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A new model which allows both the effect of partial selfing selection and an exponential function of the expected payoff is
considered. This combines ideas from genetics and evolutionary game theory. The aim of this work is to study the effects of
partial selfing selection on the discrete dynamics of population evolution. It is shown that the system undergoes period doubling
bifurcation, saddle-node bifurcation, and Neimark-Sacker bifurcation by using center manifold theorem and bifurcation theory.
Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex
dynamical behaviors, such as the period-3, 6 orbits, cascade of period-doubling bifurcation in period-2, 4, 8, and the chaotic sets.
These results reveal richer dynamics of the discrete model compared with the model in Tao et al., 1999. The analysis and results in
this paper are interesting in mathematics and biology.

1. Introduction

Evolutionary game theorywas extended to the geneticmodel.
The notion of an evolutionary stable strategy (ESS) which
was proposed by Smith [1] (1982) is important. And the basic
static solution concept of an ESS has been quite successful
in predicting the equilibrium behavior of individuals in a
population. A series of papers were devoted to the genetic
matrix gamemodels. But previous studies on thematrix game
models all assumed that genetic mating was random. For
example, Lessard [2] (1984) analyzed a frequency-dependent
two-phenotype selection model of single-locus with multial-
lele. Cressman [3] (1996) studied a two-species evolutionary
dynamics. Cressman et al. [4] (2003) discussed evolutionarily
stable sets in the genetic model of natural selection. Tao et
al. [5] (1999) investigated the discrete frequency dynamics
of two phenotype diploid models. In fact, in genetic mating,
there exists partial selfing selection (Rocheleau and Lessard
[6]). From [6], each individual can reproduce by selfing or
random outcrossing with constant probabilities, respectively,
in a population. After considering partial selfing selection,
we establish a nonlinear frequency dynamics, which becomes
more realistic but more complicated.

We consider a one-locus two-allele model where geno-
typic fitness is an exponential function of the expected
payoff and the frequency. Suppose that each individual of the
population can reproduce by selfingwith constant probability
𝛽. If 𝛽 = 0, then there is no partial selfing selection, which
was discussed in [5]. If 𝛽 ̸= 0, then one-dimensional discrete-
time dynamical systems are extended to two-dimensional
systems, which lead to great effect on the genetic model.
It was shown in [7] that a stable polymorphic equilibrium
is not an ESS under some condition. In this paper, we
focus on the bifurcation analysis of the genetic model. We
find that the model admits the unstable period doubling
bifurcation, the saddle-node bifurcation, and the Neimark-
Sacker bifurcation, which are new interesting phenomena
when considering partial selfing selection.

2. Model

Consider a diploid population with nonoverlapping genera-
tions and establish a genetic model with one locus and two
alleles 𝐴

1
and 𝐴

2
. The fitness of population individual is

frequency-dependent (i.e., it depends on the genetic makeup
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of the population concerned). To show the results, the
following assumptions will be made:

(i) Mendelian segregation;
(ii) sex ratio is independent of genotype;
(iii) no gametic selection;
(iv) the fecundity of offspring is equal;
(v) no mutation or migration.
According to [6], each individual can reproduce by selfing

or random outcrossing with probability 𝛽 or 1 − 𝛽 (0 <
𝛽 < 1), respectively, in the population. 𝑃

𝑖𝑗
and 𝑃󸀠

𝑖𝑗
are the

frequencies of genotypes 𝐴
𝑖
𝐴
𝑗
in the current generation and

in the next generation, respectively. The genotypic frequency
of genotype 𝐴

𝑖
𝐴
𝑗
among adults in the current generation is

𝑃̃
𝑖𝑗
.The corresponding selection values of genotypes𝐴

𝑖
𝐴
𝑗
are

𝐹
𝐴𝑖𝐴𝑗

. 𝑝 and 𝑝󸀠 are the frequencies of allele 𝐴
1
in the current

generation and in the next generation, respectively. 𝑞 and 𝑞󸀠
are the frequencies of allele 𝐴

2
in the current generation and

in the next generation, respectively. 𝑝̃ and 𝑞̃ are genotypic
frequencies of allele 𝐴

1
and allele 𝐴

2
among adults in the

current generation, respectively. 𝑢
𝑖𝑗
(or 1−𝑢

𝑖𝑗
) is the fraction

of individuals of genotype 𝐴
𝑖
𝐴
𝑗
which play pure strategy

𝑅
1
(or 𝑅
2
). After selection but before mating, we have

𝑃̃
11
=

𝐹
𝐴1𝐴1

𝑃
11

[𝐹
𝐴1𝐴1

𝑃
11
+ 𝐹
𝐴1𝐴2

𝑃
12
+ 𝐹
𝐴2𝐴2

𝑃
22
] ,

𝑃̃
12
=

𝐹
𝐴1𝐴2

𝑃
12

[𝐹
𝐴1𝐴1

𝑃
11
+ 𝐹
𝐴1𝐴2

𝑃
12
+ 𝐹
𝐴2𝐴2

𝑃
22
] ,

𝑃̃
22
=

𝐹
𝐴2𝐴2

𝑃
22

[𝐹
𝐴1𝐴1

𝑃
11
+ 𝐹
𝐴1𝐴2

𝑃
12
+ 𝐹
𝐴2𝐴2

𝑃
22
] .

(1)

After mating and reproduction, there are

𝑃󸀠
11
= 𝛽 [𝑃̃

11
+
1

4
𝑃̃
12
] + (1 − 𝛽) [𝑃̃

11
+
1

2
𝑃̃
12
]
2

,

𝑃󸀠
12
= 𝛽 [

1

2
𝑃̃
12
] + 2 (1 − 𝛽) [𝑃̃

11
+
1

2
𝑃̃
12
] [𝑃̃
22
+
1

2
𝑃̃
12
] ,

𝑃󸀠
22
= 𝛽 [𝑃̃

22
+
1

4
𝑃̃
12
] + (1 − 𝛽) [𝑃̃

22
+
1

2
𝑃̃
12
]
2

.

(2)

In our paper, the fitness 𝐹
𝐴𝑖𝐴𝑗

is taken to be an exponen-
tial function of the expected payoff as [6]. Assume that an
individual in the population can use one of two strategies
𝑅
1
and 𝑅

2
; each individual plays the same pure strategy

throughout its lifetime. And the payoff matrix is

[
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] . (3)

Let 𝑥 be the proportion of individuals using strategy𝑅
1
; then,

we can get that the expected payoffs to 𝑅
1
and 𝑅

2
are

𝜑
1
= 𝑥𝑎
11
+ (1 − 𝑥) 𝑎

12
,

𝜑
2
= 𝑥𝑎
21
+ (1 − 𝑥) 𝑎

22
.

(4)

Furthermore, we take the fitness function

𝐹
𝐴𝑖𝐴𝑗

= 𝑢
𝑖𝑗
𝑒𝜑1 + (1 − 𝑢

𝑖𝑗
) 𝑒𝜑2 . (5)

Since system (2) is on the simplex 𝑆
3
= {(𝑃

11
, 𝑃
12
, 𝑃
22
) |

𝑃
11
+𝑃
12
+𝑃
22
= 1; 𝑃

11
, 𝑃
12
, 𝑃
22
≥ 0}, we can get the following

system:

𝑃󸀠
11
= 𝛽

𝐹
𝐴1𝐴1

𝑃
11
+ (1/4) 𝐹

𝐴1𝐴2
𝑃
12

𝐹

+ (1 − 𝛽)
(𝐹
𝐴1𝐴1

𝑃
11
+ (1/2) 𝐹

𝐴1𝐴2
𝑃
12
)
2

𝐹
2

,

𝑃󸀠
12
= 𝛽

(1/2) 𝐹
𝐴1𝐴2

𝑃
12

𝐹
+ 2 (1 − 𝛽)

× ((𝐹
𝐴1𝐴1

𝑃
11
+
1

2
𝐹
𝐴1𝐴2

𝑃
12
)

× (𝐹
𝐴2𝐴2

(1−𝑃
11
− 𝑃
12
)+

1

2
𝐹
𝐴1𝐴2

𝑃
12
))

× (𝐹
2

)
−1

,

(6)

where
𝑥 = 𝑃
11
𝑢
11
+ 𝑃
12
𝑢
12
+ 𝑃
22
𝑢
22
,

𝜑
𝑖
= 𝑥𝑎
𝑖1
+ (1 − 𝑥) 𝑎

𝑖2
,

𝐹
𝐴𝑖𝐴𝑗

= 𝑢
𝑖𝑗
𝑒𝜑1 + (1 − 𝑢

𝑖𝑗
) 𝑒𝜑2 ,

𝐹 = 𝐹
𝐴1𝐴1

𝑃
11
+ 𝐹
𝐴1𝐴2

𝑃
12
+ 𝐹
𝐴2𝐴2

𝑃
22
.

(7)

From (1) and (2), we obtain

𝑝̃ = 𝑃̃
11
+
1

2
𝑃̃
12
= 𝑃󸀠
11
+
1

2
𝑃󸀠
12
= 𝑝󸀠. (8)

Obviously, it is difficult to use𝑝 and 𝑞 to denote the genotypic
frequency 𝑃

𝑖𝑗
directly. If the population is polymorphic (i.e.,

0 < 𝑝 < 1), we can use the fixation index 𝐹 (wright 1949 [8])
according to [6]. The genotypic frequencies can be written in
the form

𝑃
11
= 𝑝2 + 𝑝𝑞𝐹,

𝑃
12
= 2𝑝𝑞 (1 − 𝐹) , 𝑃

22
= 𝑞2 + 𝑝𝑞𝐹,

(9)

where −1 ≤ 𝐹 ≤ 1. The value of 𝐹 varies from one generation
to the next.

Equations (1) to (9) can deduce that

𝑝
󸀠
=𝑝
(𝑝+𝑞𝐹) (𝑢11𝑒

𝜑1+(1 − 𝑢11) 𝑒
𝜑2 )+(1−𝐹) 𝑞 (𝑢12𝑒

𝜑1+(1−𝑢12) 𝑒
𝜑2 )

𝐹

,

𝐹󸀠=𝛽[1−
1−𝐹

2
(

𝑝

1− (1− (𝐹
𝐴2𝐴2

/𝐹
𝐴1𝐴2

)) (𝑞+𝑝𝐹)

+
𝑞

1− (1− (𝐹
𝐴1𝐴1

/𝐹
𝐴1𝐴2

)) (𝑝+𝑞𝐹)
)] ,

(10)
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where

𝑥
𝐴1

= (𝑝 + 𝑞𝐹) 𝑢
11
+ 𝑞 (1 − 𝐹) 𝑢

12
,

𝑥
𝐴2

= (𝑞 + 𝑝𝐹) 𝑢
22
+ 𝑝 (1 − 𝐹) 𝑢

12
,

𝑥 (𝑝, 𝐹) = (𝑝2 + 𝑝𝑞𝐹) 𝑢
11
+ 2𝑝𝑞 (1 − 𝐹) 𝑢

12

+ (𝑞2 + 𝑝𝑞𝐹) 𝑢
22

= 𝑝𝑥
𝐴1
+ 𝑞𝑥
𝐴2
,

𝜑
𝑖
= 𝑥𝑎
𝑖1
+ (1 − 𝑥) 𝑎

𝑖2
,

𝐹
𝐴𝑖𝐴𝑗

= 𝑢
𝑖𝑗
𝑒𝜑1 + (1 − 𝑢

𝑖𝑗
) 𝑒𝜑2 ,

𝐹 = 𝑥𝑒𝜑1 + (1 − 𝑥) 𝑒
𝜑2 .

(11)

Throughout the paper, we discard the degenerate situa-
tions where all 𝑢

𝑖𝑗
are identical or where 𝛾 = 0 and suppose

that 𝐴
𝑖
𝐴
𝑗
is not the genotype in the parental generation.

3. Model Analysis and Basic Definitions

Recall Definition 1 in [7], which is a similar definition of
phenotypic and genotypic equilibria under partial selfing
selection according to [2]. The two types of the equilibria
include all situations in which the population is in equilib-
rium.

Definition 1. A phenotypic equilibrium is an equilibrium
where all pure strategies in current use have equal expected
payoff. A genotypic equilibrium is a nonphenotypic equilib-
rium where the effective fitnesses of all alleles present in the
current population are equal. The effective fitness of allele 𝐴

𝑖

is defined to be [𝑃
𝑖𝑖
𝐹
𝐴𝑖𝐴𝑖

+(1/2)𝑃
12
𝐹
𝐴1𝐴2

]/[𝑃
𝑖𝑖
+(1/2)𝑃

12
]. (In

addition, in the case 𝑝 = 0, the effective fitness of allele 𝐴
1

is 𝐹
𝐴1𝐴2

. In the case 𝑝 = 1, the effective fitness of allele 𝐴
2
is

𝐹
𝐴1𝐴2

.)

According to Definition 1, a phenotypic equilibrium is
an equilibrium where all pure strategies in current use
have equal expected payoff. So, a polymorphic phenotypic
equilibrium exists if and only if 𝜑

1
= 𝜑
2
. Then, we have

𝜑
2
− 𝜑
1
= 𝑥 (𝑎

21
− 𝑎
11
) + (1 − 𝑥) (𝑎

22
− 𝑎
12
) = 𝛾 (𝑥 − 𝜉) ,

(12)

where 𝛾 = 𝑎
12
−𝑎
22
+𝑎
21
−𝑎
11
, and 𝜉 = (𝑎

12
−𝑎
22
)/(𝑎
12
−𝑎
22
+

𝑎
21
− 𝑎
11
).

Let (𝑝∗, 𝐹∗) denote polymorphic phenotypic equilib-
rium; then, we have the Jacobian matrix at (𝑝∗, 𝐹∗) of system
(10)

𝐴∗ = [

[

1 − 𝑘
11
𝛾 𝑘

12
𝛾

𝑘
21
𝛾

𝛽

2
− 𝑘
22
𝛾
]

]

, (13)

where

𝑢 = 𝑢
11
+ 𝑢
22
− 2𝑢
12
, 𝑎 = 𝑢

11
− 𝑢
12
,

𝑏 = 𝑢
22
− 𝑢
12
, 𝐹∗ =

𝛽

2 − 𝛽
,

𝑘
2
= 𝑝∗
2

(𝑢
22
− 𝑢
12
) + 𝑞∗

2

(𝑢
11
− 𝑢
12
) ,

𝑘 = 𝑢
12
− 𝑢
11
+ 𝑝∗𝑢, 𝑧 = 𝑢

22
− 𝑢
12
− 𝑝∗𝑢,

𝑘
11
= 𝑝∗ (1 − 𝑝∗) (𝑧 + 𝐹∗𝑘) [(2 − 𝐹∗) 𝑧 + 𝐹∗𝑘] ,

𝑘
12
= 𝑝∗
2

𝑞∗
2

𝑢 (𝑧 + 𝐹∗𝑘) ,

𝑘
21
=
𝛽

2
(1 − 𝐹∗) (𝑝∗𝑞∗𝑢 + 𝐹∗𝑘

2
) [(2 − 𝐹∗) 𝑧 + 𝐹∗𝑘] ,

𝑘
22
=
𝛽

2
(1 − 𝐹∗) 𝑝∗𝑞∗𝑢 (𝑝∗𝑞∗𝑢 + 𝐹∗𝑘

2
) .

(14)

We studied the system (10) and obtained Theorem 3.1 (i)
and (ii) in [7]. In [7], the authors showed that a stable poly-
morphic equilibrium is not an ESS under some condition. In
this paper, we focus on the bifurcation of system (10). For
convenience, we present some lemmas and theorems of the
stability of polymorphic phenotypic equilibrium in [7] at first.

Lemma 2. 𝑥∗ = 𝑥(𝑝∗, 𝐹∗) = 𝜉(0 < 𝜉 < 1) is an interior ESS
if and only if 𝛾 > 0.

Lemma 3. If 𝑘
11
> 0, then (𝛽/2)𝑘

11
+ 𝑘
22
> 0. If 𝑘

11
< 0, then

((2 + 𝛽)/4)𝑘
11
+ 𝑘
22
> 0.

Theorem 4. Suppose that (𝑝∗, 𝐹∗) is a polymorphic pheno-
typic equilibrium.

(i) Suppose that 𝑘
11
> 0. If 𝑥∗ is not an ESS, then (𝑝∗, 𝐹∗)

is unstable. If 𝑥∗ is an ESS, then (𝑝∗, 𝐹∗) is stable for
0 < 𝛾 < 𝛾

𝑐𝛾2
.

(ii) Suppose that 𝑘
11
< 0. If 𝑥∗ is an ESS, then (𝑝∗, 𝐹∗) is

unstable. If 𝑥∗ is not an ESS, then (𝑝∗, 𝐹∗) is stable for
𝛾
𝑐𝛾1

< 𝛾 < 0.
(iii) Suppose that 𝑘

11
= 0. If 𝑎 ̸= 𝑏, then (𝑝∗, 𝐹∗) is unstable

for 𝛾 ̸= (𝛽 ± 2)/2𝑘
22
. If 𝑎 = 𝑏, then (𝑝∗, 𝐹∗) is stable

for 𝛾 ∈ (0, 4(𝛽 + 2)/𝛽𝑎2(1 − 𝐹∗
2
)), unstable for 𝛾 ∈

(−∞, −4/𝑎2(1 − 𝐹∗
2
)𝐹∗) ∪ (−4/𝑎2(1 − 𝐹∗

2
)𝐹∗, 0) ∪

(4(𝛽 + 2)/𝛽𝑎2(1 − 𝐹∗
2
), +∞).

Proof. Consider only the case 𝑘
11
> 0 since the proof of the

case 𝑘
11

< 0 is analogous. From the Jacobian matrix 𝐴∗ at
(𝑝∗, 𝐹∗), we have

det𝐴∗ = −(
𝛽

2
𝑘
11
+ 𝑘
22
)𝛾 +

𝛽

2
,

tr𝐴∗ =
2 + 𝛽

2
− 𝛾 (𝑘

11
+ 𝑘
22
) .

(15)

If 𝑥∗ is not an ESS, then 𝛾 < 0 from Lemma 2.The inequality
𝑘
11
𝛾 < 0 implies that tr𝐴∗ > det𝐴∗ + 1. So, (𝑝∗, 𝐹∗) is
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unstable. If 𝑥∗ is an ESS, then 𝛾 > 0. By the discussion on the
monotone function, we can obtain the following inequalities:

det𝐴∗ < 1, 󵄨󵄨󵄨󵄨tr𝐴
∗󵄨󵄨󵄨󵄨 < det𝐴∗ + 1. (16)

So, (𝑝∗, 𝐹∗) is stable.
Now, we discuss the stability of (𝑝∗, 𝐹∗) when 𝑘

11
= 0. If

𝑢 = 0, then 𝑘
11
= 0. If 𝑘

11
= 0, we have the following.

Case 1. (𝑝∗, 𝐹∗) = (𝑝
2
, 𝛽/(2 − 𝛽)), where 𝑝

2
= (2𝑏 −

𝑢𝐹∗)/2𝑢(1 − 𝐹∗) and 𝐹∗ = 𝛽/(2 − 𝛽).

Case 2. (𝑝∗, 𝐹∗) = (𝑝
1
, 𝛽/(2−𝛽)), where 𝑝

1
= (𝑏−𝑎𝐹∗)/𝑢(1−

𝐹∗) and 𝐹∗ = 𝛽/(2 − 𝛽).
We only prove Case 1 since Case 2 is analogous.
Write

𝑎
1
= 𝑘
12
𝛾, 𝑏

1
=
𝛽

2
− 𝑘
22
𝛾,

𝑎
11
= −2𝑢(1 − 𝐹∗)

2

𝑝∗𝑞∗𝑧𝛾,

𝑎
12
= 𝑝∗
2

𝑞∗
2

𝑢 [2𝑘 + (𝑧 + 𝐹∗𝑘) 𝑝∗𝑞∗𝑢𝛾] 𝛾,

𝑎
22
= 𝑝∗𝑞∗𝑢 [2 (1 − 2𝑝∗) (𝑧 + 𝐹∗𝑘) − 𝑝∗𝑞∗𝑢 (1 − 𝐹∗)] 𝛾,

𝑏
11
= −𝛽, 𝑢(1 − 𝐹∗)

2

[𝑝∗𝑞∗𝑢 + (𝑏𝑝∗
2

+ 𝑎𝑞∗
2

) 𝐹∗] 𝛾,

(17)

and let 𝑃 = ( 1 −𝑎1/(1−𝑏1)
0 1

). Using the translation

(
𝑝
𝐹
) = 𝑃(

𝜇
]
) + (

𝑝
2

𝐹∗
) , (18)

system (10) becomes

𝜇󸀠 = 𝜇 +
1

2

× [𝑎
11
(𝜇 −

𝑎
1

1 − 𝑏
1

])
2

+ 𝑎
12
](𝜇 −

𝑎
1

1 − 𝑏
1

]) + 𝑎
22
]
2]

+
𝑎
1

2 (1 − 𝑏
1
)
⋅ [𝑏
11
(𝜇 −

𝑎
1

1 − 𝑏
1

])
2

+𝑏
12
](𝜇 −

𝑎
1

1 − 𝑏
1

]) + 𝑏
22
]
2] + h.o.t,

]
󸀠 = 𝑏
1
]

+
1

2
[𝑏
11
(𝜇 −

𝑎
1

1 − 𝑏
1

])
2

+ 𝑏
12
](𝜇 −

𝑎
1

1 − 𝑏
1

]) + 𝑏
22
]
2]

+ h.o.t.
(19)

By center manifold theory, we can obtain the following
reduced system which is locally homeomorphic with system
(10):

𝜇󸀠 = 𝜇 +
1

2
(𝑎
11
+

𝑎
1

1 − 𝑏
1

𝑏
11
)𝜇2 + 𝑂 (𝜇3) , (20)

where (1/2)(𝑎
11

+ (𝑎
1
/(1 − 𝑏

1
))𝑏
11
) = 𝑝∗𝑞∗𝑢𝑧(1 −

𝐹∗)2𝛾{(1/(1/𝑝∗𝑞∗𝑢[𝑝∗𝑞∗𝑢+𝐹∗(𝑎𝑞∗
2
+𝑏𝑝∗

2
)𝛾]𝐹∗(1−𝐹∗)) +

1) − 1}. If 𝑎 ̸= 𝑏, then 𝑧 ̸= 0. So, we have (1/2)(𝑎
11
+ (𝑎
1
/(1 −

𝑏
1
))𝑏
11
) ̸= 0. If 𝑎 = 𝑏, we can calculate the reduced system by

similar analysis,

𝑥󸀠 = 𝑥 + 𝑘
3
𝑥3 + 𝑂 (𝑥4) , (21)

where 𝑘
3
= −(1−𝐹∗)2𝑎2𝛾/(1+(1/4)𝑎2(1−𝐹∗

2
)𝐹∗𝛾). It is easy

to obtain the results. This completes the proof.

4. Bifurcation Analysis

Based on the analysis in Section 3, we discuss the period
doubling bifurcations, the saddle-node bifurcation, and
the Neimark-Sacker bifurcation of the positive fixed point
(𝑃∗, 𝐹∗) in this section. We choose parameter 𝛾 as a bifur-
cation parameter to study the period doubling bifurcations
and the Neimark-Sacker bifurcation and parameter 𝛿 as a
bifurcation parameter to study the saddle-node bifurcation
by using center manifold theorem and bifurcation theory in
[9, 10]. Suppose that 𝑘

𝑖𝑗
is the same as that in (14).

4.1. Period Doubling Bifurcation. In the analysis of period
doubling bifurcations, we take 𝛾 as the bifurcation parameter
and prove that there is period doubling bifurcation at the
fixed point (𝑝∗, 𝐹∗) for 𝛾 = 𝛾

𝑐𝛾2
. When 𝛾 = 𝛾

𝑐𝛾2
, the

characteristic polynomial of Jacobian matrix at (𝑝∗, 𝐹∗) is

𝜆2 +
(4 − 𝛽2) 𝑘

11

2 [(2 + 𝛽) 𝑘
11
+ 4𝑘
22
]
𝜆 −

𝛽 (𝛽 + 2) 𝑘
11
+ 8𝑘
22

2 [(2 + 𝛽) 𝑘
11
+ 4𝑘
22
]
= 0.

(22)

We have the following characteristic values of (22):

𝜆
1
= −1, 𝜆

2
= 𝑠 =

𝛽 (𝛽 + 2) 𝑘
11
+ 8𝑘
22

2 [(2 + 𝛽) 𝑘
11
+ 4𝑘
22
]
. (23)

Let

𝐶 = [
𝑐
11

𝑐
12

𝑐
21

𝑐
22

] = [
(𝛽 + 2) 𝑘

11
4𝑘
12

−4𝑘
21

(𝛽 + 2) 𝑘
11

] , (24)

And let𝐷 denote 𝐶−1. Then,

𝐷 = [
𝑑
11

𝑑
12

𝑑
21

𝑑
22

]

=
1

(𝛽 + 2)
2

𝑘2
11
+ 16𝑘

12
𝑘
12

[
(𝛽 + 2) 𝑘

11
−4𝑘
12

4𝑘
21

(𝛽 + 2) 𝑘
11

] .

(25)

Denote the right-hand side of (10) by ( 𝑝
𝐹
), and use the

translation

(
𝑝
𝐹
) = 𝐶(

𝑥
𝑦
) + (

𝑝∗

𝐹∗
) , 𝛾 = 𝛾

𝑐𝛾2
+ 𝜆; (26)
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system (10) becomes

(
𝑥󸀠

𝑦󸀠
) = (

−1 0
0 𝑠

)(
𝑥
𝑦
) + (

𝐻 (𝑥, 𝑦, 𝜆)
𝐺 (𝑥, 𝑦, 𝜆)

) , (27)

where

𝐻(𝑥, 𝑦, 𝜆)= 𝑥+𝑑
11
(𝑓 (𝑥, 𝑦, 𝜆)−𝑝∗)

+𝑑
12
(𝑔 (𝑥, 𝑦, 𝜆)−𝐹∗) ,

𝐺 (𝑥, 𝑦, 𝜆)= − 𝑠𝑦+𝑑
21
(𝑓 (𝑥, 𝑦, 𝜆)−𝑝∗)

+𝑑
22
(𝑔 (𝑥, 𝑦, 𝜆)−𝐹∗) .

(28)

It is easy to obtain that

(
𝐻 (0, 0, 𝜆)
𝐺 (0, 0, 𝜆)

) = 0,

(

𝜕𝐻 (𝑥, 𝑦, 𝜆)

𝜕𝑥

𝜕𝐻 (𝑥, 𝑦, 𝜆)

𝜕𝑦
𝜕𝐺 (𝑥, 𝑦, 𝜆)

𝜕𝑥

𝜕𝐺 (𝑥, 𝑦, 𝜆)

𝜕𝑦

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥,𝑦,𝜆)=(0,0,0)

= 0,

𝜕2𝐻(𝑥, 𝑦, 𝜆)

𝜕𝑥𝜕𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥,𝑦,𝜆)=(0,0,0)
= 𝑑
11
(−𝑐
11
𝑘
11
+ 𝑐
21
𝑘
21
)

+ 𝑑
12
(𝑐
11
𝑘
21
− 𝑐
21
𝑘
22
)

= −
[(𝛽 + 2) 𝑘

11
+ 4𝑘
22
]
2

(𝛽 + 2)
2

𝑘
11
+ 16𝑘

22

.

(29)

According to Lemma 3, there are

(𝛽 + 2) 𝑘
11
+ 4𝑘
22

̸= 0, (𝛽 + 2)
2

𝑘
11
+ 16𝑘

22
> 0. (30)

So, we have

𝑐 = −2
𝜕2𝐻(𝑥, 𝑦, 𝜆)

𝜕𝑥𝜕𝜆
> 0. (31)

In order for system (27) to undergo period doubling bifurca-
tion, we require that the following 𝐿 is not zero [10]:

𝐿 = −2𝐻
𝑥𝑥𝑥

− 3𝐻2
𝑥𝑥
−

6

1 − 𝑠
𝐺
𝑥𝑥
𝐻
𝑥𝑦
. (32)

If 𝑘
11

̸= 0, then |𝑠| < 1 for 𝑘
11
> 0, |𝑠| > 1 for 𝑘

11
< 0.

From the previous analysis and the theorem in [10], we
have the following result.

Proposition 5. Suppose that (𝑝∗, 𝐹∗) is a polymorphic phe-
notypic equilibrium. If 𝑘

11
̸= 0 and 𝐿 ̸= 0, then system (10)

undergoes a period doubling bifurcation at (𝑝∗, 𝐹∗) for 𝛾 =
𝛾
𝑐𝛾2
.

Moreover, we have the following.

(i) If 𝑘
11
> 0 and 𝐿 > 0 (𝐿 < 0), then period doubling

bifurcation happens for 𝛾 < 𝛾
𝑐𝛾2
(𝛾 > 𝛾

𝑐𝛾2
). And

2-periodic points are saddle points (asymptotically
stable nodes).

(ii) If 𝑘
11
< 0 and 𝐿 > 0 (𝐿 < 0), then period doubling

bifurcation happens for 𝛾 < 𝛾
𝑐𝛾2
(𝛾 > 𝛾

𝑐𝛾2
). And 2-

periodic points are unstable nodes (saddle points).

Example 6. Let 𝑢
11
= 0.6, 𝑢

12
= 0.9, 𝑢

22
= 0.3, 𝛽 = 0.4, and 𝜉 =

0.6515625. There are two polymorphic phenotypic equilibria
(𝑝∗
1
, 𝐹∗) = (0.6944444, 0.25) and (𝑝∗

2
, 𝐹∗) = (0.75, 0.25). For

(𝑝∗
1
, 𝐹∗), we have 𝑘

11
(𝑝∗
1
, 𝐹∗) = 0.4475911459 × 10−3 > 0

and 𝐿(𝑝∗
1
, 𝐹∗) = −4.839394634 < 0. Then, period doubling

bifurcation happens for 𝛾 > 𝛾
𝑐𝛾2

= 149.7775520, and 2-
periodic points are asymptotically stable nodes. For (𝑝∗

2
,

𝐹∗), we have 𝑘
11
(𝑝∗
2
, 𝐹∗) = −0.1318359375 × 10−3 < 0

and 𝐿(𝑝∗
2
, 𝐹∗) = 9.126558784 > 0. Then, period doubling

bifurcation happens for 𝛾 < 𝛾
𝑐𝛾2

= 186.1395138, and 2-
periodic points are unstable nodes.

The effects of partial selfing selection on the dynamics of
population evolution are shown further in Figures 1, 2, and 3.
More complex dynamical behaviors of the genetic system are
exhibited by numerical simulations. In Figure 1, the partial
selfing selection leads period doubling bifurcation to emerge
earlier, and leads chaos to emerge earlier. In Figure 3, the
model exhibits the complex dynamical behaviors, such as
the period-3, 6 orbits, cascade of period-doubling bifurcation
in period-2, 4, 8, and the chaotic sets. By choosing 𝛽 as a
bifurcation parameter, we show that the complex dynamical
behaviors such as the period-3, 4, 6 orbits, cascade of period-
doubling bifurcation in period-2, 4, 8, and the chaotic sets can
occur as 𝛽 crosses some critical values in Figure 2.

4.2. Saddle-Node Bifurcation. We take 𝜉 as the bifurcation
parameter for studying the saddle-node bifurcation by using
center manifold theorem.

If 𝜉∗ = 𝑢
22
−((𝑢𝐹∗−2𝑏)2/4𝑢(1−𝐹∗)), then there is unique

polymorphic phenotypic equilibrium, and (𝑝∗, 𝐹∗) = ((2𝑏 −
𝑢𝐹∗)/2𝑢(1 − 𝐹∗), 𝐹∗). The Jacobian matrix of (𝑝∗, 𝐹∗) is

𝐴∗ = (
1 𝑘∗

12
𝛾

0
𝛽

2
− 𝑘∗
22
𝛾
) , (33)

where 𝑘∗
12
= (2𝑏 − 𝑢𝐹∗)2(2𝑎 − 𝑢𝐹∗)2(𝑏 − 𝑎)𝐹∗/32𝑢(1 − 𝐹∗)2

and 𝑘∗
22
= (𝛽/32)(((2𝑏 − 𝑢𝐹∗)(2𝑎 − 𝑢𝐹∗))/𝑢2(1 − 𝐹∗)2)[4𝑎𝑏 +

2(𝑎 − 𝑏)2𝐹∗ − 𝑢2𝐹∗
2
].

The characteristic values of 𝐴∗ are

𝜆
1
= 1, 𝜆

2
=
𝛽

2
− 𝑘
22

∗𝛾, (34)

where 𝛾 ̸= (𝛽 ± 2)/2𝑘∗
22
can make sure that |𝜆

2
| ̸= 1.

Using the translation

(
𝑥
𝑦
) = (

1 −
𝑘∗
12
𝛾

(1 − 𝛽/2) + 𝑘∗
22
𝛾

0 1

)(
𝑝 − 𝑝∗

𝐹 − 𝐹∗
) , (35)

we have

(
𝑥󸀠

𝑦󸀠
) = (

1 0
0 𝜆∗

)(
𝑥
𝑦
) + (

𝑓
1
(𝑥, 𝑦, 𝜉̃)

𝑔
1
(𝑥, 𝑦, 𝜉̃)

) , (36)
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Figure 1: 𝑢
11
= 1, 𝑢

12
= 0.5, 𝑢

22
= 0, and 𝜉 = 0.85. If 𝛾 < 0, then all interior trajectories evolve to the stable monomorphic equilibria

(𝑝∗ = 0 and 𝑝∗ = 1). (a) For 𝛽 = 0, there is unique polymorphic phenotypic equilibrium (𝑝∗, 𝐹∗) = (0.85, 0.25), which is stable for
0 < 𝛾 < 𝛾

𝑐𝛾2
= 31.37254902. (b) For 𝛽 = 0.4, there is unique polymorphic phenotypic equilibrium (𝑝∗, 𝐹∗) = (0.85, 0.25), which is stable for

0 < 𝛾 < 𝛾󸀠
𝑐𝛾2

= 25.09803922.

where

𝑓
1
= 𝑎∗𝜉̃ +

1

2
[𝑎
11
(𝑥 − 𝐵

0
𝑦)
2

+ 𝑎
12
𝑦 (𝑥 − 𝐵

0
𝑦) + 𝑎

22
𝑦2

+𝑎
01
(𝑥 − 𝐵

0
𝑦) 𝜉̃ + 𝑎

02
𝑦𝜉̃ + 𝑎

03
𝜉̃
2

]

+
1

2
𝐵
0
[𝑏
11
(𝑥 − 𝐵

0
𝑦)
2

+ 𝑏
12
(𝑥 − 𝐵

0
𝑦) 𝑦 + 𝑏

22
𝑦2

+𝑏
01
(𝑥 − 𝐵

0
𝑦) 𝜉̃ + 𝑏

02
𝑦𝜉̃ + 𝑏

03
𝜉̃
2

] + h.o.t,

𝑔
1
= 𝑏∗𝜉̃ +

1

2
[𝑏
11
(𝑥 − 𝐵

0
𝑦)
2

+ 𝑏
12
𝑦 (𝑥 − 𝐵

0
𝑦) + 𝑏

22
𝑦2

+𝑏
01
(𝑥 − 𝐵

0
𝑦) 𝜉̃ + 𝑏

02
𝑦𝜉̃ + 𝑏

03
𝜉̃
2

] + h.o.t,

𝜆∗ =
𝛽

2
− 𝑘
22

∗𝛾, 𝐵
0
=

𝑘∗
12
𝛾

(1 − 𝛽/2) + 𝑘∗
22
𝛾
,

𝑎∗ =
𝑎 − 𝑏

2
𝑝∗𝑞∗𝐹∗𝛾

1 − 𝛽/2

1 − (𝛽/2) + 𝑘
22

∗𝛾
,

𝑏∗ =
𝛽𝛾

8𝑢
[4𝑎𝑏 − 𝑢2𝐹∗

2

+ 2𝐹∗(𝑎 − 𝑏)
2] ,

𝑎
11
= −2𝑢(1 − 𝐹∗)

2

𝑝∗𝑞∗𝑧𝛾,

𝑎
12
= 𝑝∗
2

𝑞∗
2

𝑢 [2𝑘 + (𝑧 + 𝐹∗𝑘) 𝑝∗𝑞∗𝑢𝛾] 𝛾,

𝑎
22
= 𝑝∗𝑞∗𝑢 [2 (1 − 2𝑝∗) (𝑧 + 𝐹∗𝑘) − 𝑝∗𝑞∗𝑢 (1 − 𝐹∗)] 𝛾,

𝑏
11
= −𝛽𝑢(1 − 𝐹∗)

2

[𝑝∗𝑞∗𝑢 + (𝑏𝑝∗
2

+ 𝑎𝑞∗
2

) 𝐹∗] 𝛾.

(37)

By the center manifold theory, we know that the stability
of (0, 0) near 𝜉̃ = 0 can be determined by a one-parameter
family of equations on a center manifold, which can be
represented as follows:

𝑊𝑐 (0) = {(𝑥, 𝑦, 𝜉̃)∈𝑅3 | 𝑦=ℎ (𝑥, 𝜉̃) , ℎ (0, 0),

= 0, 𝐷ℎ (0, 0)=0∈𝑅
3}

(38)

for 𝑥 and 𝜉̃ sufficiently small. Assume that a center manifold
has the form

ℎ (𝑥, 𝜉̃) = 𝑙
0
𝜉̃ + 𝑙
1
𝑥𝜉̃ + 𝑙

2
𝑥2 + 𝑙
3
𝜉̃
2

+ 𝑂((|𝑥| + |𝜉̃|)
3

) . (39)

The center manifold must satisfy

𝑁(ℎ (𝑥, 𝜉̃))= ℎ (𝐴∗𝑥+𝑓
1
, 𝜉̃)

− 𝜆∗ℎ (𝑥, 𝜉̃)−𝑔
1
(𝑥, ℎ (𝑥, 𝜉̃) , 𝜉̃) = 0.

(40)

So, we obtain the map restricted to the center manifold

𝑥 󳨀→ 𝑓(𝑥, 𝜉̃) = 𝑥 + 𝑐
1
𝜉̃ + 𝑐
2
𝑥2 + 𝑂((|𝑥| + |𝜉̃|)

2

) , (41)

where 𝑐
1
= ((𝑎−𝑏)/2)𝑝∗𝑞∗𝐹∗𝛾((1−𝛽/2)/(1−(𝛽/2)+𝑘

22

∗𝛾)),
and 𝑐
2
= −((𝑎 − 𝑏)/4)𝑝∗𝑞∗(1 − 𝐹∗)𝑢𝛾(𝛽/(1 − (𝛽/2) + 𝑘

22

∗𝛾)).
By condition (41) and the saddle-node bifurcation theo-

rem in [9], we can state the following result.

Proposition 7. Suppose that (𝑝∗, 𝐹∗) is a polymorphic phe-
notypic equilibrium. If 𝛽 ∈ (0,min{4𝑏/(𝑎 + 3𝑏), 4𝑎/(3𝑎 + 𝑏)}),
(𝑎 − 𝑏)𝑢𝛾 ̸= 0, 𝑎𝑏 > 0, and 𝛾 ̸= (𝛽 ± 2)/2𝑘∗

22
, then system (10)

undergoes a saddle-node bifurcation at (𝑝∗, 𝐹∗) for 𝜉 = 𝜉∗

where 𝑝∗ = (2𝑏 − 𝑢𝐹∗)/2𝑢(1 − 𝐹∗), 𝜉∗ = 𝑢
22
− ((𝑢𝐹∗ −

2𝑏)2/4𝑢(1−𝐹∗), and 𝑘∗
22
= (𝛽/32)((2𝑏−𝑢𝐹∗)(2𝑎−𝑢𝐹∗)/𝑢2(1−

𝐹∗)2)[4𝑎𝑏 + 2(𝑎 − 𝑏)2𝐹∗ − 𝑢2𝐹∗
2
].
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Figure 2: 𝑢
11
= 1, 𝑢

12
= 0.5, 𝑢

22
= 0, and 𝜉 = 0.85. When 𝛾 = 27, (𝑝∗, 𝐹∗) is stable for 𝛽 ∈ (0, 𝛽∗)(𝛽∗ = 0.27875). Stable 2-periodic points

emerge at 𝛽 = 𝛽∗. When 𝛾 = 38, stable 2-periodic points become stable 4-periodic points with the increase of 𝛽. When 𝛾 = 41, there is chaos
for 0.47 < 𝛽 < 0.49. When 𝛾 = 69, stable 3-periodic points become stable 6-periodic points and then become stable 3-periodic points again.

Moreover, if 𝑢 > 0, then two new polymorphic pheno-
typic equilibria are created for 𝜉 > 𝜉∗ and disappear for
𝜉 < 𝜉∗. If 𝑢 < 0, then two new polymorphic phenotypic
equilibria are created for 𝜉 < 𝜉∗ and disappear for 𝜉 > 𝜉∗.
(see Figure 4).

In Proposition 7, the conditions 𝛽 ∈ (0,min{4𝑏/(𝑎 +
3𝑏), 4𝑎/(3𝑎 + 𝑏)}) and 𝑎𝑏 > 0 guarantee that 𝑝∗ = (2𝑏 −
𝑢𝐹∗)/2𝑢(1−𝐹∗) ∈ (0, 1). If there is no partial selfing selection
(i.e., 𝛽 = 0), then the saddle-node bifurcation does not occur.
This means that the parameter 𝛽 of partial selfing selection
leads to more complex dynamical behavior of the genetic
system.

4.3. Neimark-Sacker Bifurcation. We take 𝛾 as the bifurca-
tion parameter and prove the existence of Neimark-Sacker

bifurcation.The characteristic polynomial of Jacobian matrix
at (𝑝∗, 𝐹∗) is

𝜆2 +𝑀(𝛾) 𝜆 + 𝑁 (𝛾) = 0, (42)

where

𝑀(𝛾) = (𝑘
11
+ 𝑘
22
) 𝛾 −

𝛽 + 2

2
,

𝑁 (𝛾) = −(
𝛽

2
𝑘
11
+ 𝑘
22
)𝛾 +

𝛽

2
.

(43)

If the following condition is satisfied

𝑀(𝛾)
2

− 4𝑁 (𝛾) < 0, (44)
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Figure 3: 𝑢
11
= 1, 𝑢

12
= 0.5, 𝑢

22
= 0, 𝜉 = 0.85, and 𝛽 = 0.4. As 𝛾

is sufficiently large, there are stable 3-periodic points (at 𝛾 ≃ 56.5),
and then stable 6-periodic points occur at 𝛾 ≃ 67.5. And stable 3-
periodic points occur at 𝛾 ≃ 201 again.
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Figure 4: 𝑢
11

= 0.5, 𝑢
12

= 1, 𝑢
22

= 0, 𝛽 = 0.6, and 𝛾 = 10.
A saddle-node bifurcation happens for (𝑝∗, 𝐹∗, 𝜉∗), where 𝑝∗ =
0.7916666665, 𝐹∗ = 0.4285714286, and 𝜉∗ = 0.5372023808.
Two new polymorphic phenotypic equilibria are created for 𝜉 < 𝜉∗

and disappear for 𝜉 > 𝜉∗.

then the eigenvalues of the characteristic equation are com-
plex conjugate. When 𝛾 = 𝛾

0
= (𝛽 − 2)/(𝑘

11
𝛽 + 2𝑘

22
), (44) is

equivalent to

𝑘
11
< 0. (45)

If condition (45) is satisfied, we can calculate that

𝑑 =
𝑑
󵄨󵄨󵄨󵄨𝜆 (𝛾)

󵄨󵄨󵄨󵄨
𝑑𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛾 = 𝛾0
= −

1

2
(
𝛽

2
𝑘
11
+ 𝑘
22
) ̸= 0,

𝜆𝑗 (𝛾
0
) ̸= 1, 𝑗 = 1, 2, 3, 4,

󵄨󵄨󵄨󵄨𝜆 (𝛾0)
󵄨󵄨󵄨󵄨 = 𝑁(𝛾0)

1/2

.

(46)

Next, we study the normal form of (10) when 𝛾 = 𝛾
0
.

Use the translation

(
𝑝
𝐹
) = (

−
1

𝑘
21

√−𝑘
11
[(

𝛽 + 2

4
)
2

𝑘
11
+ 𝑘
22
] −

𝛽 + 2

4

𝑘
11

𝑘
21

0 1

)

× (
𝑥
𝑦
) + (

𝑝∗

𝐹∗
) ;

(47)

system (10) becomes

(
𝑥󸀠

𝑦󸀠
) = (

−
𝑀(𝛾
0
)

2
−
√4 −𝑀(𝛾

0
)
2

2

√4 −𝑀(𝛾
0
)
2

2
−
𝑀(𝛾
0
)

2

)

× (
𝑥
𝑦
) + (

𝐻 (𝑥, 𝑦)
𝐺 (𝑥, 𝑦)

) ,

(48)

where 𝑚 = −(1/𝑘
21
)√−𝑘
11
[((𝛽 + 2)/4)2𝑘

11
+ 𝑘
22
], 𝑛 =

−((𝛽 + 2)/4)(𝑘
11
/𝑘
21
),

𝐻(𝑥, 𝑦) =
1

𝑚
(𝑓 (𝑥, 𝑦) − 𝑝∗) −

𝑛

𝑚
(𝑔 (𝑥, 𝑦) − 𝐹∗)

+
𝑀(𝛾
0
)

2
𝑥 +

√4 −𝑀(𝛾
0
)
2

2
𝑦,

𝐺 (𝑥, 𝑦) = (𝑔 (𝑥, 𝑦) − 𝐹∗)

−
√4 −𝑀(𝛾

0
)
2

2
𝑥 +

𝑀(𝛾
0
)

2
𝑦.

(49)

In order for system (48) to undergo Neimark-Sacker
bifurcation, we require that the following discriminatory
quantity 𝐶

0
is not zero [9]:

𝐶
0
=−Re[(1 − 2𝜆) 𝜆

2

1 − 𝜆
𝜉
11
𝜉
20
]−

1

2

󵄨󵄨󵄨󵄨𝜉11
󵄨󵄨󵄨󵄨
2

−
󵄨󵄨󵄨󵄨𝜉02

󵄨󵄨󵄨󵄨
2

+Re (𝜆𝜉
21
) ,

(50)

where

𝜉
20
=
1

8
[(𝐻
𝑥𝑥
− 𝐻
𝑦𝑦
+ 2𝐺
𝑥𝑦
) + 𝑖 (𝐺

𝑥𝑥
− 𝐺
𝑦𝑦
− 𝐻
𝑥𝑦
)] ,

𝜉
11
=
1

4
[(𝐻
𝑥𝑥
+ 𝐻
𝑦𝑦
) + 𝑖 (𝐺

𝑥𝑥
+ 𝐺
𝑦𝑦
)] ,

𝜉
02
=
1

8
[(𝐻
𝑥𝑥
−𝐻
𝑦𝑦
−2𝐺
𝑥𝑦
) + 𝑖 (𝐺

𝑥𝑥
−𝐺
𝑦𝑦
+2𝐻
𝑥𝑦
)] ,

𝜉
21
=

1

16
[(𝐻
𝑥𝑥𝑥

+ 𝐻
𝑥𝑦𝑦

+ 𝐺
𝑥𝑥𝑦

+ 𝐺
𝑦𝑦𝑦

)

+𝑖 (𝐺
𝑥𝑥𝑥

+ 𝐺
𝑥𝑦𝑦

− 𝐻
𝑥𝑥𝑦

− 𝐻
𝑦𝑦𝑦

)] .

(51)

From previous analysis and the theorem in [9], we have the
following theorem.
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Proposition 8. Suppose that (𝑝∗, 𝐹∗) is a polymorphic phe-
notypic equilibrium of system (10). If 𝑘

11
< 0 and 𝐶

0
̸= 0,

then system (10) undergoes a Neimark-Sacker bifurcation at
(𝑝∗, 𝐹∗) for 𝛾

0
= (𝛽 − 2)/(𝑘

11
𝛽 + 2𝑘

22
).

Moreover, if 𝑑 = −(1/2)((𝛽/2)𝑘
11
+ 𝑘
22
) < 0 and 𝐶

0
<

0, then an attracting invariant closed curve bifurcates from
(𝑝∗, 𝐹∗) for 𝛾 < 𝛾

0
. If 𝑑 = −(1/2)((𝛽/2)𝑘

11
+ 𝑘
22
) < 0 and

𝐶
0
> 0, then a repelling invariant closed curve bifurcates

from (𝑝∗, 𝐹∗) for 𝛾 > 𝛾
0
.

Example 9. Let 𝑢
11
= 0.8, 𝑢

12
= 0.4, 𝑢

22
= 1, 𝛽 = 0.75, and

𝜉 = 0.776. We have that (𝑝∗, 𝐹∗) = (0.8, 0.6) is a polymorphic
phenotypic equilibrium which satisfies 𝑘

11
< 0. According to

𝐶
0
= −3.1284538 < 0, and 𝑑 = −(1/2)((𝛽/2)𝑘

11
+𝑘
22
) < 0, we

have that the invariant closed curve bifurcates from (𝑝∗, 𝐹∗)
for 𝛾 < 𝛾

0
= −65.76178451 being attracting. Let 𝑢

11
= 0.5,

𝑢
12

= 1, 𝑢
22

= 0, 𝜉 = 0.549287, and 𝛽 = 38/69. We
have that (𝑝∗, 𝐹∗) = (0.79, 0.38) is a polymorphic phenotypic
equilibrium which satisfies 𝑘

11
< 0. According to 𝐶

0
=

2.5988353 > 0 and 𝑑 = −(1/2)((𝛽/2)𝑘
11
+ 𝑘
22
) < 0, the

invariant closed curve bifurcates from (𝑝∗, 𝐹∗) for 𝛾 > 𝛾
0
=

−34.72413828 being repelling.

5. Conclusion

A discrete population genetics model with partial selfing
selection is investigated. We assume that each individual can
reproduce by selfing or random outcrossing with probability
𝛽 or 1 − 𝛽 (0 < 𝛽 < 1), respectively, in the population. Some
population, such as human population, does not mate at
random. So, the partial selfing selection model is reasonable.

In this paper, the conditions for the stability of poly-
morphic phenotypic equilibria are obtained by the Jury
conditions and the center manifold theorem. ESS is not
the necessary condition of the stability of the polymorphic
phenotypic equilibria.The theoretical analysis and numerical
simulations present the existence of stable and unstable
period doubling bifurcations, saddle-node bifurcation, and
Neimark-Sacker bifurcation. Numerical simulations exhibit
more complex dynamical behavior of the genetic system
under partial selfing selection.
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