . ,M, (3.14)

where θp is a boundary correspondence function of Γp and μp is the radius of the circular slit.
The unit tangent to Γ at z(t) is denoted by T(z(t)) = z′(t)/|z′(t)|. Thus, it can be shown that

f(z) =

∣

∣f(z)
∣

∣

i
T(z)

∣

∣

∣θ′p(t)
∣

∣

∣

θ′p(t)
f ′(z)
∣

∣f ′(z)
∣

∣

, z ∈ Γ. (3.15)

4. Integral Equation Method for Computing F ′(Z)

Note that the value of θ′p(t) may be positive or negative since each circular slit f(Γp) is
traversed twice. Thus, |θ′p|/θ′p = ±1. Hence, the boundary relationship (3.15) can be written
as

f(z) = ±T(z)
∣

∣f(z)
∣

∣

i

f ′(z)
∣

∣f ′(z)
∣

∣

, z ∈ Γ. (4.1)

To eliminate the ± sign, we square both sides of the boundary relationship (4.1) to get

f(z)2 = −T(z)2∣∣f(z)∣∣2 f ′(z)2
∣

∣f ′(z)
∣

∣

2
, z ∈ Γ. (4.2)

Then, the function E(z) defined by

D(z) = z2f ′(z) = z2f(z)
[

zg ′(z) + g(z)
] − ezg(z) (4.3)

is analytic in Ω.
Combining (4.3), (4.2), and (3.13), we obtain the following boundary relationship:

ze2zh(z)

a2
= − z|z|2

(a − z)2
∣

∣f(z)
∣

∣

2
T(z)2

D(z)2

|D(z)|2
, z ∈ Γ. (4.4)
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Comparison of (4.4) and (3.2) leads to a choice of P(z) = D(z), c(z) = −z|z|2|f(z)|2/(a − z)2,
Q(z) = T(z), G(z) = ze2zh(z)/a2, H(z) = 0. Setting U(z) = T(z)Q(z) and V (z) = 1,
Theorem 3.1 yields

T(z)D(z) + PV
1

2πi

∫

Γ

⎡

⎣

z|z|2∣∣f(z)∣∣2(a −w)2T(z)

w|w|2∣∣f(w)
∣

∣

2(a − z)2(w − z)
− T(z)
w − z

⎤

⎦T(w)D(w)|dw|

=
z|z|2∣∣f(z)∣∣2

(a − z)2
T(z)

⎡

⎣

∑

aj∈Ω
Res
w=aj

a2D(w)
(w − z)we2wh(w)

⎤

⎦

conj

, z ∈ Γ.

(4.5)

Note that a2D(w)/(w − z)w2 has a simple pole at w = 0. To evaluate the residue in (4.5),
we use the fact that if L(z) = d(z)/q(z) where d(z) and q(z) are analytic at z0 and d(z0)/= 0,
q(z0) = 0 and q′(z0)/= 0, which means z0 is a simple pole of L(z), then

Res
w=z0

L(w) =
d(z0)
q′(z0)

. (4.6)

Applying (4.6) to the residue in (4.5) and after several algebraic manipulations, we obtain

∑

aj∈Ω
Res
w=aj

a2D(w)
(w − z)we2wg(w)

=
a2

z
. (4.7)

Thus, integral equation (4.5) becomes

F(Z) +
∫

Γ
N+(z,w)F(w)|dw| = a2z2

∣

∣f(z)
∣

∣

2

(a − z)2
T(z), z ∈ Γ, (4.8)

where

F(z) = T(z)D(z),

D(z) = z2f ′(z),

N+(z,w) =
1

2πi

⎡

⎣

T(z)
z −w − z|z|2∣∣f(z)∣∣2(a −w)2T(z)

w|w|2∣∣f(w)
∣

∣

2(a − z)2(z −w)

⎤

⎦,

N+(t, t) =
1

2π |z′(t)| Im
z′′(t)
z′(t)

+
1

πi|z′(t)|

[

z′(t)

z(t) − a
− Re

(

z′(t)
z(t)

)

]

− 1
2πi|z′(t)|

z′(t)
z(t)

.

(4.9)
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By using single valuedness of the mapping function f leads to the following condition:

1
2π

∫

−Γq

F(w)
w2 |dw| = 0, q = 0, 1, . . . ,M. (4.10)

By means of Cauchy’s integral formula, we can get the following condition:

1
2π

∫

Γ

F(w)
w

|dw| = −i. (4.11)

Thus, the integral equation (4.8) with the conditions (4.10) and (4.11) should give a unique
solution provided the parameters μp, p = 0, 1, . . . ,M that appear inN+(z,w) are known.

Integral equation methods for computing μp and θ′p are discussed in the next two
sections.

5. Integral Equation for Computing |f(z)|
Note that, from (3.13) and (3.14), we get the following equation:

z(t)g(z(t)) = log
∣

∣f(z(t))
∣

∣ − log
∣

∣

∣

∣

1
z(t)

− 1
a

∣

∣

∣

∣

− i arg
(

1
z(t)

− 1
a

)

+ θp(t). (5.1)

Since g(z) is analytic in Ω, thus

̂A(t)g(z(t)) = γ(t) + h(t) + iυ, (5.2)

from (5.1) and (5.2), yields

̂A(t) = z(t), (5.3)

γ(t) = − log
(

1
z(t)

− 1
a

)

, (5.4)

h(t) = logμ(t) =
(

logμ0, logμ1, . . . , logμM
)

. (5.5)

The following theorem from [22] gives a method for calculating h(t), and hence μp =
|f(zp)|.

Theorem 5.1 (see [22, Theorem 5]). The function h is given by h = (h0, h1, . . . , hM), where

hj =
(

γ, φ[j]
)

=
1
2π

∫

J
γ(t)φ[j](t)dt, (5.6)

and where φ[j] is the unique solution of the following integral equation

(

I + ̂N∗ + ̂J
)

φ[j] = −χ[j], j = 0, 1, . . . ,M, (5.7)

where the kernel ̂N∗(s, t) is the adjoint kernel of the kernel ̂N(s, t) which is formed with ̂A(t) = z(t).
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By obtaining h0, h1, . . . , hM from (5.6), in view of (5.5), we obtain

μj = ehj , j = 0, 1, . . . ,M. (5.8)

6. Integral Equation Method for Computing θ′p(t)

This section gives another application of Theorem 3.1 for computing f ′/f . Let f be the
mapping function as described in Section 3.2. Note that (4.2) can be written in the following
form:

∣

∣

∣

∣

f ′(z)
f(z)

∣

∣

∣

∣

2

= −T(z)2
(

f ′(z)
f(z)

)2

, z ∈ Γ. (6.1)

Taking the derivative of both sides of (3.13) together with some elementary calculations
yields

f ′(z)
f(z)

+
a

z(a − z) = zg ′(z) + g(z). (6.2)

Let E(z) = (f ′(z)/f(z)) + (a/z(a − z)) = zg ′(z) + g(z) be analytic in Ω. Then,

f ′(z)
f(z)

= E(z) +
a

z(z − a) , z ∈ Γ. (6.3)

Equations (6.1) and (6.3) together with some elementary calculations yield

E(z) = −T(z)2E(z) − aT(z)2

z(z − a) −
a

z(z − a) , z ∈ Γ. (6.4)

Comparison of (6.4) and (3.1) leads to a choice of P(z) = E(z), c(z) = −1, Q(z) = T(z),
G(z) = 1,H(z) = −(aT(z)2/z(z − a)) − (ā/z̄(z − a)). Setting U(z) = T(z)Q(z) and V (z) = 1,
Theorem 3.1 yields

E(z)T(z) + PV
1

2πi

∫

Γ

[

T(z)
w − z − T(z)

w − z

]

E(w)T(w)|dw| = −T(z)L−
R(z), z ∈ Γ, (6.5)

where

T(z)L−
R(z) = −1

2

[

−aT(z)
z(z − a) −

aT(z)
z(z − a)

]

+ T(z)PV
1

2πi

∫

Γ

a

w(w − z)(w − a)dw

− T(z)PV 1
2πi

∫

Γ

AaT(w)2

w(w − a)(w − z)dw, z ∈ Γ.

(6.6)
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Then, it follows from [5, page 91] that

PV
1

2πi

∫

Γ

a

w(w − z)(w − a)dw = −1
2

a

z(z − a) . (6.7)

From (6.5),(6.6), (6.7), and (6.3), we obtain the integral equation

f ′(z)
f(z)

T(z) + PV
1

2πi

∫

Γ

[

T(z)
z −w − T(z)

z −w

]

f ′(w)
f(w)

T(w)|dw| = 2i Im
[

aT(z)
z(z − a)

]

, z ∈ Γ. (6.8)

In the above integral equation, let z = z(t) and w = z(s). Then, by multiplying both sides of
(6.8) by |z′(t)| and using the fact that

f ′(z)
f(z)

z′(t) = iθ′p(t), z ∈ Γ, (6.9)

the above integral equation can also be written as

θ′p(t) +
∫

J

N(s, t)θ′p(s)ds = 2 Im
[

az′(t)
z(t)(z(t) − a)

]

. (6.10)

SinceN(s, t) =N∗(t, s), the integral equation can be written as an integral equation in opera-
tor form

(I +N∗)θ′p = ψ̃, (6.11)

where

ψ̃ = 2 Im
[

az′(t)
z(t)(z(t) − a)

]

. (6.12)

However, λ = −1 is an eigenvalue ofN∗ with multiplicityM, by [18, Theorem 12]. Therefore,
the integral equation (6.11) is not uniquely solvable. To overcome this problem, note that

∫

Jj

θ′p(t)dt = 0, j = 1, 2, . . . ,M, (6.13)

which implies

Jθ′p = 0. (6.14)

By adding (6.14) to (6.11), we obtain the integral equation

(I +N∗ + J)θ′p = ψ̃. (6.15)
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The integral equation (6.15) is uniquely solvable in view of the following theorem which can
be proved by using the approach used in proving [22, Theorem 4].

Theorem 6.1.

Null(I +N∗ + J) = {0}. (6.16)

Proof. Let υ ∈ Null(I +N∗ + J), that is, υ is a solution of the integral equation

(I +N∗ + J)υ = 0. (6.17)

Then, it follows from the definition of the operator J, (2.18), and the Fredholm alternative
theorem that

J = J∗ = J2,

Range(J) = span
{

χ[1], . . . , χ[M]
}

= Null(I +N),

Null(J) =
(

span
{

χ[1], . . . , χ[M]
})⊥

= Null(I +N)⊥ = Range(I +N∗).

(6.18)

Hence, we have NJ = −J and JN∗ = J∗N∗ = (NJ)∗ = −J. By multiplying (6.17) by J, we obtain

Jυ = 0, (I +N∗)υ = 0. (6.19)

Thus,

υ ∈ Null(J) ∩Null(I +N∗) = Range(I +N∗) ∩Null(I +N∗). (6.20)

Since ̂A = 1, thus the index of the function ̂A is given by (see [18] for the definition of the
index)

κj = 0, j = 0, 1, . . . , m, κ = 0. (6.21)

The space S+ defined in [18, Equation (30)] is then given by S+ = span{1}. Then, it follows
from [18, Equation (92)] that the dimension of the space ˜S+ defined in [18, Equation (32)] is
given by dim( ˜S+) =M. Similarly, it follows from [18, Equation (105)] that

dim(Null(I +N∗)) = dim
(

Null
(

I − ˜N
))

=M. (6.22)

Thus, it follows from [18, Lemma 20(b)] that Null(I +N∗) = ˜S+ and the space ˜R+ ∩ ˜S− in [18,
Lemma 20(a)] contains only the zero function, that is, ˜R+ ∩ ˜S− = {0}. Thus, it follows from
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[18, Equation (103)] (applied to the adjoint function ˜A(t) = ̂A(t)/z′(t) instead of ̂A(t)) and
from [18, Equation (100)] that

Range(I +N∗) ∩Null(I +N∗) = {0}. (6.23)

Hence, it follows from (6.20) that υ = 0.

By solving the integral equation (6.15), we get θp(t). And solving the integral equation
(5.7), we get φ[j], j = 0, 1, . . . ,M, which gives hj through (5.6)which in turn gives μj through
(5.8). By solving integral equation (4.8), (4.10), and (4.11) with the known values of μj , we
get F(z). From the definition of F(z), we get

f ′(z(t)) =
F(z(t))
z2(t)z′(t)

. (6.24)

Finally, from (3.14) and (6.24), the approximate boundary value of f(z) is given by

f(z) =

∣

∣f(z)
∣

∣

i
T(z)

∣

∣

∣θ′p(t)
∣

∣

∣

∣

∣θ′p(t)
∣

∣

f ′(z)
∣

∣f ′(z)
∣

∣

, z ∈ Γ. (6.25)

The approximate interior value of the function f(z) is calculated by the Cauchy integral
formula

f(z) =
a − z
az

1
2πi

∫

Γ

awf(w)
a −w

1
w − zdw, z ∈ Γ. (6.26)

For points z which are not close to the boundary, the integral in (6.26) is approximated by
the trapezoidal rule. However, for the points z closed to the boundary Γ, the numerical
integration in (6.26) is nearly singular. This difficulty is overcome by using the fact that
(1/2πi)

∫

Γ(1/(w − z)) dw = 1 , and rewrite f(z) as

f(z) =
((a − z)/az)(1/2πi) ∫Γ

(

awf(w)/(a −w)
)

(1/(w − z))dw
∫

Γ(1/(w − z))dw , z ∈ Ω. (6.27)

This idea has the advantage that the denominator in this formula compensates for the error
in the numerator (see [23]). The integrals in (6.27) are approximated by the trapezoidal rule.

7. Numerical Examples

Since the function zp(t) is 2π-periodic, a reliable procedure for solving the integral equations
(6.15), (5.7), and (4.8) with the conditions (4.10) and (4.11) numerically is by using the
Nyström’s method with the trapezoidal rule [24]. The trapezoidal rule is the most accurate
method for integrating periodic functions numerically [25, page 134–142]. Thus, solving the
integral equations numerically reduces to solving linear systems of the form

AX = B. (7.1)
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Table 1: Error norm (unit circle).

n ‖μ − μn‖∞ ‖f − fn(t)‖∞
8 1.8 × 10−05 2.2 × 10−02

16 3.7 × 10−10 5.0 × 10−06

32 8.8 × 10−16 3.4 × 10−14

Table 2: The numerical values of μ0 for Example 7.2.

n μ0

16 3.5383174719052
32 3.5355590602433
64 3.5355585660566
128 —

The above linear system (7.1) is uniquely solvable for sufficiently large number of collocation
points on each boundary component, since the integral equations (6.15), (5.7), and (4.8)with
the conditions (4.10) and (4.11) are uniquely solvable [26]. The computational details are
similar to [6, 11–13].

7.1. Regions of Connectivity One

For numerical experiments, we have used some test regions of connectivity two, three, four,
and five based on the examples given in [2, 4, 7, 12, 13, 15, 27–29]. All the computations
were done using MATLAB 7.8.0.347(R2009a)(double precision floating point number). The
number of points used in the discretization of each boundary component Γj is n.

In this section, we have used three test regions of connectivity one. Only the first test
region has known exact mapping function. The results for sup norm error between the exact
values of f , μ1 and approximate values fn, μ1n are shown in Table 1.

Example 7.1. Consider a region Ω bounded by the unit circle

Γ :
{

z(t) = eit
}

, a = −0.2 + 0.2i, (7.2)

Then, the exact mapping function is given by [1, page 340]

g(z) =
(a − z)

az(1 − az) , r =
1
|a| . (7.3)

Figure 2 shows the region and its image based on our method. See Table 1 for results.

Example 7.2. Consider the elliptical region bounded by the ellipse

Γ : {z(t) = 4 cos t + 2i sin t}, a = −0.2 − 0.2i. (7.4)

Figure 3 shows the region and its image based on our method. See Table 2 for our computed
value of μ0.
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Table 3: Error norm for Example 7.3.

n ‖μ0 − μ0n‖∞
8 1.0 × 10−02

16 7.2 × 10−05

32 1.1 × 10−08

64 4.6 × 10−15
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Figure 2: Mapping a region Ω bounded by unit circle onto a circular slit region.

Example 7.3. Consider a region Ω bounded by

Γ :
{

z(t) = (10 + 3 cos 3t)eit
}

, a = 0.1 − 0.6i. (7.5)

Figure 4 shows the region and its image based on our method. See Table 3 for comparison
between our computed values of μ0 with those computed values μ0n of Nasser [12, 13].

7.2. Regions of Connectivity Two

In this section, we have used two test regions of connectivity two whose exact mapping
functions are unknown. The first and second test regions are circular frame, and the third
test region is bounded by an ellipse and circle. Figures 5–7 show the region and its image
based on our method, and approximate values of μ0 and μ1 are shown in Tables 4–6.

Example 7.4 (circular frame). Consider a pair of circles [28]

Γ0 :
{

z(t) = eit
}

,

Γ1 :
{

z(t) = −0.6 + 0.2e−it
}

, t : 0 ≤ t ≤ 2π, a = 0.25 + 0.25i,

(7.6)

such that the region bounded by Γ0 and Γ1 is the region between a unit circle and a circle
centered at −0.6 with radius 0.2. Then, Figure 5 shows the region and its image based on our
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Figure 3: Mapping for Example 7.2.

Table 4: Error norm for Example 7.4.

2n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞
32 3.2 × 10−03 5.8 × 10−03

64 2.4 × 10−06 5.1 × 10−06

128 1.7 × 10−12 3.5 × 10−12

256 8.8 × 10−16 2.2 × 10−15

method. See Table 4 for comparison between our computed values of μ0 and μ1 with those
computed values μ0n and μ1n of Nasser [12, 13].

Example 7.5 (ellipse with one circle). Consider a region Ω bounded by an ellipse and a circle

Γ0 : {z(t) = 4 cos t + i sin t},

Γ1 :
{

z(t) = −1 + 0.25e−it
}

, t : 0 ≤ t ≤ 2π, a = −1.4,
(7.7)

such that the region bounded by Γ0 and Γ1 is the region between an ellipse and a circle
centered at −1 with radius 0.25. Then, Figure 6 shows the region and its image based on our
method. See Table 5 for comparison between our computed values of μ0 and μ1 with those
computed values μ0n and μ1n of Nasser [12, 13].

Example 7.6 (two ellipses). Consider a region Ω bounded by pair of ellipses

Γ0 : {z(t) = 4 cos t + i sin t},
Γ1 : {z(t) = 1 + 0.7 cos t − 0.3i sin t}, t : 0 ≤ t ≤ 2π, a = 2.3.

(7.8)

Figure 7 shows the region and its image based on our method. See Table 6 for comparison
between our computed values of μ0 and μ1 with those computed values μ0n and μ1n of Nasser
[12, 13].
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Figure 4: Mapping an original region and its image.
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Figure 5: Mapping a region Ω bounded by two circles onto a circular slit region.
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Figure 6: Mapping a region Ω bounded by an ellipse and a circle onto a circular slit region.

Table 5: Error norm for Example 7.5.

2n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞
64 1.5 × 10−03 6.2 × 10−04

128 4.9 × 10−07 8.5 × 10−10

256 7.1 × 10−14 3.5 × 10−14
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Figure 7: Mapping a region Ω bounded by two ellipses onto a circular slit region.
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Figure 8: Mapping a region Ω bounded by three ellipses onto a circular slit region.

7.3. Regions of Connectivity Three

In this section, we have used three test regions of connectivity three. The first test region is
bounded by three ellipses, the second test region is bounded by an ellipse and two circles,
and the third test region is a circular region. The results for sup norm error between the our
numerical values of μ0, μ1, μ2 and the computed values of μ0n, μ1n, μ2n obtained from [12, 13]
are shown in Tables 7–9.

Example 7.7 (three ellipses). Let Ω be the region bounded by

Γ0 : {z(t) = 10 cos t + 6i sin t},
Γ1 : {z(t) = −4 − 2i + 3 cos t − 2i sin t},

Γ2 : {z(t) = 4 + 2 cos t − 3i sin t}, 0 ≤ t ≤ 2π, a = 7.

(7.9)

Figure 8 shows the region and its image based on our method. See Table 7 for comparison
between our computed values of μ0, μ1, and μ2 with those computed values of Nasser [12].
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Figure 9: Mapping a region Ω bounded by an ellipse and two circles onto a circular slit region.
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Figure 10: Mapping a region Ω bounded by three circles onto a circular slit region.

Example 7.8 (ellipse with two circles). Let Ω be the region bounded by [7, 13, 15]

Γ0 : {z(t) = 4 cos t + i sin t},
Γ1 : {z(t) = 1.2 + 0.3(cos t − i sin t)},

Γ2 : {z(t) = −1 + 0.6(cos t − i sin t)}, 0 ≤ t ≤ 2π, a = −2.5 − 0.1i.

(7.10)

Figure 9 shows the region and its image based on our method. See Table 8 for comparison
between our computed values of μ0, μ1, and μ2 with those computed values of Nasser [13].

Example 7.9 (three circles). Let Ω be the region bounded by

Γ0 :
{

z(t) = 2eit
}

,

Γ1 :
{

z(t) = 1.2 + 0.3e−it
}

,

Γ2 :
{

z(t) = −1 + 0.6e−it
}

, 0 ≤ t ≤ 2π, a = 0.5 − 1.25i.

(7.11)
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Figure 11: Mapping for Example 7.10.

Table 6: Error norm for Example 7.6.

2n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞
64 2.3 × 10−03 2.4 × 10−03

128 7.4 × 10−07 9.5 × 10−07

256 7.3 × 10−14 9.9 × 10−14

Table 7: Error norm for Example 7.7.

3n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞
48 5.1 × 10−04 1.3 × 10−03 4.7 × 10−04

96 2.8 × 10−06 7.5 × 10−06 3.9 × 10−06

192 2.4 × 10−10 6.3 × 10−10 3.1 × 10−10

384 5.5 × 10−17 2.7 × 10−16 4.9 × 10−16

Table 8: Error norm for Example 7.8.

3n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞
96 1.6 × 10−05 1.0 × 10−03 4.9 × 10−03

192 2.7 × 10−06 2.8 × 10−06 8.6 × 10−07

384 1.2 × 10−11 1.4 × 10−11 1.2 × 10−11

Table 9: The numerical values of μ0, μ1, and μ2 for Example 7.9.

3n μ0 μ1 μ2

96 1.144844712112 1.333447560114 1.711779222648
192 1.144844080644 1.333446944282 1.711778670173
384 — 1.333446944281 —

Table 10: Error norm for Example 7.10.

4n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞ ‖μ3 − μ3n‖∞
64 6.7 × 10−05 7.2 × 10−05 9.9 × 10−05 2.2 × 10−05

128 6.4 × 10−09 5.0 × 10−08 1.8 × 10−09 4.5 × 10−08

256 6.8 × 10−13 1.0 × 10−12 9.8 × 10−13 9.7 × 10−13

512 1.3 × 10−16 1.2 × 10−15 3.0 × 10−16 4.4 × 10−16
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Table 11: The numerical values of μ0, μ1, μ2, and μ3 for Example 7.11.

4n μ0 μ1 μ2 μ3

64 2.97316998311 2.50170500411 3.45373711618 3.69125205510
128 2.96757277502 2.49923061605 3.45041067650 3.69904161729
256 2.96756361086 2.49922735100 3.45040617845 3.69905124306
512 2.96756361085 2.49922735099 3.45040617844 3.69905124308
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Figure 12: Mapping a region Ω bounded by an ellipse and three circles onto a circular slit region.

Figure 10 shows the region and its image based on our method. See Table 9 for our computed
values of μ0, μ1, and μ2.

7.4. Regions of Connectivity Four and Five

In this section, we have used four test regions for multiply connected regions whose exact
mapping functions are unknown. The results for sup norm error for first and third regions
between the our numerical values of μ0, μ1, μ2, μ3, μ4 and the computed values of μ0n, μ1n,
μ2n, μ3n, μ4n obtained from [12] are shown in Tables 10 and 12.

Example 7.10. Let Ω be the region bounded by [12]

Γ0 :
{

z(t) = (10 + 3 cos 3t )eit
}

,

Γ1 :
{

z(t) = −3.5 + 6i + 0.5e−iπ/4
(

eit + 4e−it
)}

,

Γ2 :
{

z(t) = 5 + 0.5eiπ/4
(

eit + 4e−it
)}

,

Γ3 :
{

z(t) = −3.5 − 6i + 0.5eiπ/4
(

eit + 4e−it
)}

, 0 ≤ t ≤ 2π, a = 8.5 + 0.1i.

(7.12)

Figure 11 shows the region and its image based on our method. See Table 10 for comparison
between our computed values of μ0, μ1, μ2, and μ3 with those computed values of Nasser
[12].
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Figure 13: Mapping a region Ω bounded by an ellipse and four circles onto a circular slit region.

Table 12: Error norm for Example 7.12.

5n ‖μ0 − μ0n‖∞ ‖μ1 − μ1n‖∞ ‖μ2 − μ2n‖∞ ‖μ3 − μ3n‖∞ ‖μ4 − μ4n‖∞
80 4.2 × 10−05 4.5 × 10−05 4.5 × 10−05 4.4 × 10−05 4.3 × 10−05

160 1.1 × 10−07 3.2 × 10−08 3.2 × 10−08 6.6 × 10−08 6.6 × 10−08

320 1.6 × 10−13 5.7 × 10−14 5.7 × 10−14 1.2 × 10−13 1.2 × 10−13

400 9.9 × 10−16 0 9.9 × 10−16 0 0

Example 7.11 (ellipse with three circles). Let Ω be the region bounded by

Γ0 : {z(t) = 2 cos t + 1.5i sin t},
Γ1 : {z(t) = 1 + 0.25(cos t − i sin t)},
Γ2 : {z(t) = −1 + 0.25(cos t − i sin t)},

Γ3 : {z(t) = 0.75i + 0.25(cos t − i sin t)}, 0 ≤ t ≤ 2π, a = 0.25 − 0.25i.

(7.13)

Figure 12 shows the region and its image based on ourmethod. See Table 11 for our computed
values of μ0, μ1, μ2, and μ3.

Example 7.12 (ellipse with four circles). Let Ω be the region bounded by

Γ0 : {z(t) = 0.2 + 8 cos t + 6i sin t},
Γ1 : {z(t) = 3 + 2i + cos t − i sin t},
Γ2 : {z(t) = −3 + 2i + cos t − i sin t},
Γ3 : {z(t) = −3 − 2i + cos t − i sin t},

Γ4 : {z(t) = 3 − 2i + cos t − i sin t}, 0 ≤ t ≤ 2π, a = 4i.

(7.14)
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Figure 14: Mapping a region Ω bounded by five ellipses onto a circular slit region.

Table 13: The numerical values of μ0, μ1, μ2, μ3, and μ4 for Example 7.13.

5n μ0 μ1 μ2 μ3 μ4

160 0.4081769461 0.5470254751 0.5470254751 0.6850879289 0.5258641902
320 0.4081097591 0.5470505181 0.5470505181 0.6850466360 0.5258066821
400 0.4081097885 0.5470505071 0.5470505071 0.6850466537 0.5258067072

Figure 13 shows the region and its image based on our method. See Table 12 for comparison
between our computed values of μ0, μ1, μ2, μ3, and μ4 with those computed values of Nasser
[12].

Example 7.13 (five ellipses). Let Ω be the region bounded by

Γ0 : {z(t) = −1.5i + 6 cos t + 8i sin t},
Γ1 : {z(t) = 3 + 0.5i + 1.5 cos t − i sin t},
Γ2 : {z(t) = −3 + 0.5i + 1.5 cos t − i sin t},
Γ3 : {z(t) = −3i + 0.7 cos t − 1.7i sin t},

Γ4 : {z(t) = −6i + 1.7 cos t − 0.7i sin t}, 0 ≤ t ≤ 2π, a = 0.4i.

(7.15)

Figure 14 shows the region and its image based on ourmethod. See Table 13 for our computed
values of μ0, μ1, μ2, μ3, and μ4.

8. Conclusion

In this paper, we have constructed new boundary integral equations for conformal mapping
of multiply regions onto a circular slit region. We have also constructed a newmethod to find
the values of modulus of f(z). The advantage of our method is that our boundary integral
equations are all linear. Several mappings of the test regions of connectivity one, two, three,
four, and five were computed numerically using the proposed method. After the boundary
values of the mapping function are computed, the interior mapping function is calculated by
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the means of Cauchy integral formula. The numerical examples presented have illustrated
that our boundary integral equation method has high accuracy.
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