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We consider and study the modified extragradient methods for finding a common element of
the solution set I" of a split feasibility problem (SFP) and the fixed point set Fix(S) of a strictly
pseudocontractive mapping S in the setting of infinite-dimensional Hilbert spaces. We propose an
extragradient algorithm for finding an element of Fix(S)NI" where S is strictly pseudocontractive. It
is proven that the sequences generated by the proposed algorithm converge weakly to an element
of Fix(S§) N T. We also propose another extragradient-like algorithm for finding an element of
Fix(S) N T where S : C — C is nonexpansive. It is shown that the sequences generated by the
proposed algorithm converge strongly to an element of Fix(S) NT.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a nonempty
closed convex subset of # and let Pc be the metric projection from # onto C. Let S: C — C
be a self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of
all real numbers.

A mapping A: C — H is called a-inverse strongly monotone, if there exists a constant
a > 0 such that

2 ¥xyeC (1.1)

(Ax-Ay,x-y)>a|x-y
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For a given mapping A : C — H#, we consider the following variational inequality (VI) of
finding x* € C such that

(Ax*,x —x*) >0, VxeC. (1.2)

The solution set of the VI (1.2) is denoted by VI(C, A). The variational inequality was first
discussed by Lions [1] and now is well known. Variational inequality theory has been studied
quite extensively and has emerged as an important tool in the study of a wide class of
obstacle, unilateral, free, moving, equilibrium problems; see, for example, [2—-4].

A mapping S : C — Cis called k-strictly pseudocontractive if there exists a constant
k € [0,1) such that

Sx=Sy||> < |lx-y|* +k||T-S)x-(I-9)y|> Vx,yeC (1.3)

see [5]. We denote by Fix(S) the fixed point set of S; that is, Fix(S) = {x € C : Sx = x}. In
particular, if k = 0, then S is called a nonexpansive mapping. In 2003, for finding an element
of Fix(S)NVI(C, A) when C C  is nonempty, closed and convex, S : C — C is nonexpansive
and A : C — H is a-inverse strongly monotone, Takahashi and Toyoda [6] introduced the
following Mann's type iterative algorithm:

Xp1 = AnXy + (1 — a,)SPe(x, — M Axy), Vn >0, (1.4)

where xy € C chosen arbitrarily, {a,} is a sequence in (0,1), and {1,} is a sequence in
(0,2a). They showed that if Fix(S) N VI(C, A) #0, then the sequence {x,} converges weakly
to some z € Fix(S) N VI(C, A). Further, motivated by the idea of Korpelevich’s extragradient
method [7], Nadezhkina and Takahashi [8] introduced an iterative algorithm for finding a
common element of the fixed point set of a nonexpansive mapping and the solution set of
a variational inequality problem for a monotone, Lipschitz continuous mapping in a real
Hilbert space. They obtained a weak convergence theorem for two sequences generated by
the proposed algorithm. Here the so-called extragradient method was first introduced by
Korpelevich [7]. In 1976, She applied this method for finding a solution of a saddle point
problem and proved the convergence of the proposed algorithm to a solution of this saddle
point problem. Very recently, Jung [9] introduced a new composite iterative scheme by the
viscosity approximation method and proved the strong convergence of the proposed scheme
to a common element of the fixed point set of a nonexpansive mapping and the solution set
of a variational inequality for an inverse-strongly monotone mapping in a Hilbert space.

On the other hand, let C and Q be nonempty closed convex subsets of infinite-
dimensional real Hilbert spaces #;1 and >, respectively. The split feasibility problem (SFP)
is to find a point x* with the following property:

x* eC, Ax* €Q, (1.5)

where A € B(H#1, H>) and B(H1, H2) denote the family of all bounded linear operators from
H 1 to e(Zz.

In 1994, the SFP was first introduced by Censor and Elfving [10], in finite-dimensional
Hilbert spaces, for modeling inverse problems which arise from phase retrievals and
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in medical image reconstruction. A number of image reconstruction problems can be
formulated as the SFP; see, for example, [11] and the references therein. Recently, it is found
that the SFP can also be applied to study intensity-modulated radiation therapy (IMRT)
[12-14]. In the recent past, a wide variety of iterative methods have been used in signal
processing and image reconstruction and for solving the SFP; see, for example, [11, 13, 15-19]
and the references therein (see also [20] for relevant projection methods for solving image
recovery problems). A special case of the SFP is the following convex constrained linear
inverse problem [21] of finding an element x such that

x €C, Ax =b. (1.6)

It has been extensively investigated in the literature using the projected Landweber iterative
method [22]. Comparatively, the SFP has received much less attention so far, due to the
complexity resulting from the set Q. Therefore, whether various versions of the projected
Landweber iterative method [23] can be extended to solve the SFP remains an interesting
open topics. The original algorithm given in [10] involves the computation of the inverse
A7l (assuming the existence of the inverse of A), and thus, did not become popular. A
seemingly more popular algorithm that solves the SFP is the CQ algorithm of Byrne [11, 15]
which is found to be a gradient-projection method (GPM) in convex minimization. It is also a
special case of the proximal forward-backward splitting method [24]. The CQ algorithm only
involves the computation of the projections Pc and Pg onto the sets C and Q, respectively,
and is therefore implementable in the case where Pc and Py have closed-form expressions;
for example, C and Q are closed balls or half-spaces. However, it remains a challenge how
to implement the CQ algorithm in the case where the projections Pc and/or Py fail to have
closed-form expressions, though theoretically, we can prove the (weak) convergence of the
algorithm.

In 2010, Xu [25] gave a continuation of the study on the CQ algorithm and its
convergence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ
algorithm which was proved to be weakly convergent to a solution of the SFP. He derived
a weak convergence result, which shows that for suitable choices of iterative parameters
(including the regularization), the sequence of iterative solutions can converge weakly to
an exact solution of the SFP.

Very recently, Ceng et al. [26] introduced and studied an extragradient method with
regularization for finding a common element of the solution set I' of the SFP and the set
Fix(S) of fixed points of a nonexpansive mapping S in the setting of infinite-dimensional
Hilbert spaces. By combining the regularization method and extragradient method due to
Nadezhkina and Takahashi [8], the authors proposed an iterative algorithm for finding an
element of Fix(S) N I'. The authors proved that the sequences generated by the proposed
algorithm converge weakly to an element z € Fix(S) NT.

The purpose of this paper is to investigate modified extragradient methods for finding
a common element of the solution set I of the SFP and the fixed point set Fix(S) of a strictly
pseudocontractive mapping S in the setting of infinite-dimensional Hilbert spaces. Assume
that Fix(S) NI # (. By combining the regularization method and Nadezhkina and Takahashi’s
extragradient method [8], we propose an extragradient algorithm for finding an element of
Fix(S) NT. It is proven that the sequences generated by the proposed algorithm converge
weakly to an element of Fix(S) NI'. This result represents the supplementation, improvement,
and extension of the corresponding results in [25, 26]; for example, [25, Theorem 5.7] and
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[26, Theorem 3.1]. On the other hand, by combining the regularization method and Jung’s
composite viscosity approximation method [9], we also propose another extragradient-like
algorithm for finding an element of Fix(S) NI where S : C — C is nonexpansive. It is shown
that the sequences generated by the proposed algorithm converge strongly to an element
of Fix(S) NT. Such a result substantially develops and improves the corresponding results in
[9, 25, 26]; for example, [25, Theorem 5.7], [26, Theorem 3.1], and [9, Theorem 3.1]. It is worth
pointing out that our results are new and novel in the Hilbert spaces setting. Essentially new
approaches for finding the fixed points of strictly pseudocontractive mappings (including
nonexpansive mappings) and solutions of the SFP are provided.

2. Preliminaries

Let # be a real Hilbert space whose inner product and norm are denoted by (-,-) and || - ||,
respectively. Let K be a nonempty closed convex subset of #. We write x, — x to indicate
that the sequence {x,} converges weakly to x and x, — x to indicate that the sequence
{x,} converges strongly to x. Moreover, we use w,,(x,) to denote the weak cw-limit set of the
sequence {x,}, that s,

W () == {x : xn, — x for some subsequence {x,,} of {x,}}. (2.1)

Recall that the metric (or nearest point) projection from < onto K is the mapping
Px : # — K which assigns to each point x € H the unique point Pxx € K satisfying the

property

e = Prex|| = inflx -y = d(x, K). 2.2)

Some important properties of projections are gathered in the following proposition.
Proposition 2.1. For given x € H and z € K,

(i)z=Prx e (x-z,y—2z) <0, forally € K;
(if) 2 = Pex & lx — 2|2 < [lx —yI? ~ lly ~ =P, forall y € K;

(iii) (Pxx — Pxy,x —y) > ||[Pxx — Pxyl* for all y € K, which hence implies that P is
nonexpansive and monotone.

Definition 2.2. Amapping T : #H — H is said to be

(a) nonexpansive if

|Tx-Ty|| <|lx-vy|, Yxyedk; (2.3)

(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently,

(x-—y,Tx-Ty) > ||Tx - Ty 2 Vx,y € H; (2.4)
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alternatively, T is firmly nonexpansive if and only if T can be expressed as
1
Tr=5I+5), (2.5)

where S : H — H is nonexpansive, projections are firmly nonexpansive.

Definition 2.3. Let T be a nonlinear operator with domain D(T) C J and range R(T) C ¥,
and let § > 0 and v > 0 be given constants. The operator T is called:

(a) monotone if

(x-y,Tx-Ty) >0, Vx,ye D(T). (2.6)

(b) p-strongly monotone if

(x -y, Tx-Ty) > pllx-y|’, Vx,ye D). (2.7)

(c) v-inverse strongly monotone (v-ism) if

(x-y,Tx-Ty) Zv”Tx—Ty”z, Vx,y € D(T). (2.8)

It can be easily seen that if T is nonexpansive, then I — T is monotone. It is also easy to
see that a projection Pk is 1-ism.

Inverse strongly monotone (also referred to as cocoercive) operators have been
applied widely to solve practical problems in various fields, for instance, in traffic assignment
problems; see, for example, [27, 28].

Definition 2.4. A mapping T : H — H is said to be an averaged mapping if it can be written
as the average of the identity I and a nonexpansive mapping, that is,

T=(1-a)l+as, (2.9)

where « € (0,1) and S : H# — H is nonexpansive. More precisely, when the last equality
holds, we say that T is a-averaged. Thus firmly nonexpansive mappings (in particular,
projections) are (1/2)-averaged maps.

Proposition 2.5 (see [15]). Let T : H — H be a given mapping.
(i) T is nonexpansive if and only if the complement I — T is (1/2)-ism.
(ii) If T is v-ism, then for y > 0, yT is (v/y)-ism.

(iii) T is averaged if and only if the complement I — T is v-ism for some v > 1/2. Indeed, for
a € (0,1),T is a-averaged if and only if I — T is (1/2a)-ism.
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Proposition 2.6 (see [15,29]). Let S, T,V : #H — H be given operators.

A IfT=1-a)S+aV for some a € (0,1), S is averaged and V is nonexpansive, then T is
averaged.

(ii) T is firmly nonexpansive if and only if the complement I — T is firmly nonexpansive.
(iii) If T = (1 —a)S + aV for some a € (0,1), S is firmly nonexpansive and V' is nonexpansive,
then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the
mappings {T;}N, is averaged, then so is the composite Ty o Ty o --- o Tn. In particular,
if Ty is aqy-averaged and T, is ar-averaged, where a1, ap € (0,1), then the composite Ty o T,
is a-averaged, where a = ay + ax — aqay.

(v) If the mappings {T;}~, are averaged and have a common fixed point, then

N
(Fix(T;) = Fix(T; - -- Ty). (2.10)
i=1

The notation Fix(T') denotes the set of all fixed points of the mapping T, that is, Fix(T) = {x € H :
Tx =x}.

On the other hand, it is clear that, in a real Hilbert space #, S : C — C is k-strictly
pseudocontractive if and only if there holds the following inequality:

1-k
(Sx-Sy,x-y) <|lx-y|*- 5l T=S)x— (1~ Syl|>, VxyecC (2.11)

This immediately implies that if S is a k-strictly pseudocontractive mapping, then I — S is
((1 - k)/2)-inverse strongly monotone; for further detail, we refer to [5] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the class of
nonexpansive mappings. The so-called demiclosedness principle for strict pseudocontractive
mappings in the following lemma will often be used.

Lemma 2.7 (see [5, Proposition 2.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H and S : C — C be a mapping.

(i) If S is a k-strict pseudocontractive mapping, then S satisfies the Lipschitz condition

1+k
||Sx - Sy|| < 1-_'-—k||x—y , Vx,yeC. (2.12)

(ii) If S is a k-strict pseudocontractive mapping, then the mapping I — S is semiclosed at O; that
is, if {x,} is a sequence in C such that x, — X and (I — S)x,, — 0, then (I - S)x = 0.

(iii) If S is k-(quasi-)strict pseudo-contraction, then the fixed point set Fix(S) of S is closed and
convex so that the projection Prix(s) is well defined.

The following elementary result on real sequences is quite well known.
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Lemma 2.8 (see [30, page 80]). Let {ay};eq, {bn}oey and {0, },eq be sequences of nonnegative real
numbers satisfying the inequality

an1 < (1+oy)a,+b,, Vn>1. (2.13)

If > 00 <ooand 3.7, b, < oo, then limy,_, . ay, exists. If, in addition, {a,},., has a subsequence
which converges to zero, then limy, _, ,a, = 0.

Corollary 2.9 (see [31, page 303]). Let {ay},— and {b,},—, be two sequences of nonnegative real
numbers satisfying the inequality

ap <a,+b,, VYn>1. (2.14)

If 32y by converges, then lim,, _, i a, exists.
It is easy to see that the following lemma holds.

Lemma 2.10 (see [32]). Let H be a real Hilbert space. Then, for all x,y € # and A € [0,1],
[ Ax + (1= Vy|]* = Mxl? + A= V]ly[* =20 =) ||x - y||*. (2.15)

The following lemma plays a key role in proving weak convergence of the sequences
generated by our algorithm.

Lemma 2.11 (see [33]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
S : C — C be a k-strictly pseudocontractive mapping. Let y and 6 be two nonnegative real numbers
such that (y + 6)k <y. Then

[y(x-y) +6(Sx-Sy)[| < (y +8)[[x-yll. VxyeC (2.16)

The following result is useful when we prove the weak convergence of a sequence.

Lemma 2.12 (see [25, Proposition 2.6]). Let K be a nonempty closed convex subset of a real Hilbert
space H. Let {x,} be a bounded sequence which satisfies the following properties:

(i) every weak limit point of {x,} lies in K;
(ii) limy, - o ||, — x|| exists for every x € K.

Then {x,} converges weakly to a point in K.

Let K be anonempty closed convex subset of a real Hilbert space # and let F : K — H#
be a monotone mapping. The variational inequality (VI) is to find x € K such that

(Fx,y-x)>0, VyeKkK. (2.17)

The solution set of the VIP is denoted by VI(K, F). It is well known that

x € VI(K,F) & x = Px(x - AFx), VYA>0. (2.18)
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A set-valued mapping T : # — 2% is called monotone if for all x,y € #, f € Tx and
g € Ty imply

(x-y,f-g)20. (2.19)

A monotone mapping T : # — 2% is called maximal if its graph G(T) is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if, for (x,f) € # x H,(x -y, f — g) > 0 for every
(y,g) € G(T) implies f € Tx. Let F : K — ¥ be a monotone and L-Lipschitz continuous
mapping and let Nxv be the normal cone to K at v € K, that is,

Nixv={wed: (v-y,w)>0, Vy e K}. (2.20)

Define

(2.21)

Fv+ Ngo, ifovek,
To =
0, if v K.

Then, T is maximal monotone and 0 € Tv if and only if v € VI(K, F); see [34] for more details.

3. Some Modified Extragradient Methods

Throughout the paper, we assume that the SFP is consistent; that is, the solution set I" of the
SFP is nonempty. Let f : #; — R be a continuous differentiable function. the minimization
problem

minf (x) := %”Ax—PQAx”2 (3.1)

xeC

is ill posed. Therefore, Xu [25] considered the following Tikhonov regularized problem:
minf(x) := 1||Ax - PQAx”2 + 1ac||x||2 (3.2)
xec”” 2 2 !

where a > 0 is the regularization parameter.
We observe that the gradient

Vfa(x) =Vf(x)+al = A*(I - Pg)A+al (3.3)

is (& + || A||?*)-Lipschitz continuous and a-strongly monotone.
We can use fixed point algorithms to solve the SFP on the basis of the following
observation.
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Let A > 0 and assume that x* € I'. Then Ax* € Q, which implies that (I — Pp) Ax* =0,
and thus, LA*(I - Pg) Ax* = 0. Hence, we have the fixed point equation (I -AA*(I-Pg)A)x* =
x*. Requiring that x* € C, we consider the fixed point equation

Pe(I=AVf)x* = Pe(I - LA*(I - Pg) A)x* = x*. (3.4)

It is proven in [25, Proposition 3.2] that the solutions of the fixed point equation (3.4) are
exactly the solutions of the SFP; namely, for given x* € H#1, x* solves the SFP if and only if x*
solves the fixed point equation (3.4).

Proposition 3.1 (see [26, proposition 3.1]). Given x*e1, the following statements are equivalent:

(i) x* solves the SFP;
(ii) x* solves the fixed point equation (3.4);
(iii) x* solves the variational inequality problem (VIP) of finding x* € C such that

(Vf(x*),x-x*)>0, VxeC. (3.5)

Remark 3.2. 1t is clear from Proposition 3.1 that
I'=Fix(Pc(I-AVf)) = VI(C,Vf) (3.6)

forall A > 0, where Fix(Pc(I-AV f)) and VI(C, V f) denote the set of fixed points of Pc(I-AV f)
and the solution set of VIP (3.4), respectively.

We are now in a position to propose a modified extragradient method for solving the
SFP and the fixed point problem of a k-strictly pseudocontractive mapping S : C — C and
prove that the sequences generated by the proposed method converge weakly to an element
of Fix(S)nT.

Theorem 3.3. Let S : C — C be a k-strictly pseudocontractive mapping such that Fix(S) N T #0.
Let {x,,} and {y,} be the sequences in C generated by the following modified extragradient algorithm:

xo = x € C chosen arbitrarily,
Yn = PC(I_)‘nvfun)xnr (37)
Xnil = ﬂnxn + YnPC('xn - ')tnvf“n (yn)) + 6nSPC (xn - ')anfan (yn))l Vn 2 0/

where {a,} C (0,00),{A,} C (0,1/[|A||?) and {Bn}, {yn}, {64} C [0,1] such that
(i) X2o an < o0;
(ii) 0 < iminf, oA, < limsup, A < 1/|| Al
(iii) B + Yn + O6n = Land (yn + 6n)k < yn forall n > 0;
(iv) 0 <liminf, ., o, < limsup,,_,  f, <1and liminf, 6, > 0.

Then, both the sequences {x,} and {y,} converge weakly to an element X € Fix(S) NT.
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Proof. First, taking into account 0 < liminf, _, oA, < limsup, A, < 1/[|A|]?>, without loss of
generality, we may assume that {1,,} C [a,b] for some a,b € (0,1/||A|]?).
We observe that Pc(I — AV f,) is {-averaged for each A € (0,2/(a + || Al|?)), where

2+ A(a+[|AIP)

(3.8)
1 € (0,1).

See, for example, [35] and from which it follows that Pc(I — AV f,) and Pc(I — 1,V f,,) are
nonexpansive for all n > 0.

Next, we show that the sequence {x,} is bounded. Indeed, take a fixed p € Fix(S)nT
arbitrarily. Then, we get Sp = p and Pc(I — AV f)p = p for A € (0,2/]|A||%). For simplicity, we
write v, = Pc(x, — AV fa, (y,)) for all n > 0. Then we get x,41 = BuXy + YU + 6,Sv, for all
n > 0. From (3.7), it follows that

lyn =PIl = 1Pc(I = XaV fu,)%n = Pc(I = 1V f)p]|
< |[Pe(I = AuV fa,)xn = Pc(I = AuV fa, )p|| + |Pc(I = AnV fa,)p = Pc(I = XV f)p||
< lxn =pll + [1Pc(I = AuV fa, )p = Pe(I = 1V f)p ||
< lxen =pll + 1T = 4V fa,)p = (L= LV )p|

= ||xn = pll + Anan|lp||-
(3.9)

Also, by Proposition 2.1(ii), we have

[on = PII* < 1% = 1V fa () =PI = 160 = 40V i, () = oa?
=[x = pII* = 12 = val® + 220(V fr, (¥n), P = 0)
= llxn = II* = llxn = 0al
+ 200 ((V fa, (Yn) =V fo, (P), P = Yn)
Y fa, (), = Yn) + (Y fa,(Yn), Y = On))
<l =PI = 1t = 0l + 20 ((V fay (), P = Y} +(V fr, (Y1), Y = Ou))
= [l =PI = 11t = vall® + 20 [((@nI + V)P, 2 = Yu) +(V fay (Y1), Y = 0n)]
< Nl =plI* = Nl = vall* + 220 [P = Yu) +(V f, () Y = 0n)]
= Nl = pII* = 1% = yull* = 2(20 = Y Yo = 00) = |y = oa|’
+ 2n[an(p, P = Yn) + (Y fa, (Yn), Yn = On)]
= Nl = plI* = 1% = yull* = lyn = 0all” + 200 = 429 i, (Yn) = Y, 00 = y)

+ 240, (P, P = Yn)-
(3.10)
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Further, by Proposition 2.1(i), we have

(xn = AV fa, (Yn) = Y, On = Yn)

<xn - )‘nvac,, (xn) - yn/ Up — yn> + <)anfan (xn) - )anfa,, (]/n)/vn - yn>

< <)lnvf:x,, (xn) = AnV fa, (yn)lvn - yn> (3.11)
< Anl|V fa (en) = V for, () [ |2 = |

< A (@ + A1) [0 = vall |20 =

So, we obtain

lon =pI* < ll2n = pII* = 16 = yall” = lyn = oall* + 2(x0 = 10V fa, () = Y, 00 = Y)
+ 2Xn0n(p, P = Yn)
< e =l = 0w = yull® = Ny = oall® + 22 (@ + HAIP) [0 = [0 =yl
+ 2Lnau|lplllp = yall
< lxn =PI = 1160 = yall* = lym = oall®

2
28 (a + DAIE) =yl = = 0l 5 200l =
2
= = I + 20l = il + (43 a4 HAIE) 1) o =

< Nl =pI” + 2Xualpllllp = vl
(3.12)

Since (y, + 6n)k < ¥y, utilizing Lemmas 2.10 and 2.11, from (3.9) and the last inequality, we
conclude that

s = I

= ||Buxn + ynvn + 6,50, — p||2

2

Bl =) + (4 62) [0~ ) + 60(Svn )]

2
= Pullxn = pII* + (ru + 60)

1
e [Yn(vn = p) + 64 (Svn —p)]

2

= Bu(yn + 64) ﬁ [Yn(0n = %) + 6,(Svn — x,)]
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Pn
1-pn

< Pulln =l + (1= Bu) | n = pII” + 20atalp [P = v

2
+(A§, (an+1417) " - 1) [l - y,,”z]

2
||xn+1 - xn”

2 2
< Pullxn =plI"+ (1= Ba) llon = pII” -

P -l

1-pn
1w = pII* + 20 lp |l = v

2 n
(1= ) (33 (o 1A = 1) o =l = 225 o =

IN

IN

b =PI + aa (A3 el + [l = vl

2 n
(1= ) (33 (o0 1A =1) o =l = 7225 o =

2
llew =PI+ [P + (e = Pl + Aata )]

IN

2 n
+(1-p,) <Ai <an + ||A||2> - 1) 1% = va|* - 1f—ﬁnllxnﬂ - x|

b =PI + au [A2 1P + 2100 = p* + 2033 o]

IN

2 n
(1= ) (33 (o 1A =1) o =l = 7225 o =

= (1+2a) [l = p||* + A2 [[p|* (1 + 202

2 n
+(1-p,) <Ai <an + ||A||2) - 1) 1% = | - 1f—ﬂnllxnﬂ - x|

< (14 2a,) |0 = plI* + k2| p1* (1 + 242)

= (1 + o.n)”xn _p”2 + by,
(3.13)

where 0, = 2a, and b, = a,A2||p||*(1 + 2a2). Since >'5° a, < oo and {A,} C [a,b] for some
a,b e (0,1/||A||*), we conclude that 350, 6, < o0 and 322 by, < co. Therefore, by Lemma 2.8,
we deduce that

lim ||x,, — p|| exists for each p € Fix(S)NT, (3.14)

n— oo
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and the sequence {x,} is bounded and so are {y,} and {v,}. From the last relations, we also
obtain

_ )2 2\? o2, P e
(=g (1o 1) Yol o B

< 1+ 20) 0 = I 10t = pIF + a2 lpll (1 262).

Since {A,} C [a,b] for some a,b € (0,1/||Al*),0 < liminf,_,o.f, < limsup, . _p, <1 and
lim,, -, &, = 0, we have

Hm [[x = | = Ji_I)I;O”xml — Xn|| = 0. (3.16)

n—oo
Furthermore, we obtain

|Yn = onl| = | Pc(xn = AaV fa,(xn)) = P (%0 = 4nV fu, (yn)) ||
< |1 Gen = 4nV fa, () = (30 = 4V far, () ) |

(3.17)
= )tn”Vfan (xn) =V fa, (yn) ”
< i (atn + A1) [0 =y
This together with (3.16) implies that
Jim |y = 0u| = 0. (3.18)
Note that
[on = xull < flon = yull + [|yn = 2]l
160 (Svn = xu) | = [[ %01 = X0 = Y (Vn — Xn)
[+ Y I (315)
< lxns1 = xnll + Yullon — xall
< lxns1 = xall + ||on = x4l
This together with (3.16), (3.18), and lim inf 6,, > 0 implies that
nh_l:r;o”vn — x| = nlgl}oHSUn = x|l = 0. (3.20)

So, we derive

lim [|So, — v, = 0. (3.21)
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Since V f = A*(I — Pg) A is Lipschitz continuous, from (3.18), we have
Tim [V £ (yn) = Vf(wn)|| = 0. (322)

As {x,} is bounded, there is a subsequence {x,,} of {x,} that converges weakly to
some X. We obtain that X € Fix(S) N T. First, we show that x € T Since ||x, — v,|| — 0 and
lyn — vull — 0, it is known that v,, — X and y,, — X. Let

To < Vf(v)+ Nco, %f veC, (3.23)
0, ifodC

where Ncv = {w € H#1 : (v—u,w) > 0,for all u € C}. Then, T is maximal monotone and
0 € Tv if and only if v € VI(C, Vf); see [34] for more details. Let (v,w) € G(T). Then, we
have

weTv=Vf(v)+Ncv (3.24)
and hence,
w - Vf(v) € Nco. (3.25)
So, we have
(v-u,w-Vf(v)) >0, YueC. (3.26)
On the other hand, from
Yn = Pc(xn = AV fa, (X)), veC, (3.27)
we have
(xn = AV fa,(Xn) = Yn, Y —0) 20, (3.28)
and hence,
<v -y VL, (xn>> > 0. (3.29)

Therefore, from

w—-Vf(v) € Nco, Yn €C, (3.30)
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we have

<U _y"li’w> 2 <U ~ Ynis Vf(v))

Yni = Xn;

> (0=, V1(©)) = (0= s 2T

¥ fo, (5n)

i

ni — Xn;
= (@ Y, T1©)) = (0 s P 4T 100 ) = 00 %)
’ (3.31)
= <U - yni,Vf(v) - Vf(]/n,)> + <U - yni’vf(yni) - Vf(xﬂi)>
- <U - yn,-/ yni _ xni > - ani<v - yn,'/ xn,->
Ap,
Yn; — X,
2 <v_yni’vf<yni)_vf(xni)>_ <U_yni/ )lrr > _ani<v_yni’xni>‘
Hence, we obtain
(v-X,w) >0, as i — oo. (3.32)

Since T is maximal monotone, we have X € T~'0, and hence, x € VI(C,V f). Thus it is clear
that x e T.

We show that x € Fix(S). Indeed, since v,, — X and ||v,, — Sv,|| — 0 by (3.21),
by Lemma 2.7(ii), we get X € Fix(S). Therefore, we have x € Fix(S) N I'. This shows that
wy (x,) C Fix(S) NT, where

Weo(xy) = {x : x,, — x for some subsequence {x,,} of {x,}}. (3.33)

Since the limit lim,, _, .- ||x,, — p|| exists for every p € Fix(S) NI', by Lemma 2.12, we know that

xp — % € Fix(S)NT. (3.34)

Further, from ||x, — yx|| — 0, it follows that i, — x. This shows that both sequences {x,} and
{yn} converge weakly to X € Fix(S) nT. O

Remark 3.4. It is worth emphasizing that the modified extragradient algorithm in Theorem 3.3
is essentially the predictor-corrector algorithm. Indeed, the first iterative step vy, = Pc(I -
AV fa,)x, is the predictor one, and the second iterative step xp1 = Puxn + YuPc(x, —
AV fa,(Yn)) + 6,SPc(xy — AV fa,(yn)) is actually the corrector one. In addition, Theorem 3.3
extends the extragradient method due to Nadezhkina and Takahashi [8, Theorem 3.1].
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Corollary 3.5. Let S : C — C be a nonexpansive mapping such that Fix(S) NI #0. Let {x,} and
{yn} be the sequences in C generated by the following extragradient algorithm:

xo = x € C chosen arbitrarily,
Yn = Pc(I = A,V fo,)xn, (3.35)
Xn+1 =,ann + (1 _,Bn)SPC(xn _)tnvftx,, (]/n)); Vn >0,

where {a,} C (0,00), {X,} C (0,1/]|Al?), and {,} C [0,1] such that

(i) X0 an < ©;
(ii) 0 < liminf, A, <limsup, A, < 1/[|A|%

(iii) 0 < liminf, B, < limsup, | _f, <1
Then, both the sequences {x,} and {y,} converge weakly to an element x € Fix(S) NT.

Proof. In Theorem 3.3, putting y,, = 0 for every n > 0, we obtain that f, + 6, = S +yn + 6, =1
and

xo = x € C chosen arbitrarily,
Yn = PC(I - )anfa,,)xn/

Xn+1 = ﬂnxn + YnPC (xn - )tnvacn (yn)) + 6nSPC (xn - )anfan (yn))
= Puxn + 6,SPc(xn = AV fu, (yn)), Yn>0.

(3.36)

Since S:C — Cis anonexpansive mapping, S:C — C must be a k-strictly pseudocontractive
mapping with coefficient k=0. It is clear that (y,+6,)k < v, for every n>0 and liminf,, _, .6, =
1 -limsup,_,_pn > 0. In this case, all conditions in Theorem 3.3 are satisfied. Therefore, by
Theorem 3.3, we derive the desired result. O

Remark 3.6. Compared with [26, Theorem 3.1], Corollary 3.5 is essentially coincident with [26,
Theorem 3.1]. Hence our Theorem 3.3 includes [26, Theorem 3.1] as a special case. Utilizing
[8, Theorem 3.1], Ceng et al. gave the following weak convergence result [26, Theorem3.2].

Let S: C — C be a nonexpansive mapping such that Fix(S) N'T' #0. Let {x,} and {y,}
be the sequences in C generated by the following Nadezhkina and Takahashi extragradient
algorithm

xo = x € C chosen arbitrarily,

Yn = PC(I - )‘nvf)xnr (337)

Xn+1 = ﬁnxn + (1 - ﬁn)SPC (xn - )Lan(yn)), Vn > O,

where {1,} C [a,b] for some a,b € (0,1/||A||*) and {,} C [c,d] for some c,d € (0,1). Then,
both the sequences {x,} and {y,} converge weakly to an element x € Fix(S) NT.



Abstract and Applied Analysis 17

Obviously, there is no doubt that [26, Theorem 3.2] is a weak convergence result for
{a} satisfying a, = 0, for alln > 0. However, Corollary 3.5 is another weak convergence one
for the sequence of regularization parameters {a,} C (0, ).

Remark 3.7. Theorem 3.3 improves, extends, and develops [25, theorem 5.7] and [26, Theorem
3.1] in the following aspects.

(a) The corresponding iterative algorithms in [25, Theorem 5.7] and [26, Theorem
3.1] are extended for developing our modified extragradient algorithm with
regularization in Theorem 3.3.

(b) The technique of proving weak convergence in Theorem 3.3 is different from those
in [25, Theorem 5.7] and [26, Theorem 3.1] because our technique depends on
the properties of maximal monotone mappings and strictly pseudocontractive
mappings (e.g., Lemma 2.11) and the demiclosedness principle for strictly pseu-
docontractive mappings (e.g., Lemma 2.7) in Hilbert spaces.

(c) The problem of finding an element of Fix(S) N T with S : C — C being strictly
pseudocontractive is more general than the problem of finding a solution of the
SFP in [25, Theorem 5.7] and the problem of finding an element of Fix(S) NI with
S : C — C being nonexpansive in [26, Theorem 3.1].

(d) The second iterative step xpi1 = Buxyn + YuPc(xXn — AyVfa,(¥n)) + 6nSPc(x, —
AnV fa,(y,)) in our algorithm reduces to the the second iterative one x,41 = frx, +
(1-Pu)SPc(xp— A4V fa,(yn)) in the algorithm of [26, Theorem 3.1] whenever y,, = 0
foralln > 0.

Utilizing Theorem 3.3, we have the following two new results in the setting of real
Hilbert spaces.

Corollary 3.8. Let S : H#H1 — H; be a k-strictly pseudocontractive mapping such that Fix(S) N
(Vf )~ 1o #0. Let {x,,} and {y,} be two sequences generated by

xo = x € C chosen arbitrarily,
Yn = (I - /\nvfan)xn/ (338)
Xne1 = PXn + Yn(Xn = AnV fa, (Yn)) + 62S (X0 = AnV fa, (yn)),  ¥n 20,

where {ay} € (0,00), {An} C (0,1/[AI?) and {Bu}, {yn}, {6n} C [0,1] such that

(i) Xl @n < o/
(ii) 0 < liminf, . A, <limsup, | A, < /1A%
(iii) P+ yn + 6n = Land (yn + 6n)k < yn foralln > 0;

(iv) 0 < liminf, , B, < limsup, B, <1and liminf,_, 6, > 0.

Then, both the sequences {x,} and {y,} converge weakly to an element X € Fix(S) N (V f )y to.



18 Abstract and Applied Analysis

Proof. In Theorem 3.3, putting C = H#;, we have
(V) '0=VI(dk,, V) =T (3.39)

and P, = I the identity mapping. By Theorem 3.3, we obtain the desired result. O

be a nonexpansive mapping, Corollary 3.8 essentially reduces to [26, Corollary 3.2]. Hence,
Corollary 3.8 includes [26, Corollary 3.2] as a special case.

Remark 3.9. In Corollary 3.8, putting y, = 0 for every n > 0 and letting S : #; — H;

Corollary 3.10. Let B : H1 — 2% be a maximal monotone mapping such that B10n (V)10 #0.
Let JB be the resolvent of B for each r > 0. Let {x,} and {y,} be the sequences generated by

xo = x € C chosen arbitrarily,
Yn = (I - )tnvfan)xn/ (340)
Xn+l = ﬂﬂx" + Yn (x" - )L"Vflxn (yﬂ)) + 611 ]P (xn - )anfa,, (yn))r VTl 2 0/

where {ay} € (0,00), {An} € (0,1/|Al2) and {Bp}, {yu}, {6a} C [0,1] such that

(i) X0 an < o;

(i) 0 < liminf, o, < limsup, A, < 1/[|A]%
(iii) P+ yn + 60 = Land (yn + 6n)k < yn foralln > 0;
)

(iv) 0 <liminf, , o, < limsup,,_,  Bn <1and liminf, .6, > 0.
Then, both the sequences {x,} and {y,} converge weakly to an element X € B7'0N (V £)0.

Proof. In Theorem 3.3, putting C = 7 and S = J? the resolvent of B, we know that Py, = I
the identity mapping and S is nonexpansive. In this case, we get Fix(S) = Fix(JE) = B"10 and

(VF)'0=VI(ky,Vf)=T. (3.41)

By Theorem 3.3, we obtain the desired result. O

Remark 3.11. In Corollary 3.10, putting y, = 0 for every n > 0, Corollary 3.10 essentially
reduces to [26, Corollary 3.3]. Hence, Corollary 3.10 includes [26, Corollary 3.3] as a special
case.

On the other hand, by combining the regularization method and Jung’s composite
viscosity approximation method [9], we introduce another new composite iterative scheme
for finding an element of Fix(S) NI', where S : C — C is nonexpansive, and prove strong
convergence of this scheme. To attain this object, we need to use the following lemmas.

Lemma 3.12 (see [36]). Let {a,} be a sequence of nonnegative real numbers satisfying the property

Ap+l S (1 - Sn)an + Sntn + T, Vn 2 O/ (342)
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where {s,} C (0,1] and {t,} are such that

(i) 2o Sn = 00;
(ii) either limsup, _ t, <0o0r X7 |Sutn| < oo;

(iil) >p2qtn < 0o where r, >0, for all n > 0.

Then, lim,,_, ,a, = 0.

Lemma 3.13. In a real Hilbert space H, there holds the following inequality:
o+ y||* < llxlP + 2y, x +y), Vx,y k. (3.43)

Theorem 3.14. Let Q : C — C be a contractive mapping with coefficient p € [0,1) and S: C — C
be a nonexpansive mapping such that Fix(S) NT # 0. Assume that 0 < \ < 2/||A|\?, and let {x,} and
{yn} be the sequences in C generated by the following composite extragradient-like algorithm:

xo = x € Cchosen arbitrarily,
Yn = PnQxn + (1= Bn) SPc(xn — AV fo, (x1)), (3.44)
Xn+l = (1 - Yn)yn + YnSPC (yn - )vaa,, (yn))/ Vn > O/

where the sequences of parameters {a,} C (0,00) and {fBn}, {yn} C [0,1] satisfy the following
conditions:

(i) Xl an < oo/
(ii) imy— oofn = 0, 3,20 Pn = 00 and 357 |Bus1 — Pul < 0,
(iil) imsup, _ yn <1and 3oy — Ynl < oo

Then, both the sequences {x,} and {y,} converge strongly to q € Fix(S) N T, which is a unique
solution of the following variational inequality:

(I-Q)q,9-p) <0, VpeFix(S)NT. (3.45)

Proof. Repeating the same argument as in the proof of Theorem 3.3, we obtain that for each
L€ (0,2/(a+||Al?), Pc(I — AV f,) is {-averaged with

2 2 2
1, Aa+ A7) 1 Aa+1|AIP) ) 2+ (a+ A1) C o (3.46)
2 2 2 2 4 e
This shows that Pc(I — AV f,) is nonexpansive. Furthermore, for A € (0,2/| A||?), utilizing the
fact that lim,,_, ,, (2/ (an + ||A]|?)) = 2/||A||> we may assume that

0<i< ;2, Vn > 0. (3.47)
an + || All
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Consequently, it follows that for each integer n > 0, Pc(I — AV f,,) is {,-averaged with

1, Mo 1AP) g Mt IAF) 22w+ 141F)

1 (3.48)
"= 2 2 2 4 € ©1).

This immediately implies that Pc(I — AV f,,) is nonexpansive for all n > 0. Next, we divide
the remainder of the proof into several steps.
Step 1. {x,} is bounded.

Indeed, put u,, = Pc(x,— AV fa,(x,)) and v, = Pc(yn— AV f4, (yn)) for every n > 0. Take
a fixed p € Fix(S)NT arbitrarily. Then, we get Sp = p and Pc(I-AV f)p = p for A € (0,2/|A|]?).
Hence, we have

|l =pll = [|Pc(I = AV fa,)xn = Pc(I = AV f)p|
S |1Pe(I = AV fa,)2xn = Pc(I = AV fo, )p| + || Pc(I = AV fo, )p = Pe(I = AV f)p||
< loew = pll + |Pe(I = AV fo,)p = Pc(I = AV f)p||

< lxn = pl| + Aaw || p]-
(3.49)

Similarly we get ||v, — p|| < ||lyn — pl| + Aa,|lp|l. Thus, from (3.44), we have

lvn =Pl = 1P (Qxn = p) + (1= Bu) (Sun —p)||
< Bl Qxn = pll + (1= ) [[un = p|
< PullQxn = Qp|| + BullQp —pIl + (1= Bu) (l|2n = p| + Aau || |])
< Pupllxn =pl +BullQp = + (1= u) ([|xn = p| + Aau||p][)
= (1=Ba(1=p))lxa = Il + BullQp = pll + (1 = Bu) et 1| (3.50)

(=patt=p) =l a1 I 1

IN

Qp-p
max{ |z =2, ”TP” + e ||p|,

and hence,

l|xn1 = pll = |1 =¥4) (¥n = P) + ¥u(Sva = )|

< A=y lyn —pll +yullon - pll

< @ =y)lyn =2l +¥a(llyn = pll + Aaallp|)
llyn =Pl + el

Qp-p
max{ |lx =], % + Ay ||p|| + A |||

IN

(3.51)

IN

Qp-p
max{ |lx =2, % + 2 |p||-
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By induction, we get

|Qp -l "
i, |7 20|lp|| - D, Yn>o. (3.52)

et =] < max{uxo p
i=0

This implies that {x,} is bounded and so are {y,}, {u,}, {v,}. It is clear that both {Su,} and
{Swv,} are also bounded. By condition (ii), we also obtain

lyn = Stn]| = Bl Qxn = Sttn]| — 0 (n — c0). (3.53)

Step 2. limy, , o || Xp41 — X4l = 0.
Indeed, from (3.44), we have

Yn = ,Bann + (1 - ,Bn)sun/

(3.54)
Yn1= ﬂn—len—l + (1 - ﬁn—l)Sun—lr Vn > 1.

Simple calculations show that
Yn—Yn-1= (1 - ﬁn) (Suy — Sup_q) + (ﬁn - ﬁn—l) (Qxp-1 = Sup-1) + Pr(Qxn — Qxp1). (3.55)

Since

llttn = |l < ||Pe(I = AV fo,) X0 = Pc(I = AV fo,) x4 ||
+ ||Pc(I = AV fu, ) xXn1 = Pc(I = AV fo, ) X ||
< loen = Xl + [ (T = AV fo, ) Xt = (T = AV fa )t | (3.56)
= llxn = -1l + [|AV fa, (Xn1) = AV fa,, () ||

= ”xn - xn—l” + M‘Xn - an—ll”-xn—l”
for every n > 1, we have

(7|
< (1= Bu)lIStn = Sunall + |Bn = Pu1 | 1Qxn-1 = Sttnall + ull Qxn — Qxna |
< (1= u)lln = ttnall + | Bn = Bua [11Q%n-1 = Sutna || + Bupllcn = x|
< (1= Bu) [ll2n = xn-all + Man = an-alll2n-1ll] + | Br = Br-1]1QXn-1 = Sttn1 | (3.57)
+ Bupllxn = Xua |
< (1=pu(1=p))lIxn = xnoall + May = analllxnall + | B = Puo1 | 1Qxn-1 = Stan1||
< (1=Bu(1=p))llxn = xpall + My [lety = ana| + | B = Bra|]

for every n > 1, where M = sup{\A||xu-1] + |Qxp-1 — Sttp—1|| : m > 1}.
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On the other hand, from (3.44), we have

Xn+l = (1 - Yn)yn + Ynsvn/
Xn = (1 - Yn—l)]/n—l + Yn—lsvn—l'

Also, simple calculations show that

Xn+l — Xn = (1 - Yn) (]/n - ]/n—l) + Yn(Svn - Svn—l) + (Yn - Yn—l) (Svn—l - yn—l)'

Since

0w = Opall < ||Pe(I = AV fu, ) yn — Pc(I = AV fo, ) Y|
+[|Pe(I = AV fa,)ynr = Pe(I = AV fa, ) yn-i |
< lyn = yuall + 1T = AV fa, ) yno1 = (I = AV fa, )y |
= [lyn = yn-a || + 1AV fa, (Yn1) = AV fa,, (ynt) |

= lyn = yuar || + Maw = a1 || s ||

for every n > 1, it follows from (3.57) that

1201 = % |
< (=) |¥n = Yuet || + ¥allSvn = Svacall + |y = Yt | || SOnt = Yur |
< =y |yn = Yna |l + ¥allon = vacall + |y = Yoo || SOn-1 = s ||
< (L= yu)llyn = ynall + v [llyn = yna || + Metn = anall| yaa ||]
+ ¥n = Yua | | Svn-1 = yuaa |
<y = ynaa |l + Maw = anal{|yn-a || + [y = yuer | [| Svn1 = yua |
< |lyn = yna || + Ma[latw = atna| + |yn = Yua]
< (1= BuL = p)) I = Xnctll + M [l = et | + B Bt ]

+ M, [|‘xn - an—1| + |Yn - Yn—l”

(3.58)

(3.59)

(3.60)

= (1 _ﬁn(l _P))”xn _xnflll + (Ml + MZ)lan - an71| + Mllﬂn _ﬂn71| + M2|Yn - Yn71|

(3.61)
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for every n > 1, where My = sup{|yy-1]| + |Svp-1 — Yn-1ll : © > 1}. From conditions (i), (ii),
(iii), it is easy to see that

Smfu(1-p) =0, Su(1-p) =o»

(3.62)
Z [(Ml + M2)|an - lxn71| + Ml |ﬁn - ﬁn—ll + MZlYn — Yn-1 |] < co.
n=0
Applying Lemma 3.12 to (3.61), we have
Tim [l1 = x| = 0. (3.63)
From (3.57), we also have that ||y,.1 — yu|| = Oasn — co.
Step 3. limy, —, o0 || X — Y|l = imy, — oo]| % — Suy|| = 0.
Indeed, it follows that
[l21 = yull = 1]l Son =y
< Yn(”svn = Suy|| + ”Sun - ]/n”)
< Yn(”vn - un” + Sun —VYn )
| | 60
(P (T =AY fu ) = Pe(T =AY £ )| + [S1ts = ya )
< Vu([[yn = 2xall + (| St = yall)
< Yn(”]/n - xn+1|| + [[Xps1 = x| + ”Sun - yn”)/
which implies that
(=1 lyn = xnaal| < Y (lxni1 = xall + || Sttn = yul])
(3.65)

< Nlxner = Xall + || Sttn = |-

Obviously, utilizing (3.53), [|xz+1 — xx|| — 0 and limsup, |y, <1, we have |x,;:1 —yal| — 0
asn — oo. This implies that

260 = vl < llxn = Xl + [|ns1 = yu|| — 0 as n— co. (3.66)
From (3.53) and (3.66), we also have
ll2¢n = Sunll < ||xn = Y| + ||y — Sun|| — 0 as n— co. (3.67)

Step 4. limy, , - ||, — uy|| = 0.
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Indeed, take a fixed p € Fix(S) NT arbitrarily. Then, by the convexity of || - ||>, we have

Iy = pII* = 182 (Qan = p) + (1= Bu) (Stn = p) |I°
< Bull Q= plI* + (1= ) | S~ pI°
< BallQxn = plI* + (1= ) [Jn - pI”
< Pull Q= pII* + (1= Bu) (T = AV fu,) 0 = (I = AV f)p|’
= BallQxn =l + (1= ) (T = AV ) = (T = AV F)p = Aan2a ||
< Ball Q= pl*+ (1= ) [II(1 = AV )z = (1= AV f)p |
=20ty (%, (1= AV fo,) %0 = (1= AV f)p)]

2
1A

sﬁn||an—p||2+<1—ﬁn>[||xn—p||2+m(A— >||Vf(xn>-Vf(P)II2

e 2l (1= AV fa )0~ (1 - wnpn]

< BullQa =PI+ (1= Bu) [l =PI + 20l | (1 = AV £, )0 = (1= 27 £)p]

(3.68)
So we obtain
a-pgr(( 2 - 2) 9 - VI
< Bl I+ (1= Bl I - - I
(- Bkl AV o)~ (1A
(3.69)

2
< Bullxn = plI™ + (lxn =2l + llyn =2l (llxn =PIl = lya = pI)
+ Z)L“nllxn””(I - )‘Vfan)x" - (I - )‘Vf)p“

< Bull2en = pII* + (lxn = Il + |yn = 21D |0 = vl
+ 20aty |2 ||| (T = AV fu, )20 — (I = AV f)p]|.

Sincea, — 0, B, — O, ||xn — yull = 0,and 0 < A < 2/||A|?, from the boundedness of {x,}
and {y,}, it follows that lim, . ||V f(x,) = Vf(p)|| = 0, and hence

Tim ||V f, () =V (p)]| = 0. (3.70)
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Moreover, from the firm nonexpansiveness of Pc, we obtain

4 =PI = 1P (1 = AV fu ) = Pe(1 = AV f)p?
< (I -AV fu) %~ (1= AV )p,un - p)
= {10V~ (109 )l + [~ pI
(| (1= AV fo,)xu = (1= AV f)p = (un =) |I*}
< 2l =PI+ 20l (1= A9 fo )~ (1= AV )| + s~

—lxn - ”n”z + 2)‘<xn —un, V fa,(xn) - Vf(P)> - /\2”Vfun (xn) = Vf(P) ”2}'
(3.71)

and so

l[un = pII* < ll2en = PII* = 1% = 2eall® + 20allxall || (T = AV fi, )20 = (I = AV f)p|

(3.72)
+ 20X = 1, V fu, (Xn) =V (p)) = 2|V fu, () = V£ () ||

Thus, we have

lya =PI < Bull Q= pII” + (1= ) 1w =PI

< Pull Q= pII” + [l = pII* = (1 = B llen = ual®
20t || (T = AV i, )20 = (T = AV F)p||

#2(1 = Pu) M =, V fa, (n) = V£ (p)) = (1= Bu) V||V f, () = V£ (D)7,
(3.73)

which implies that

(1 - ﬁ") llxn — unllz

2
< Bullxn =" + (ln =2l + lyn = 21 (|0 =2l = ly= =PI
+ 2Xa|| x|l || (T = AV fa,) %0 = (I = AV f)p||

#2(1 - Bt Vo, () = V() ~ (1= )|V o, () - VD) B74)

2
< Bullxn =pl™ + (lloxn = Il + lyn =21 (2 = yall)
+ 2/\“71”3571””(1 - )‘Vfan)xn - (I - )‘Vf)p"

+2(1 = Bu) A0 =, V fa, () = VF (p)) = (1= ) V|V fa, () = VF )|
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Sincea, — 0, f, — 0, [lxy —yull — 0,and ||V fa,(xn) = Vf(p)|l — O, from the boundedness
of {x,}, {yn}, and {u,}, it follows that lim,, _, .-||x, — u,|| = 0 and hence

lim |y - a| = 0. (3.75)

Step 5. limsup, , (Qq—q,y» —q) <0 for g € Fix(S) NT, where g is a unique solution of the
variational inequality

(I-Q)4,q-p) <0, VpeFix(S)NT. (3.76)
Indeed, we choose a subsequence {u,,} of {u,} such that

limsup(Qq - g, Sun — q) = lim (Qq — g, Sutn, - q). (3.77)

n—oo

Since {uy, } is bounded, there exists a subsequence { Un,, } of {u,,} which converges weakly to
u. Without loss of generality we may assume that u,, — u. Then we can obtain u € Fix(S) NT.
Let us first show that u € I'. Define

(3.78)

To < Vf(w)+ Nco, ifveC,
g, ifvoégC,

where Ncv = {w € H#; : (v—-—u,w) >0, for all u € C}. Then, T is maximal monotone and
0 € Tv if and only if v € VI(C, Vf); see [34] for more details. Let (v,w) € G(T). Then, we
have

weTv=Vf(v)+Nco (3.79)
and hence,
w—Vf(v) € Nco. (3.80)
So, we have
(v-u,w-Vf(v))>0, YueC. (3.81)
On the other hand, from
Uy = Pc(xn — AV fg, (x1)), veC, (3.82)

we have

(% = AV fa, () = Un, tty —0) >0, (3.83)
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and hence,

<v Cu, 1"" +V o, (xn)> > 0. (3.84)

Therefore, from
w—Vf(v) € Nco, u,, € C, (3.85)
we have
(0=, w) > (V= tty, Vf(0V))

> <U — Up,, Vf(v)> - <U ~ Uny, o~ + Vf”‘"i (x"i)>

A
Up, — X,
= (v -y, Vf(v)) - <v - Uy, — 1 Lt Vf(xni)> — (0 = Up,, Xn, )
(3.86)
= (0= tn, V() = Vf(n,)) + (0 = ttn, V f (un)) = V f (xn,))
Uy, — X,
- <v ~ Uni,s T> = A, (0 = U, X))
Up, — Xn.
> <U — Up;, Vf(u‘rli) - Vf(xni)> - <U — Un,, f> - a‘rli<v - uni/xni>'
Hence, we obtain
(v-u,w) >0, as i — oo. (3.87)

Since T is maximal monotone, we have u € T~'0, and hence, u € VI(C,V f). Thus it is clear
thatu eT.

On the other hand, by Steps 3 and 4, |[u, — Su,|| < ||uy — x4|| + ||xn — Su,|| — 0. So, by
Lemma 2.7(ii), we derive u € Fix(S) and hence u € Fix(S) NI. Then from (3.76) and (3.77),
we have

lim sup(Qq - g, Sun — q) = lim (Qq - g, Suy, - q) =(Qq -9, - q)

n— oo t—

(I-Q)g,q-u) <0.

(3.88)

Thus, from (3.53), we obtain

lim sup(Qq - q, y» — q) < limsup(Qq — q, Yn — Sun) + limsup(Qq — q, Su, — q)

n—oo n—oo n— oo

< limsup||Qq - q||||yn — Sun|| +limsup(Qq - q,Su, —q)  (3.89)

n—oo

<O0.
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Step 6. lim,, _, || x, — g|| = 0 for g € Fix(S) NI', where g is a unique solution of the variational
inequality

(I-Q)g,9-p)<0, VpeFix(S)nT. (3.90)

Indeed, utilizing (3.49), (3.51), and Lemma 3.13, we have

[E=earih

< (lyn =4l + Aaallq]))*

= lyn = all” + Aaallqll 2lly» - qll + 1aulq]])

< Ny —qll* + Maaw = [|62(Qxa = 9) + (1= Bu) (S = 9) | + Maats

< (1= )| Sttn = qlI” +28,(Qxn = 4, yn — q) + M,

< (1= ) [lun = qlI* + 28:(Qxn = Q4 ¥ — @) + 28:(Qq — 4, Y - q) + Mt

< (1= ) (Ilxn = qll + 2aallq]))* + 28| = qll 1y - 4
+2Pn(Qq = 4, Yn — q) + Maaty

< (1= ) (Il = qll* + Maan ) + 2Bl = qll (lyn = xall + |0~ qll)
+2pn(Q9 = 4, Yn — q) + Mz

< (1= )% = all* + 280160 = all (lyn = xall + | = 411
+2B,(Qq ~ q,Yn — q) + 2Msa,

= [1-2B.(1 = p)]Ixa = all* + Bu[2p 1% = allllyn = xall + Bullxe = ql|* +2(Qa - 4,y - 0}

+ 2M3an
(3.91)

for every n > 0, where M3 = sup{A||gl|[2(||xx — gl + ly» — gl]) + Xaxllgll] : n > 0}. Now, put

ap = ||xn—q||2, Sn = zﬁn(l_P)r by = (1/2(1_P))[Zpllxn_qn”yn_xn”+ﬂn”xn_q”2+2<Qq_qr yn_q>]r
and r,, = 2M3a,,. Then (3.91) is rewritten as

ans1 < (1 —=8y)a, + spty + 14 (3.92)

It is easy to see that 37 s, = oo,limsup, , t, <0and > 7, < co. Thus by Lemma 3.12,
we obtain x,, — g. This completes the proof. O
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Corollary 3.15. Let Q : #H1 — H; be a contractive mapping with coefficient p € [0,1) and S :
Hy — Hy be a nonexpansive mapping such that Fix(S) N (V) 0#0. Assume that 0 < A <
2/\|Alj?, and let {x,} and {y,} be the sequences in H#; generated by

Xo = x € H1 chosen arbitrarily,
Yn = PnQxn + (1 - ﬁn)s(xn = AV fa, (xn)>r (3.93)
Xni1 = (1= Yu)Yn + VaS(Yn = AV fa,(yn)), V120,

where the sequences of parameters {a,} C (0,00) and {Bn}, {yn} C [0,1] satisfy the following
conditions:

(i) 2o an < oo
(ii) limy — o fn = 0, 3570 B = 00, and 377 |Brs1 — Pul < o0/

(iil) imsup,_,  yn <1 and S|y — Yal < oo

Then, both the sequences {x,} and {y,} converge strongly to q € Fix(S)N(V f )10, which is a unique
solution of the following variational inequality

((I-Q)q,g-p) <0, YpeFix(S)n (Vf) 0. (3.94)

Proof. In Theorem 3.14, putting C = J#1, we deduce that P, = I the identity mapping, I' =
VI(H1,Vf) = (Vf)'0and

xo = x € C(= H#1) chosen arbitrarily,
Yn = ﬂann + (1 - ﬂn)SPC (xn - )vaan (xn)) = ﬂann + (1 - ﬂn)s(xn - )‘Vfan (xn))r (3.95)
Xne1 = (1= Yn)Yn + ¥uSPc(Yn = AV fa,(yn)) = (L =Yu)Yn + YnS(Yn = AV fa, (¥n)),

for every n > 0. Then, by Theorem 3.14, we obtain the desired result. O

Remark 3.16. Theorem 3.14 improves and develops [25, Theoremb5.7], [26, Theorem 3.1], and
[9, Theorem 3.1] in the following aspects.

(a) The corresponding iterative algorithm in [9, Theorem 3.1] is extended for
developing our composite extragradient-like algorithm with regularization in
Theorem 3.14.

(b) The technique of proving strong convergence in Theorem 3.14 is very different from
those in [25, Theorem 5.7], [26, Theorem 3.1], and [9, Theorem 3.1] because our
technique depends on Lemmas 3.12 and 3.13.

(c) Compared with [25, Theorem 5.7], and [26, Theorem 3.1], two weak convergence
results, Theorem 3.14 is a strong convergence result. Thus, Theorem 3.14 is quite
interesting and very valuable.
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(d) In [9, Theorem 3.1], Jung actually introduced the following composite iterative
algorithm:

xo = x € Cchosen arbitrarily,
]/n = ﬂann + (1 - ﬂn)SPC(xn - )tnAxn)/ (396)

Xn+l = (1 - Yn)]/n + YnSPC(]/n - )LnAyn)/ Vn >0,

where A is inverse-strongly monotone and S is nonexpansive. Now, via replacing A,A by
AV f,,, we obtain the composite extragradient-like algorithm in Theorem 3.14. Consequently,
this algorithm is very different from Jung’s algorithm.

Furthermore, utilizing Jung [9, Theorem 3.1], we can immediately obtain the following
strong convergence result.

Theorem 3.17. Let Q : C — C be a contractive mapping with coefficient p € [0,1) and S: C — C
be a nonexpansive mapping such that Fix(S) n T'#0. Let {x,} and {y,} be the sequences in C
generated by the following composite extragradient-like algorithm:

xo = x € Cchosen arbitrarily,
Yn = PnQxn + (1= Bn) SPc(xn — AuVf(x2)), (3.97)
Xn+l = (1 - Yn)yn + YnSPC (yn - )anf(]/n))/ Vn >0,

where the sequences of parameters {1,} C (0,2/||A||?) and {B,}, {y.} C [0,1] satisfy the following
conditions:

(i) limy,— oofn = 0, X P = 00, and 357 |Pus1 — Pl < 00,
(ii) 0 < iminf, A, <limsup, | An < 2/[|A|* and 3500 [Ans1 — An| < o0,
(iii) imsup, ¥y < 1and 3770 [yue1 = Yul < o0

Then, both the sequences {x,} and {y,} converge strongly to q € Fix(S) N T, which is a unique
solution of the following variational inequality:

(I-Q)q,9-p) <0, VpeFix(S)NT. (3.98)

Remark 3.18. Ttis not hard to see that V f is (1/|| A||*)-ism. Thus, Theorem 3.17 is an immediate
consequence of Jung [9, Theorem 3.1].
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