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This paper is concerned with the higher order nonlinear neutral delay differential equation [a(t)(x(t) + b(t)x(t — T))(m)]("fm) +
[h(t, x(hy(1)),..., x(h,(t)))](i) + f(t, x(fi (1)), ..., x(f;(t)) = g(t),for all t > ¢,. Using the Banach fixed point theorem, we establish
the existence results of uncountably many positive solutions for the equation, construct Mann iterative sequences for approximating
these positive solutions, and discuss error estimates between the approximate solutions and the positive solutions. Nine examples

are included to dwell upon the importance and advantages of our results.

1. Introduction and Preliminaries

In recent years, the existence problems of nonoscillatory solu-
tions for neutral delay differential equations of first, second,
third, and higher order have been studied intensively by using
fixed point theorems; see, for example, [1-12] and the refer-
ences therein.

Using the Banach, Schauder, and Krasnoselskii fixed
point theorems, Zhang et al. [9] and Liu et al. [7] considered
the existence of nonoscillatory solutions for the following first
order neutral delay differential equations:

x®+PBOxt-1] +Q () x(t—1,)
Q) x(t-1,) =0,
[x(®)+c@t)x(t-1)]

+h(®) f(x(t-0),x(t-03),...x(E=0)) = g (O),

Vt > t,,
ey

Vit > g,

where P € C([ty,+00),R \ {£1}) and ¢ € C([ty,+00),R).
Making use of the Banach and Krasnoselskii fixed point
theorems, Kulenovi¢ and HadZiomerspahi¢ [2] and Zhou [10]

studied the existence of a nonoscillatory solution for the
following second order neutral differential equations:

x(t) +cex(t-1)]"+Q, () x(t - 0y)
-Q,(t)x(t-0,)=0, Vt=>tg,

[r&)x®+POxt-0)] @

+ iQi () fi(x(t-0;)) =0, Vt>t,
in1

where ¢ € R\ {1} and P € C([ty,00),R). Zhou and
Zhang [11], Zhou et al. [12], and Liu et al. [4], respectively,
investigated the existence of nonoscillatory solutions for the
following higher order neutral delay differential equations:

[x(t) + cx (£ — 7)™
+ ()" [P x(t-0) - Q) x(t-8)] =0,

Vit > t,,



[x () + P (t) x (t = 7)]"
+2Q M) fi(x(t-0,))=g(t), Vt=t,
i=1

[x(t) + ax (t — 7)]™

+ ()" f(tx(t-0),x(t-0)),....,x(t—0}))

=g(t), Vt=t,

(3)

where ¢ € R\ {1}, P € C([ty,00),R)anda € R\ {-1}.
Candan [1] proved the existence of a bounded nonoscillatory
solution for the higher order nonlinear neutral differential
equation:

[r (0 (e 0) + PO x(t-1)" "]

+(-1)"[Q, (t) g, (x(t —0y))

Q1) gy (x(t-0y)) - f(V)] =0, Vt=t,

(4)

where P € C([t,,00), R\ {1}).

Motivated by the results in [1-12], in this paper we
consider the following higher order nonlinear neutral delay
differential equation:

[a(t) (x (8) + b (£) x (t - T))(m)](n—m)

=[x (hy @), x (B (0)))]7
=+f(tx(fi®),....x (1) =g (1),

Vt >ty
(5)

where m,n € Nandi € Nywithi <n-m-1,7 > 0,
a € C([t()) +OO)>R \ {0})) bag’fj)hj € C([tO) +OO)$ R)) h €

C'([ty, +00) x R, R) and f € C([ty, +00) x R', R) with
lim ki) = lim f(0)=+c0, je{L2..l. ()

It is clear that (5) includes (1)-(4) as special cases. Uti-
lizing the Banach fixed point theorem, we prove several
existence results of uncountably many positive solutions for
(5), construct a few Mann iterative schemes, and discuss
error estimates between the sequences generated by the Mann
iterative schemes and the positive solutions. Nine examples
are given to show that the results presented in this paper
extend substantially the existing ones in [1, 2, 4, 5, 8, 9, 11].

Throughout this paper, we assume that R = (-00, +00),
R™ = [0, +00), N denotes the set of all positive integers, N, =
N U {0},

1
H; = m-1D!(n-m-j-1)!

> je{o)i})
(7)
y=min{to—T,}g{hj(t),gffj(t):je {1,2,...,l}},
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CB([y, +00), R) stands for the Banach space of all contin-
uous and bounded functions in [y, +00) with norm |x| =
suptzylx(t)l, and forany M > N > 0

Q, (N, M) = {x € CB([y, +o0),R) :

N <x(t) <M, Vt >y},

Q, (N, M) = {xeCB([y,+oo),lR): <x(t)

N
b(t+1)
Sm, tZT;m

M
<x(t) < DT 11) vt € [V»T)}>

Q; (N, M) = {xGCB([y,+oo),R):—b(t+T) <x ()
M N
YT S Y
M
< x(t) S_—b(T+T)’ Vit € [y,T)}.

(8)

It is easy to check that QO (N, M), Q,(N, M) and Q;(N, M)
are closed subsets of CB([y, +00), R).

By a solution of (5), we mean a function x € C([y, +00),
R) for some T > 1+[ty|+7+]|yl, such that a(t) (x(t) + b(t)x(t -

T))('") are n — m times continuously differentiable in [T, +00)
and such that (5) is satisfied fort > T.

Lemmal. Lett > 0, ¢ > 0, F € C([c, +00)>,R") and G €
C([c, +00)%, R*). Then

(a) Lwo I:OO ,UOO rF(s,u,r)dsdudr < +co &

X

+00

+ +
ctjr _L 0 Iu « F(s,u,r)dsdudr < +00;

b) [ [ uGls, wydsdu < + 00 &

+00

oy L+].T f:oo G(s,u)ds du < +00;

(c) szoo j:oo L:OO rF(s,u,r)ds dudr < +00, then

(o) +00 400 F+00
ZJ. J J F(s,u,r)dsdudr
i—] JtHjT Jr u

j
1 [t [+o0 +o0 (9)
g—J J J rF (s,u,r)dsdudr
t

TJter Jr Ju

< 400, Vt=c;
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(d) ifj:oo J:OO uG(s,u)ds du < +0o, then

i J:OO on G(s,u)dsdu

j=1 +jT Ju
1 +00 +00 (10)
< —J J uG (s,u)dsdu
T Jt+r Ju
<400, Vt=c.

Proof. Let [t] denote the largest integral number not exceed-
ingt € R. Note that

lim =9 /r]+1 _ l, a1)

r — +00 r T

r—c¢
ctnr<r<c+(n+l)re=n< —<n+l, VneN,
T

(12)

Clearly (12) means that

(o) +00 +00 [+00
ZJ. J J- F(s,u,r)dsdudr

=0 ctjT Jr u

+00 +00 +00
= J J J F(s,u,r)dsdudr
+00 +00 +00
+J J J F(s,u,r)dsdudr
+00 (+00 [+00
+I J- J F(s,u,r)dsdudr
+00 (+00 [+00
+j J J F(s,u,r)dsdudr +---
c+T +00 +00
:J J J F(s,u,r)dsdudr
c+21 +00 [+00
+ZJ J J F(s,u,r)dsdudr
c+3T +00 [+00
+3J J- J F(s,u,r)dsdudr

c+41 +00 [+00
+4J J J F(s,u,r)dsdudr +---

00 ~ct+(nt+l)T f+00 +00
=ZJ J J- (n+1)F (s,u,r)dsdudr

00 ~ct(nt+l)T p+00 +00 r—c
21 P A A (= K
c+nt r u T
X F (s,u,r)dsdudr

= J:OO J:OO Lm ([r_;c] + 1) F(s,u,r)dsdudr.
(13)

Thus (a) follows from (11) and (13).

Assume that I:OO J:OO L:Oo rF(s,u,r)dsdudr < +00. As
in the proof of (a), we infer that

oo +00 [+00 [+00
ZJ J J F(s,u,r)dsdudr
j=1 t+jT Jr u

r—t

+00 (+00 [+00
J J J [—]F(s,u,r)dsdudr
t+r Jr u T

1 [t [+oo r+oo (14)
- J J J rF(s,u,r)dsdudr
t

T Jt+r Jr Ju

1 +00 +00 +00
—J J J rF (s,u,r)dsdudr

T Jc r u

IN

IN

< +00, Vt=c,

that is, (c) holds.
Similar to the proofs of (a) and (c), we conclude that (b)
and (d) hold. This completes the proof. O

2. Existence of Uncountably Many Positive
Solutions and Mann Iterative Schemes

Now we show the existence of uncountably many positive
solutions for (5) and discuss the convergence of the Mann
iterative sequences to these positive solutions.

Theorem 2. Assume that there exist three constants M, N, and
by and four functions P, Q, R,W € C([t,, +00), RY) satisfying

M-N
O0<N<M, b< ,
2M

|lf (Buy.oow) = f (B, ..., 0)

< P()ymax{fu; -u|:1<j<l},

|b(¢)| < by eventually; (15)

lh(t,ul,...,ul)—h(t,ﬁl,...,ﬁl)l
(16)
< R()max {ju; -] : 1< j <1},
Y (t gty Ty Tp) € [t +00) X [N, M1%;
If (bup..ow)| Q@) |h(tuy,..ow)| < W (@),
Y (tuy, ... 1) € [ty +00) x [N, M]%

17)

+00 [+00 m—1
| ] s max (P, ()
+s"™ " " max {R (s),W (s)}] ds du < +00.

(18)

Then
(a) forany L € (byM + N, (1 —b,) M), there exist 0 € (0, 1)
and T > 1+ |ty| + T + |yl such that for each x, € Q,(N, M),



the Mann iterative sequence {x },cn, generated by the following
scheme

Xk+1 (t)
[ (1 - o) x ()

+0y, {L —b(t)x, (t—71)+ (-1)"H,

y J+°° J+°° (s—w)" " Mu—ty™!
t

u a(u)
x[g ()= f (% (f1 (9))>
o xe (f1 ()] dsdu
+(-1)""H,
+00 (400 (S _ u)n—m—i—l (u _ t)m—l
* L L a(u)
xh (x; (hy (5)) 5.,
xi (hy (s))) ds du} ,
t>T, keN,,

= (1 —(Xk)xk (T)

ot {L —b(T)x, (T 1)

+(-1)"H,

+00 [+0o (S _ u)n—m—l(u _ T)m—l
8 JT L a(u)

x[g ()= f (5% (f1 (5))>
o xe (f1(5)))] dsdu

+(-1)""'H,

+00 400 (S _ u)n—m—i—l (u _ T)m—l
* JT L a(u)

xh (s, % (hy (8)) 5.5
xi (h (s))) ds du]> ,

tp<t<T, keN
(19)

converges to a positive solution x € Q,(N, M) of (5) and has
the following error estimate:

s =l < 0T g -2, VN, (20)

where {oq e, is an arbitrary sequence in [0, 1] such that

o0
Zock = 4+00; (21)
k=0

(b) Equation (5) has uncountably many positive solutions
in Q, (N, M).

Abstract and Applied Analysis

Proof. Firstly, we prove that (a) holds. Set L € (b, M + N, (1 -
by)M). From (15) and (18), we know that there exist 6 € (0, 1)
and T > 1 + |t,] + 7 + |y| satistying

b ()] < by,

+o00 p+oo , m-1
_ u n-m-1
o=u+] | oy [P0 23)

Vt>T; (22)

+H.s"™ IR (s)] ds du;

1

+00 pr+oo0 , m—1
J J u [Hos"_m_1 (g ()| +Q(s))

T la ()]
+H" W (5)] dsdu (24)

<min{(1-4,)M - L,L-bM - N}.

Define a mapping S; : Q,(N, M) — CB([y, +00), R) by

[L-b(t)x(t-1)+ (-1)"H,
+00 [+00 (S _ u)n—m—l(u _ t)m—l
XL L a ()
x[g() = fsx(f ).
x(f;(s)))] dsdu
Sx(t)=1 +(-1)""'H, 3 1
00 400 (g yrmeitlg  pyme
XL L a ()
xh (s, x (hy (5)),....,x(h (s)))dsdu,
t>T, x€Q,(N,M),
Spx (1), y<t<T, xe€Q,(N,M).

(25)

It is obvious that S; x is continuous for each x € Q, (N, M).
By means of (16), (22), (23), and (25), we deduce that for any
xyeQ(N,M)andt >T

S, (5) = Sy (1]

< |b(t)] |x(t—r) —y(t—‘r)|
+00 +00 (S _ u)n—m—l (u _ t)m—l
+Ho L J la ()]
x| f (sx(f1 ()., x (£ (5)))
~f sy (f1(9)s- 0y (fi(9))] dsdu

+00 (400 (S _ u)n—m—i—l(u _ t)m—l
*ML L )]

x|k (s,x (hy (5)),...,x(h (s)))
“h(s,y (hy (9),-.0, y (B (5)))| dsdu
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<byfx -y + x|

+00 (+00 um—l
XJ J [Hos”_m_lP(s)

T u la )
+H,s" 'R (s)] dsdu

=0]x—»l
(26)

which yields that
ISix =Syl <Ofx -y, Vx.yeQ (N.M).  (27)

On the basis of (17), (22), (24), and (25), we acquire that for
anyx € Q;(N,M)andt >T

Spx (t)

<L+|b®)|x(t-1)

+00 pt+oo n-m—1, m-1
N u

+ H, J J —_—
US |a (u)]

<[|g @] +1f (s x(f1 (),
x (£, (5)))|] ds du

+00 J~+oo n-m—i—1, m—1

+H,-J s “
t

<L+bM
+00 [+00 um—l
* JT J la ()]
X [Hos”’m*1 (lg 9] +Q(s))

+H" W (s)] dsdu

u la (u)]

x |h(s,x(hy (s),...,x(h(s))|dsdu

<L+bM +min{(1-b,)M -L,L-b,M - N}
<M,

Spx (1)
>L-|b®)|x(t-1)

+00 +00 Sn—m—lum—l
-] ]
0 t u |a(u)|

<[lg@|+]f (sx(fi (9)),--.,

x(f,(5)))|] dsdu
+00 [+00 Snfmfiflumfl
S

x|h(s,x (hy (5)),...,x(h (5)))|dsdu

+o0 too  m-1
L Fro
x [Hys™ " (|9 (9)] + Q(9))
+H,s"" W (s)] ds du
> L—b,M-min {(1-)M - L,L-bM - N}
> N,
(28)

which guarantee that S;(Q,(N,M)) < Q;(N,M). Con-
sequently, (27) gives that S; is a contraction mapping in
Q, (N, M) and it has a unique fixed point x € Q,(N, M). Itis
easy to see that x € Q,(N, M) is a positive solution of (5).

It follows from (19), (25), and (27) that

|xk+1 (f) - x (t)|

(1 - Olk) Xi (t)

+ oy, {L -b(t)x, (t—71)+ (-1)"H,

y rm rm (s—u)"™ ™ u-t)y™!
t

u a(u)

x[g() = f (52 (/1))
xi. (f1 ()] ds du

+ (-1 H,

y J+°° roo (s—w)" ™ N u—ty"!

u a(u)

xh (s, x5 (hy (8)) ..., x (B (s5))) ds du} —x(t)

< (1= og) |xic (8) = x ()] + o [Spx () = Spx (1)
< (1= og) | (1) = x (1) + g0 | x () = x (1)

= (1= (1 -60) &) | (8) = x (1)
<e 0% |y — x|
<o D0 lxo— x|, VkeN,, t>T,

(29)

which yields that

e = x| < OO Z0% g~ 2, VK eN,.  (30)

That is, (20) holds. Thus (20) and (21) ensure that
limy _, . x; = x.

Secondly, we show that (b) holds. Let L,,L, € (b,M +
N,(1-b))M) with L, # L,. In light of (15) and (18), we know
that for each p € {1,2}, there exist Op € (0,1),T, and T*



with T, > 1+ |t;| + 7+ |yl and T* > max{T;, T,} satisfying
(22)-(24) and

+00 [+00 um—l .
J J [HOS’H’HP (s) + Hs"" 'R (s)] dsdu
 Ju lau)
<|Ly-L,|,
(31

where 0 and T are replaced by 0, and T, respectively. Let
the mapping St, be defined by (25) with L and T replaced
by L, and T, respectively. As in the proof of (a), we deduce
easily that the mapping Sy, possesses a unique fixed point
z, € Q;(N,M), that is, z, is a positive solution of (5) in
Q,(N, M). In order to prove (b), we need only to show that
z, # 2. In fact, (25) means that for each t > T* and p € {1, 2}

z2,(1)=L,~b(t)z,(t-1)+(-1)'H,

y J*"O J*OO (s— )" " Hu—t)™!
t

u a(u)

x[g(s)= f (52, (1 ()>..r2, (fi(5))] dsdu

n—i-1 o0 (09 (5 — )" gy — )™
T, L L a(u)

xh (s, 2, (1 ()., 2, (hy (5))) dsdu.
(32)

It follows from (16), (22), (31), and (32) that for each t > T*

|z1 (t) -z, (t)|

>|L, - L,| - bz, (t - 1) — 2, (t - 7)|

+00 [+00 (S _ u)n—m—l(u _ t)m—l
~Ho L J la ()|

X |f (S’ Zl (fl (5)) LR >Zl (fl (S)))
—f (52, (f1(8) 552, (f1(9)))| ds du
+00 [+00 (S _ u)n—m—i—l(u _ t)m_l
]

u la ()]

x|h(s,zy (B (9))5. 52 (1 (5)))
~h(s,zy (hy (5)),...,2, (W (5)))| ds du
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>|L, - L,| - by ||z - 2

+00 [+00 um—l
‘“ZI‘ZZHL* J la (w)]

X [Hosn_m_lP (s) + Hs" " 'R (s)] dsdu

>|Ly - L,| - (b + Ly - L,|) |21 — 2>

(33)
which implies that
L,-L
T Ut MY (34)
1+by+|Ly - L,
that is, z; # z,. This completes the proof. O

Theorem 3. Assume that there exist three constants M, N, and
by and four functions P,Q,R,W € C([ty, +00), R") satisfying
(16)-(18) and

M-N
0<N<M, b< Y 0 < b(t) < b, eventually.

(35)
Then

(a) forany L € (byM + N, M), there exist 0 € (0,1) and
T > 1+|tol + 7+ |yl such that for each x, € (N, M),
the Mann iterative sequence {x; },cn, generated by (19)
converges to a positive solution x € Q,(N, M) of (5)
and has the error estimate (20), where {oy}en, is an
arbitrary sequence in [0, 1] satisfying (21);

(b) Equation (5) has uncountably many positive solutions
in Q, (N, M).

Proof. Let L € (byM + N, M). Equations (18) and (36) ensure
that there exist @ € (0,1) and T > 1 + |ty| + T + |y| satisfying
(23),

0<b(t)<b, Vt=T; (36)

+00 [+00 m—1
J J u [H(,s"_m_1 (|g ()| +Q(s))

T u  la@)l
(37)

+Hs"" W (s)] dsdu
<min{M - L,L - bM - N}.

Define a mapping S; : Q,;(N,M) — CB([y,+00),R) by
(25). Obviously, S;x is continuous for every x € Q,(N, M).
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Using (16), (23), (25), and (36), we conclude that for any
xyeQ(N,M)andt >T

|SLx () =Sy (t)l

Sb(t)|x(t—‘r)—y(t—‘r)|

+00 (+0o (S _ u)n—m—l(u _ t)m_l
+H Jt J la ()]

X |f (5, (f1 ()5 x (f1(9)))
~f (s y(fi(8)se e,y (fi(8))| dsdu

+00 (+00 (S _ u)n—m—i—l(u _ t)m—l
+H, L J ()|

x|h(s,x (B (5)),...,x(h(s)))
~h(s,y (1 (9)),--., y (B (9)))| ds du

<byllx=yl+x-yl

+00 [+00 um—l el
X J J m [HOS p (S)

T u
+H,s"" 'R (s)] ds du

=0fx -yl
(38)

which implies that (27) holds. In light of (17), (25), (36), and
(37), we know that for any x € Q,; (N, M) andt > T

Spx ()

+00 J+00 Sn—m—lum—l

SL+HOJ

t o Ju la (u)]

x[lg @] +1f (s x(f1 ().,
x(fi(9)))]] ds du

+00 p+00 n—-m—i—1_  m—1
N u

+HAJ J _
o |a ()]

x|h(s,x(hy(s)),....x(h(s))|dsdu

+00 r+oo , m-1
<L+ J J u [Hos"_m_1 (lg ()| +Q(s)

v el
+H,s" "W (s)] ds du
<L+min{M - L,L-bM - N}
<M,
Spx (t)
>L—|b(t)|x(t-1)

+00 (+00 Sn—m—lum—l
) A e
ool law)

x[lg O] +]f (2 (f(5)),-
x(f;(5)))|] dsdu
-H S u

+00 (+00 m-m—i—-1_m-1
’L L la (u)]

x|l (s,x (hy (5)),...,x(h (5))|dsdu

+00 J+oo um—l

ZL—bOM—J s

T
x [H()s"_m_1 (|g ()| +Q(s))
+Hs"" T w (s)] dsdu
>L-bM -min{M-L,L-bM - N}

>N,
(39)

which mean that S; (Q, (N, M)) € Q,(N, M). Equation (27)
guarantees that S; is a contraction mapping in Q, (N, M) and
it possesses a unique fixed point x € Q,;(N, M). As in the
proof of Theorem 2, we infer that x € Q,(N, M) is a positive
solution of (5). The rest of the proof is similar to that of
Theorem 2 and is omitted. This completes the proof. O

Theorem 4. Assume that there exist three constants M, N, and
by and four functions P,Q,R,W € C([ty, +00), R") satisfying
(16)-(18) and

M-N
0<N<M, p< R
M

-by < b(t) <0 eventually.
(40)

Then

(a) for any L € (N, (1 — by)M), there exist 0 € (0,1) and
T > 1+|to|+ 7+ |yl such that for each x, € Q,(N, M),
the Mann iterative sequence {x; },cn, generated by (19)
converges to a positive solution x € Q,(N, M) of (5)
and has the error estimate (20), where {oy}ien, is an
arbitrary sequence in [0, 1] satisfying (21);

(b) Equation (5) has uncountably many positive solutions
in Q, (N, M).

Proof. Set L € (N, (1 — b,)M). It follows from (18) and (40)
that there exist @ € (0,1) and T > 1 + |ty| + T + |y| satisfying
(23),

-b, <b(t) <0,

+00 [+00 m—1
| ] [ g 6+ Q)

r Ju la)l

Vi > T, (41)

+Hs"" T w (s)] dsdu (42)

<min{L-N,(1-b)M - L}.



Define a mapping S; : Q,(N,M) — CB([y,+00),R) by
(25). Distinctly, S, x is continuous for each x € Q,(N, M).
In terms of (16), (23), (25), and (41), we reason that for any
%y € Q(N,M)andt >T

IS (1) = Sy (1)

<b®lxt-1)-yt-1)

+00 (+oo (S _ u)n—m—l(u _ t)m—l
+Ho Jt «[4 la (u)]

<1 (5% (f ()% (£ (5))
F (5 (F©)seery (i (9)]dsu

+00 [+00 n-m—i-1 m—1
+HiJ J (s —u) (u—1t)
t Ju la ()]

x |h(s,x (hy (5),...,x ( (s)))
~h(s,y(hy (s)),...,y(h ()| dsdu

<bylx=yl+lx -yl

+00 [+00 umfl S
X J J m [Hos P(s)

T u
+Hs" ™R (s)] dsdu
=0]x-y],
(43)

which means that (27) holds. Owing to (17), (25), (41), and
(42), we earn that for any x € Q,;(N, M) andt >T

Spx(@) <L+ b@)|x(t-1)

+00 p+oo0 n—m-1 m—-1
N u

+ H, J J _
"l law)

x[lg@[+1f (s x(f1())s

x(£;(9))|] dsdu
+00 [+00 Sn—m—i—lum—l
+H, L I @ )]

X |h(s,x(hy(s),...,
x (b (s)))| ds du

+00 [+00 umfl
<L+bM+ J J
T o la()l

X [Hos"_m_1 (|g ()| +Q(s)

+Hs" " w (s)] dsdu

Abstract and Applied Analysis
<L+bM+min{L-N,(1-b)M-L}
<M,

+00 J+oo Sn—m—lum—l

Spx(t)>L-H, J; ) —Ia(u)|

x[lg @& +|f (s:x(f1 ().,
x (fy()))|] ds du
- H S

+00 400 nfm—i—lum—l
Sl e
x[B (s (By ().
x (hy (s)))| ds du

+00 +00 m—1
o[
r Ju la@)l

x [Hosn_m_1 (g ()| +Q(s))

+Hs"" W (s)] dsdu

1

>L—min{L—N,(1—b0)M—L}

>N,
(44)

which yield that S;(Q,(N,M)) < Q,(N,M). Thus (27)
ensures that S; is a contraction mapping in Q, (N, M) and
it owns a unique fixed point x € Q, (N, M). As in the proof of
Theorem 2, we infer that x € Q,(N, M) is a positive solution
of (5). The rest of the proof is parallel to that of Theorem 2,
and hence is elided. This completes the proof. O

Theorem 5. Assume that there exist three constants M, N, and
by and four functions P,Q,R,W € C([ty, +00), R") satisfying
(18) and

M
M>N>0, b > NN b(t) = b, eventually;
(45)
If(t,ul,...,ul)—f(t,ﬁl,...,ﬁl)l
SP(t)max{'uj—Ej| 01 Sjsl},
Ih(t,ul,...,ul)—h(t,ﬁl,...,ﬁl)| (46)
< R()max {ju; -] : 1< j <1},
2
Y (tuy, ..ty Uy, 1) € [tg, +00) X [0,2—4] ;
o
If (bup...ow)| <Q®), |h(tup...,w)| W),
!
W (tttys s ) € [ty +00) X [obﬂ]
o
(47)
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Then

(a) for any L € (N + M/by, M), there exist 0 € (0, 1) and
T > 1+[tyl+7+|yl| such that for each x, € Q,(N, M), the Mann
iterative sequence {x}rcn, generated by the following scheme

Xke+1 (t)

Xk
b(t+1)
X {L -x (t+1)+ (-1)"H,

y J+°° J+°°(s —u)"" -t - )"

'(1 —ak) Xk (t) +

v Ju a (u)
x[g(s) = f (sx (£ ()
coxe (f1(8)))] dsdu
+(-1)""H, 3 1
FOO HOO(g )T (y —t — )™
8 LT L a(u)

xh (s, x; (hy (5)),...,

x (W (s)))dsdu}> ,
3 t>T, keN,
= %,
(1 - o) x, (T) + )

X {L—xk (T+71)+(-1)"H,

y I+oo J~+00(S _ u)n—m—l(u T = T)m—l
T+t

u a(u)
x[g(s) = f(s:x (f1 ()
' X (f1(9)))] dsdu
+(-1)""H, 3 1
FOO [HOO(g )T (y — T — 1)
X jT+T Ju a (u)

xh (s, x; (hy (5))5.. -,
xi (h; (s))) ds du}> ,

p<t<T, keN
(48)

converges to a positive solution x € Q,(N, M) of (5) and has
the error estimate (20), where {oy } e, is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in Q, (N, M).

Proof. First of all, we show that (a) holds. Set L € (N +
M/by, M). 1t follows from (18) and (45) that there exist 6 €
(0,1)and T > 1 + |t,| + 7 + |y| such that

b(t) > by,

1 1 +00 400 um—l
- al]
bo bo T u la)

X [Hos”_m_lp (s)

vt > T; (49)

(50)

+Hs" "R (s)] ds du;

+00 +00 m—1
J J “ [Hos”_m_l (|g ()| +Q(s))

r la )|

+H

i

ST (s)] dsdu (51)

<min{M—L,L—M—N}.
by

Define a mapping S; : Q,(N, M) — CB([y, +00), R) by
Spx (1)
L  x (t+71) (-1)"H,
bit+t) b{t+1) bt+71)
+0o0 +oo _pm=l, . _ym-1
o J J (s—u) wu—-t-1)
t

+7 Ju a (U)

x[g(s) = f(s,x(f1(5)s....x(f;(s)))] dsdu
_ +(_1)1’l*i71Hi

b(t+1) ( : = -
HOo 00 (o )T N (y — t — 7)™
XJHT Ju a(u)

xh (s,x (hy (s)),...,x (h(s)))dsdu,
£>T, x € Q, (N, M),
y<t<T, xeQ,(N,M).

[ S,x(T),
(52)

In light of (46), (49), (50), and (52), we conclude that for
x,ye€Q,(N,M)andt >T

IS (£) = Spy (8)]

1 H,
< b lx@+7)—yt+1)|+ b
+00 400 Sn—m—lum—l
8 LT J la ()|
X|f(sx(f1(9))s..,x(fi(5)))

~f sy (1 9)s- ¥ (fi(9))] dsdu

H.

1

b(t+1)

+00 +00 Sn—m—z—lum—l
X —
trr Ju a(u)

x |h(s,x (hy (5)),..., x ( (s)))
~h(s,y(hy(s)),....y(h(s))|dsdu

+

1 1
sgbeols gl

+00 +00 um—l )
x — |H,s" ™ P (s)
JT L la (u)] [ 0

+Hs" IR (s)] dsdu

=0]x-»l )
53
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which yields that
[Six =Syl <O|x=y|, Vx,yeQ(N,M). (54)

In view of (47), (49), (51), and (52), we obtain that for any
xeQ,(N,M)andt >T

Spx(t) <

b(t+1)
X {L -x(t+71)
+00 [+00 Sn—m—lum—l
+Ho LT J ja (@0
x[lg )]
+]f (s x(fi (),
cox (f;(9))|] dsdu
+00 (400 Sn—m—i—lum—l
i LT J ja ()]
x|h(s,x(hy(s)),...,
x (h (5)))| ds du}
1
<
b(t+1)
N
8 {L Tt
+00 +00 um—l
" JT L la (u)]
x [Hosn_m_1 (|g ()| +Q(s)
+Hs"m W (s)] ds du]»
< 1
b(t+1)
N . M
X (L— bt1) +m1n{M—L,L— b_o —N]»)
M
<—0,
b(t+1)
S 2 gy
X {L -x(t+71)

+00 +00 Sn—m—lum—l
I R
RUTIN la ()]

Abstract and Applied Analysis

x[lg @] +1f (s x(f1()-- s
x (fi ()] ds du

+00 (400 Sn—m—i—lum—l
_H, J J s v
QIS |a ()]

x i (s, x (hy (5)). ..,

x (b (s)))| ds du}

1
b(t+1)

M
X{L_b(t+‘r)

+00 [+00 m—1
‘L J |Z(u)|

X [Hos"_m_1 (|g ()| +Q(s))

>

+Hs" " w (s)] ds du]»
S 1
b(t+1)
M M
L- ~min{M-LL->—-N
X( b(t+71) mm{ b })
N
2—7
b(t+1)

(55)

which imply that S; (Q,(N, M)) < Q,(N, M). It follows from
(50) and (54) that S; is a contraction mapping in Q,(N, M)
and it has a unique fixed point x € Q,(N, M). It is clear that
x € O,(N, M) is a positive solution of (5).

Note that (48), (52), and (54) undertake that

|xk+1 (t) —x (t)|

X
b(t+1)

= I(l - (Xk) X (t) +

X {L - x, (t+7)+(-1)"H,

y J'FOO J+m (S_ u)n—m—l(u —t _T)m—l
t+T

u a (u)
x[g(9) = f (% (f1(9))s--0
sxi (1 (s)))] ds du
+ (-1 H,
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y J+°° J+°° (s—w)"™ ™ N u-t-o)"*
t

u a(u)

x h(s,x; (hy (5)),...,

+T

xi (h (s))) ds du} - x(t)

< (1= o) o (8) = x ()] + e [ Sy (1) = Spx (8)]
< (1= og) g () = x (1) + g0 | x () = x (1)

= (1-(1-0)ay) |y (8) — x (8]

< e e, ]

<O %o = x|, VkeNg, t=>T,
(56)

which indicates that (20) holds. Thus (20) and (21) assure that
limy, _, o x; = x.

Next we prove that (b) holds. Let L;, L, € (N + M/by, M)
with L, # L,. As in the proof of (a) we infer that for each
p € {1,2} there exist OP € (0,1), Tp > 1+ |tyl + 7+ |yl and
St, satisfying (49)-(52), where L, 0, T, and S; are replaced by
L, 6, T, and SLp’ respectively, and SLp has a unique fixed
point z, € Q,(N, M), which is a positive solution of (5) in
0, (N, M). 1t follows that for each t > T}, and p € {1,2}

~ Lp zp(t+'r) (-1)"H,
SO =D bern T hErD
+00 +00 (S_u)n—m—l(u_t_T)m—l
x J;+r Ju a(u)
x[96) = f (52, (fi 95,2, (f1(5))] ds du
(_l)n—i—lHi
b(t+1)
+00 [+00 (S— u)n—m—i—l(u_t__[)m—l
X.L+T.L a ()

xh (s, 2, (1 ()., 2, (hy (s))) dsdu.
(57)

On behalf of proving (b), we need only to show that z; # z,.
Notice that (18) guarantees that there exits T; > max{T, T,}
satisfying

+00 [+00 m—1 .
J J r [Hos"_m_lP (s) + Hs"" 'R (s)] dsdu
T3 u Ia (u)l

Ly - Ly
142z -z
(58)

1

Due to (46), (51), (57), and (58), we conclude that for each
t>T;

zl(t+r)_z2(t+r)

z (t) —z, (8) +

bt+t) b({t+71)
1
>
S b(t+71)
X < IL, - L,]|
+00 [+00 Sn—m lum 1
_H°L [
X |f((57Z1 (f1 ()2 (fi (5)))
~f (52 (fi (), 2, (f1(9))))| dsdu
+00 [+00 Sn—m—i—lum—l
~ jn [
x lh (52 (1) 2 (1))
~h (5,2, (f1(9)s-. 0,2, (f; ()] dsdu)
1
>
b(t+1)

(162 - Lol -l - )

+00 [+00 um—l
x J J- - [HOS’H'HP (s)
7, Ju o la(u)l

+Hs"" IR (s)] ds du)

1 |L1 - L2|
Sl R R R Fes e
L1 - Ly|
2b(t+ 1)
>0,
(59)
which yields that z; # z,. This completes the proof. O

Theorem 6. Assume that there exist three constants M, N, and
by and four functions P,Q,R,W € C([t,, +00), R") satisfying
(18), (46), (47), and

M

0<N<M, <by,, b(t)<-b, eventually.

(60)

Then
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(a) forany L € (N, (1 —-1/b,)M), there exist 0 € (0,1) and
T > 1+|ty|+7+|y| such that for each x, € Q3(N, M), the Mann
iterative sequence {x;}icn, generated by the following scheme

X1 (t)
O
b(t+1)
><{—L—xk(t+r)+(—1)”H0
+00 [+00 (5 _ u)n—m—l(u —t— T)m—l
8 jt+r L a(u)
x[g(©) = f(sx (1 (),
X (fi(s)))] dsdu
+(-1)""H,
+00 [+00 (S _ u)n—m—i—l (u - T)m—l
8 L+ L a(u)

xh (s, x; (hy (8)) ..., x (B () ds du]» ,
t>T, keN, (©D

’(1 —OCk) xk (t) +

T

= < o
(1—“k)xk(T)+b(t+T)

x{—L—xk(T+1)+(—1)"HO

+00 [+00 (S _ u)n—m—l(u —-T— T)m—l
. JT+T L a(u)
x[g (&)= f(sx.(f1 ()5
X (f,(s)))] dsdu
+(-1)"""H,
+00 +00 (s- u)n—m—i—l(u T = T)m—l
x JTH' j-u a (M)

xh (s, x; (hy (8)) ..., x, (1 () ds du} ,

p<t<T, keN,

converges to a positive solution x € Q;(N, M) of (5) and has
the error estimate (20), where {oy }ien, is an arbitrary sequence
in [0, 1] satisfying (21);

(b) Equation (5) has uncountably many positive solutions
in Q;(N, M).

Proof. PutL € (N, (1-1/b,)M). It follows from (18) and (60)
that there exist 0 € (0,1) and T' > 1 + |t,| + 7 + |y| satistying
(50) and

+00 p+oo , m—1
J J L [Hys" ™ (g (9)] + Q(9))

T la ()]

+H" W (s)] dsdu

<min{M<l—l)—L,L—N}.
by

(62)

Abstract and Applied Analysis
Define a mapping S; : Q5;(N, M) — CB([y, +00), R) by
-L x(t+71) (-1)"H,

b(t+1) b(t+1) b(t+1)
+00 (+0o (S— u)n—m—l(u_t__[)m—l
|

+r Ju a(u)
x[g(s) = fsx(fi ()0
x(fi(s)))] dsdu
Sx =1 L CVH
b(t+1)
+00 +00 (S _ u)n—m—i—l(u - T)m—l
XLT L a(u)
xh(s,x(hy (5)),....,x (h (s)))dsdu,
t>T, x € Q, (N, M),
[ Spx (T), y<t<T, xe€Q3(N,M).

(63)

By virtue of (47), (62), and (63), we know that for any x €
Q;(N,M)andt >T

Spx ()

1
b(t+1)

<

><<—L—x(t+r)—H0

o J“’O J*O" (s—w)" " YNu—t-7)"!

+ Ju la (u)]

x[lg @) +[f (sx(fi ()5

x(f(s)|] dsdu
400 400 (S _ u)n—m—i—l(u —t— T)m—l
‘FﬂJ;4 L4 ja (w)

x|h(s,x (B (5),....,x(h(s))|ds du)

1
b(t+1)

M
X<_L+b(t+r)

+00 [+00 m—1
‘L L|Zw

x [Hys"™ " (|g ()] + Q(s))

+H;

1

STy (s)] ds du)
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1
b+ <_L+b(t+r)

(1= )-i-n)

S—S
b(t+1)

S,x (1)

1
b(t+1)

=

><(—L—x(t+1)+H0

+00 +00 (S _ u)n—m—l(u - T)m—l
. LT J la ()]

x[lg©]+]f (2 (fi(5)),-.
x(f; (s)))|] dsdu

. Hi J+m JHX) (S _ u)n—m—i—l(u —t— T)m—l
t

v Ju la (u)|

x|h(s,x (hy (5)),...,x (B (s)))| ds du)

1
bt+1)

N
X(‘“ b(t+1)

J~+00 J'+OO um*1
+
T Ju la(u)

x [Hos"*m*1 (|9 ()] +Q()

>

+H "W (s)] ds du)

1

> ! <—L+ N
b(t+1) b(t+1)

(1= )-i-r)

2—’
b(t+1)

(64)

which imply that S; (Q;(N, M)) € Q;(N, M). The rest of the
proof is identical with the proof of Theorem 5 and hence is
omitted. This completes the proof. O
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Theorem 7. Let m > 2. Assume that there exist two constants
M, N with M > N > 0 and four functions P,Q,R,W ¢
C([ty, +00), R") satisfying (16)-(18) and

bt)=1 -eventually. (65)

Then

(a) for any L € (N, M), there exist 0 € (0,1) and T >
1+ |tol + T + |yl such that for each x, € Q,(N, M), the Mann
iterative sequence {x;} e, generated by the following scheme

Xre+1 (t)

'(1 —(Xk) X (t) +

X {L +(-1)"(m-1)H,

S L o)

=1 t+(2j-1)t Jr u
x (a(w)™)

x[g(s) = f (s, %6 (fi (8))s-- s
xe (f,(s)))] dsdudr
+(=1)""" (m - 1) H;

xi Lt+2jT rooroo(((s —w)"" T - )" 7?)

j=1 +(2j-Dt Jr u
x (aw)™)

xh (s, x; (hy (5))5-..,
x (hy (5))) ds du dr} ,

t>T, keN,,
(1 - o) x (T) + o

x {L +(=1)" (m - 1) H,

ST )

=1 T+(2j-1)t
x (aw)™)

x[g()=f (s, (f ()5
xe (f;(s)))] dsdudr
+(=1)""" (m - 1) H;

x JT+2jT I:OO Lwo(((s )" - r)miz)

=1 IT+2j-1r
x (a@)™)

8

xh (s, x; (hy (5)),-..,
xi (W (s))) dsdu dr} ,

p<t<T, keN,
(66)

converges to a positive solution x € Q,(N, M) of (5) and has
the error estimate (20), where {oy }ien, is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in O, (N, M).
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Proof. Let L € (N, M). It follows from (18) and (65) that there
existO € (0,1) and T > 1 + [t,| + T + |y] satisfying

b(t)=1, Vt>T; (67)
+00 p+oo , m-1
_ u n-m-1
G_JT J gy [T PO) (68)

+Hs"" IR (s)] dsdu;

+00 +00 um—l A
JT L la ()] [Hos (|g )| +Q(s)

+H" W (s)] dsdu (69)

<min{M - L,L - N}.
Define a mapping S; : O, (N, M) — CB([y, +00),R) by
Spx (t)

[L+(-1)"(m-1)H,
0 t+2jT +00 +00 n-m—-1 m=2
Xj:zl J;J’(Zl‘—l)l’ Jr L (((S - u) (u-r) )
x (a()™)

x[g(s) = f(s,x(f(s),..., x(f;(s)))] dsdudr
+(-1)""" (m - 1) H,

00 t+2jT +00 [+00 o .
Xj:zl Jt+(2j—1)r L Ju (((S —u) (u-r) )
x (a@)™)

xh (s, x (hy (5)),..., x(hy (s))) dsdudr,
t>T, x€Q,(N,M),

[ Spx (T), y<t<T, xeQ, (N,M).

(70)
With a view to (16), (68), and (70), we derive that for any
%y e Q(N,M)andt >T

|S.x (£) = Sy (1)]

< (m-1)H,
O ct+2jT +00 +00 (S _ u)n—m—l(u _ r)m—z
L L@j_m o], ja ()]
x|f (s x(fi )5 x (fi(9))
~f &y (f19),-. sy (fi(5)))] dsdudr
+ (m—1) H;

O t+2jT +00 +00 (¢ 4 n—m—i-1 Uu—r m-2
y I J I (s—u)"™"™ " -1
t T Jr

o e u la (u)]
x|h(s,x (hy (5)).. ., x(hy (s)))
~h(s,y(h (s),..., y (b (5)))|dsdudr

Abstract and Applied Analysis
< (m—1) Hy x -y

P(s)dsdudr

y J*OO J'+°° J’“’O (s—u)" ™ Yu—-rm2

u |a (u)]

+(m=1)H|x -y

y J~+oo J+oo J»+oo (S _ u)n—m—i—l(u _ r)m—zR (S) s dudr
t r u |[1 (M)l
= Hy |- ]
X on on (s—u)™ - P(s)dsdu
e Ju la ()|
+Hi|x -]
X on on (s =™ " R(s)dsdu
e Ju la ()|
< fx -y
+00 +00 um—l R
X —— |Hys P(s
o L e e
+H;s" "R (s)] dsdu
=0]x-yl

(71)

which gives (27). By virtue of (17), (69), and (70), we deduce
that forany x € Q;(N, M) andt > T

Spx (t)
<L+ (m-1)H,

T W' ="
t

r u la (u)]
x[|lg@&)|+|f (sx(f1()),..., x(f;(9)))|] dsdudr
+ (m—-1) H;
00 (400 (400 (5 u)n—m—i—l(u _ r)m—Z
* L J J la (W)
X |h(s,x(hy(s)),..., x (b (s)))|dsdudr

<L+ (m-1)H,

y J+°° J’+°° J*‘X’ (s =)™ Hu - r)™?
t

u la (u)]

r

x [|g ()] +Q(s)] ds dudr
+ (m—1) H;

W (s)dsdudr

y J*"O J’“’O J‘*O" (s —u)"" gy — )" 2

u la (u)]
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+00 J»+oo (S _ u)n—m—l(u _ t)m—l
u la ()]

x [|g (s)| + Q(s)] ds du
J+oo J+oo (S _ u)n—m—i—l(u _ t)m_l

u la ()]

=L+H0J
t

+ H;

1

X W (s)dsdu

+00 (+00 m—1
<L+ J J u
T Ju o la(u)l

X [Hos"_m_1 (lg ()| +Q(s)

+Hs" W (s)] dsdu

< L+min{M-L,L- N}
< M,
Spx (t)
> L—(m—-1)H,
+00 [+00 [+00 n-m—1 m—2
XL J J - |a(u()b|l ’
<[lg @ +]f (s x(f ().,

r

x(f; ()| dsdudr
-(m-1)H;
+00 [+00 [+00 (S _ u)n—m—i—l(u _ r)m—Z
* J I I ja ()

X |h(s,x (hy (5)),...,x (b (s))|dsdudr

+00 +oo , m-1
e[
T Ju la(u)l

X [Hosnfmfl (Jg®)|+Q(s)) + Hs"™™ " 'w (s)] dsdu

>L-min{M - L,L- N}

>N,
(72)

which mean that S;(Q;(N,M)) < Q,(N,M). Coupled
with (27) and (68), we get that S; is a contraction mapping
in Q,(N, M) and it possesses a unique fixed point x €
Q,(N, M). Clearly, x € Q,(N,M) is a positive solution of
(5).

From (27), (66), and (70), we gain that

|xk+1 (t) - X (t)l

= (1 - oq) x, (1)

15

+ oy, {L+ (-1)"(m-1)H,

y © J»t+2jr Jmo J~+oo (s — w)"™™ (= r)m2

t+(2j-1t Jr u a (M)

j=1
x[g(s) = f(sx (f109),..,xc (f;(5)))] dsdudr

+ ()" m-1H,

00 ~t+2jT +00 (400 (o ymmm—izl ym=2
S e
=1 t+(2j-1)71 Jr u a (u)

xh (s, x; (hy (5)) ..., x (W (5))) ds du dr} - x(t)

< (1= o) g (8) = x ()] + o [ Sy () = Spx (1)
< (1= og) g () = x (8)] + g0 | x; () = x (1)
=(1-(1-0)ay) |z () = x ()]

< e ]

< DT lxo = x|, VkeNy, t>T,
(73)

which yields (20). It follows from (20) and (21) that
limy _, o x; = x.

Now we prove that (b) holds. Let L,,L, € (N, M) and
L,#L,. As in the proof of (a), we conclude that for each
p € {1,2}, there exist Qp € (0,1), TP > 1+ |ty + T+ |yl and
SLp : (N, M) — Q,(N, M) satisfying (69)-(77), where L,
0, T,and S, are replaced by L, 0,,, T, and St respectively,
and SLp has a unique fixed point z, € Q,(N, M), which is a
positive solution of (5) in Q,(N, M), that is,

2,(t) = L+ (-1)" (m - 1) H,

0 ~t+2jT +00 (00 (¢ 4y n-m-1 u—r m—2
y I J f (s—u)"" -1
t r

=1 +(2j—l)‘r u a(u)
X [g(s) —f(s,zp (f1(9)s--s2, (fi (s)))] dsdudr
+ (-1 m - 1) H,

00 ~t+2jT +00 (400 (o yrmm=i=le ym=2
y J J J (s—w"™" " u-r)

u a(u)

j=1 t+(2j-1)1 Jr

x h (s, 2, (1 (9)5.. .2, (hy (s))) dsdudr,

Vt>T,, pe {1,2}.
(74)
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For purpose of proving (b), we just need to show that z, # z,.
It follows from (16), (27), (68), and (74) that

|Z1 () -z, (f)|

2 |Ly - Ly| - (m - 1) Hy ||z, - 2|

X J:OO on J+OO (((s —u)""" - r)m_z)

x(la @) P (s)dsdudr

- (m-1)H, |z, -z

x Jjoo JHX) on (((s —u)"" - r)m_z)

x(la @) ") R (s) dsdudr (75)

> |Ly = Ly| ~ ||z — 2

J-+oo J-+oo um—l
X
max{Tl,Tz} u |a (Li)|

X [Hos"_m_lp (s)

+H;s" "R (s)] dsdu
> |Ly ~ L,| - max {6,,0,} |z, - 2],

vt > max {T},T,},

which yields that
L1~ L]
- > ———F >0, 76
Iz -z 1 + max{6,,6,} g (76)
that is, z, # z,. This completes the proof. O

Theorem 8. Let m = 1. Assume that there exist two constants
M, N with M > N > 0 and four functions P,Q,R,W €
C([ty, +00), R") satisfying (16), (17), (65), and

J:O J:OO la (1u)|

X [IsI"_2 max {P (s),Q(s),|g ()|} (77)

+s|"? max {R (s), W (s)}] dsdu

Then

Abstract and Applied Analysis

(a) for any L € (N, M), there exist 0 € (0,1) and T >
1+ |tol + T + |yl such that for each x, € Q,(N, M), the Mann
iterative sequence {x;}rcn, generated by the following scheme

Xie+1 (t)

'(l - oy.) xp (£)

-n"
(n-2)!

0 ,t+2jT 00 (5 u)n—Z
Do h e
t

=1 (2T Ju a(u)

x[g (&)= f (s x (1 (9o xi (i (9)))] ds du

+o {L+

(_1)n—i—1
Th-i-2)

o0 ct+2jT +00 (S _ u)n—i—z
Xj:1 Jt+(2jl)r Ju a (M)

X (s, x (hy (8))s.. . x, (B (9))) dsdu} ,
t>T, keN,,

(1 - (Xk) xk (T)

1"
+oy {L + (,(1 _)2)!
0 ~T+2jT +00 (5 _ u)n—z
Xj:1 JT+(2j1)T Ju a(u)

x[g (&)= f (s x (1 (95 xi (i (9)))] ds du

(_1)n—i—1
Th-i-2)

0 T+2j7 +00 (S _ u)n—i—z
Xj:1 JT+(2j—1)T L a(u)

X (s, x (hy (8))s.. 0 x, (B (9))) dsdu} ,

p<t<T, keN
(78)

converges to a positive solution x € Q,(N, M) of (5) and has
the error estimate (20), where {oy }ien, is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in O, (N, M).
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Proof. LetL € (N, M). It follows from (65) and (77) that there
existO € (0,1) and T > 1 + |t,| + T + |y| satisfying (67),

+00 +00 1
o= )
T Ju ()l
n—i—2

o] = P(s)+ — R(s) | dsdu
(n-2)! (n-i-2)! ’

(79)

(|9 ()] +Q()

+00 [+00
JT Ju

N
la@)| [ (n-2)!

Sn—i—2
+—'W (s)] dsdu

(n—i-2)!

<min{M -L,L- N}.

(80)

Define a mapping S; : Q,(N, M) — CB([y, +00), R) by

Spx (1)
(_1)7! 0 ~t+2jT +00 (S _ u)n—l
! (n-2)!43 Jt+(2j—1)1 L a(u)
x[g(s) = f(s,x(f(s)),..., x(£;(s)))] dsdu
_ ( 1)n i-1 ©o t+2j1 +00 (S_u)n—i—Z
(n i— 2) Jt+(2] T L a(u)
xh (s, x (hy (s)) ..... x (h; (s))) ds du,
t> T, X € Ql (N)M)’
1S x (1), y<t<T, xe€Q,(N,M).

(81)

By virtue of (16), (79), and (81), we derive that for any x, y €
Q(N,M)andt>T

|SLx t)-Sry (t)|
1 O 25T +00 (S _ u)n—Z
= (n-2)!43 L L la (u)|
<|f(&x(f1 ()5 x(fi(5)
~f(sy(fi(9),-o v (£, (5)))|dsdu
1 (&8} J—t+2]‘r J--HX) (S _ u)n—i—Z

T i=2) = u la ()]

x |k (s,x (hy (5)).. ., x (h; (s)))
“h(s,y (hy (9)),-.., y (B (5)))| dsdu

+(2j-1)T

+(2j-t
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(S _ u)n—Z

la ()]

P(s)dsdu

e

s x|
n—i-2 77
+00 [+00 (S_u)nfifZ
X J;—- Ju |a(—u)|R (S) dS dl/l

+00 +00 1 Sn—z
: ||x - y” JT «[4 la (u)] [ (n- 2)!P(S)

Sn—i—2

+—
(n—i-2)!

R(s)] dsdu

=0]x -]
(82)

which gives (27). It follows from (17), (80), and (81) that for
anyx € O;(N,M)andt >T

Spx ()

1 0 42T +00 (S u)nZ
e 2)111 J la ()|

x[lg @[ +[f (&x (1)), x (fi()))]] ds du
1 O 25T +00 (S _ u)n—i—Z
NI R

- i=2) u la ()]

t+(2j-1)7

+(2j-1)1

x |k (s,x (hy (5))- - x (h (5)))| ds du

+00 +00 1
< L+J J
T Ju la)

T n—i—2
<[ te@l @)+

2)|W (s) | dsdu

<L+min{M-L,L-N}
<M,
Spx (1)

>L-

1 0 J~t+2jT J~+OO (S _ u)ﬂ—z
t

(n- 2)!1.:1 +(2j-1)7 Ju la (u)]

<[lg @[ +1f (sx(f1 ()., x (fi(9)))|] ds du
1 O ~t+2jT +00 (S _ u)n—i—Z
[ R

N (n-i-2) % " la (u)]

+(2j-1)T

x |k (s,x (hy (5))- .. x (h (5)))| ds du

=L- Em Lm Ia(lu)l
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(M@HQ@M- W (s) | dsdu

( -2)! -2)!
>L-min{M-L,L- N}

> N,
(83)

which mean that S;(Q,(N,M)) < Q,;(N,M). Combined
with (27) and (79), we know that §; is a contraction mapping
in Q;(N,M) and it possesses a unique fixed point x €
Q,(N, M). Obviously, x € Q,(N,M) is a positive solution
of (5).

In light of (27), (78), and (81), we gain that

|karl (t) —x (t)|

= [ (1 - oq) x, (1)

+ oy {L+

x[g (&)= f(sx (1))
(_l)n—i—l 00 ~t+2jT oo (5 u)"*i*Z
I

(n-—i-2)! st +(2j-1)7 Ju a(u)

1) & J-t+2j'r J—+oo (s — )2

(n=2)!3 Jerej-nr Ju a(u)

Xk (f1(5)))] ds du

xh (s, x; (hy (8)) 5.0 x5 (B (5))) dsdu} - x(t)

< (1= og) [xp (8) = x ()] + o [Spx () = Spx (1)

< (1-ay) | (1) = x ()] + 4.0 | x (1) — x (1))

= (1-(1-0)ay) |xy (1) — x (8]

< ef(l—e)ock "xk _ x"
<O [xo— x|, VkeNy, t=T,
(84)

which yields (20).
limy _, o xp = x.
Now we prove that (b) holds. Let L,,L, € (N, M) and
L, #L,. As in the proof of (a), we conclude that for each p €
{1, 2}, there exist GP € (0,1), Tp > 1+ |tyl + 7+ |yl and SLp :
Q (N, M) — Q,(N, M) satisfying (67) and (79)-(81), where
L,0,T,and S  arereplacedbyL,,0,,T,,and S L, respectively,

It follows from (20) and (21) that
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and SLp has a unique fixed point z, € Q,(N, M), which is a
positive solution of (5) in Q, (N, M), that is,

(-1)"
Pt o)

O ~t+2jT +00 (S _ u)n—Z
X Z J‘t+(2j—l)r Ju a (u)

j=1

zp(t) =L

x[9) = f (52, (fi (95,2, (f1(5))] ds du
. ( l)n—z—l 00 J-t+2j1— J+oo (S_u)n—l—Z

(n—z—2)' +2j-1)r Ju a(u)

><h(s,zp(h1 Q)

Vt>T,, pefl,2}.

z, (hy (s))) dsdu,

(85)

In order to prove (b), we just need to show that z; #z,. In
view of (16), (27), (79), and (85), we get that

|z, () - z, (1))

1 O 25T +00 (S_u)n—z
bt [

(-2 & ja (w)

X|f (2, (f1(5))s--2, (i (5)))
—f (52, (1 (5)5-..,2, (fi (5)))] ds du

1 O ~t+2jT +00
- n-i- 2)!1.221 .L(Zj—l)r L

x |h(s,2, (h (5))5- .2, (B (9)))
~h(s,z, (M ()),..., 2, (W (5)))| dsdu

AN
(n-2)! Jt L la ()
Iz =z, [
S m-i-2)! L
2 |L1 —Lzl - “21 —22"
+00 +00 1
. Lax{m} J la ()]

sn—2 Sn—i—Z
X [(n—z)!P(s) T m—i-2)

> |Ly = Ly| - max {6,,0,} |2, - 2, »

+2j-D)1 Ju

(5 _ u)n—i—z

la (w)

>|L, - L,|- P(s)dsdu

+00 Sn i-2
R(s)dsdu
J, ke

R (s)] dsdu

Vt > max {Tl; Tz} >
(86)
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which implies that

|L1 _L2| >0 (87)

21 - 22 = Trmax(0,0,]

that is, z; # z,. This completes the proof. O
Theorem 9. Let m > 2. Assume that there exist two constants

M, N with M > N > 0 and four functions P,Q,R,W €
C([ty, +00), R) satisfying (16), (17),

00 (400 (400 |1 1)1
LO Jr L la (w)]

X [|s|"7"H max {P (s),Q(s),|g (s)|}

+|5|”_m_i_1 max {R (s), W (s)}] dsdudr

< +00,
(88)
b(t) = -1 eventually. (89)

Then

(a) for any L € (N, M), there exist 6 € (0,1) and T >
1+ [tyl + T + |yl such that for each x, € Q,(N, M), the Mann
iterative sequence {x;} e\, generated by the following scheme

Xk+1 (t)

(1 - o) x, (1)

+oy, {L+ (-1)"'(m-1)H,

(o] J~+oo J+oo J+oo (S— u)n—m—l(u_ r)m—z
= g Jr u a(u)
x[g(s) '—f(s,x,< (1)) x. (fi (5)))] dsdudr
+(=1)"" (m - 1) H
o) J+OO J+oo JHX) (s_ u)n—m—i—l(u_ r)m—z

t+jt Jr

u a(u)

X

X

=
xh (s, x; (hy (5)) ..., x (W (5))) dsdu dr} ,
t>T, keN,

=11 =) x (1)
+o, {L +(-1)""(m-1)H,

0 400 (400 [+00 (s— u)ﬂ*mfl(u _ r)m*Z
Xj:I J 4[* Ju a (u)
x[g(s) = f (s, (f1(8)sr 1 (f1(5)))] dsdudr
+(-1)"" (m - 1) H;

0 400 [+00 [+00 (s— u)n—m—i—l(u _ r)m—Z
2]

u a(u)

T+jt

=1 T+jt

xh (s, x; (hy (5)) ..., xc (W (5))) dsdu dr]» ,

p<t<T, keN

(90)
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converges to a positive solution x € Q,(N, M) of (5) and has
the error estimate (20), where {oy }xen, is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in Q, (N, M).
Proof. Set L € (N, M). In view of (88) and (89), there exist
0€(0,1)and T > 1+ |t;] + T + |y| such that

b(t)=-1,
g m-1 J~+oo J+oo roo 2
v ) lal (92)
x [Hys" ™ 'P(s) + Hs" ™" "'R(s)| ds dudr;
m_ 1 [t [To0 [+e0 M2
T JT J; J-u la (u)]

X [Hosnfmf1 (lg®)|+Q(s)) + Hs"™™ " 'w (s)] dsdudr

Vt > T; (91)

<min{M - L,L—- N}.
(93)

Define a mapping S; : Q;(N, M) — CB([y, +00),R) by

Spx (1)

(L+(-1)""'(m-1)H,

X

Q0 400 (400 (400 (o _ m-m=l. . _\m-2
]._ljﬁjf.[r J‘u o a(u()u :

x[g@s) = f(s,x(f,5),...x(f1(5)))] dsdudr
_ ]+ (m-1)H,

00 400 400 +00 (S _ u)n—m—i—l(u _ r)m—z
Xj:1 L J L a(u)
xh (s,x (hy (5)),....,x (h (s)))dsdudr,

t>T, x€Q,(N,M),
y<t<T, xeQ (N,M).

+jT Jr

_SLX (T) >
(94)

By virtue of (16), (92), (94), and Lemma 1, we acquire that for
anyx,y € Q;(N,M)andt>T

S, (£) = Spy (1)]

Q0 400 [+00 [+00 (o _ o \H—m=l. __\m-=2
< (m-1)H, J‘ J J (s—u) (u-r)
j t+jT Jr

o u la ()|

X|f(sx(f1(9))s..x(fi(5)))
~f(&y(fi(9)s..y (fi(9)))|dsdudr
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+ (m— 1)Hi§ J:OO J:

0 J+OO (S _ u)nfmfifl(u _ r)m72
j=1 T

u la (u)]

x|k (s, x(hy (s),...,x (B (s)))
—h(s,y(h(s)),....y(h(s))|dsdudr

H,
<m-1) 0y

X J+oo on Jm (s =)™ - r)m_er (s)dsdudr

U P la (u)]

H.
Fon-1) Dy

400 400 400 (o _ L \H—m—i=l,  \m-2
X J J J (s —u) w-r rR(s) dsdudr
T r

u |a (u)]

m—1 +00 (+00 [+00 rum—Z
=]

T T r u la(w)l

X [HOS'H'HP (s) + Hs" ™" 'R (s)] dsdudr

=0fx -y,

(95)

which yields that (27) holds. From (17), (94), (98), and
Lemma 1, we obtain that for any x € Q, (N, M) andt > T

[Spx (1) - L

j=1 t+jr Jr u |a(u)|
< (g O]+ 1f 63 (i )serrx (i )] dsdudr

00 400 [+00 [+00 (o _ \H-m—i=l\m=2
+(m—1)HiZJ J J (s—u) (u=r)

=1 t+jr Jr u |a (u)l

x [l (s, x (hy (5)),....,x (b (s)))| dsdudr

H. +00 (+00 [+00 rsn—m—lum—z
conen B[
e )L la ()]

x[|g ()| + Q(s)] dsdudr

H. [too (too (+oo rSn—m—i—lum—Z
LY ol i
T Jr

r u la (u)]

X W (s)dsdudr

m—1 (1o [too [t rum—Z

B T J'T Jr Ju |a (M)'
X [Hos"_m_1 (g )| +Q(s))

+Hs"" W (s)] dsdudr

<min{M - L,L — N},
(96)
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which means that S;(Q,(N,M)) < Q,(N,M). It follows
from (27) and (92) that S; is a contraction mapping and
it has a unique fixed point x € Q;(N,M). It is clear that
x € Q,(N, M) is a positive solution of (5).

On the basis of (27), (90), and (94), we deduce that

|xk+1 () —x (t)|

(1 - OCk) X (t)

+ay <|L +(-1)"" (m-1)H,

00 J'+OO J+00 J-+OO (S_u)n—m—l(u_ r)m—z
t+jr Jr

4 . a(u)
x[g(®) = f(sx(fi ()
xe (f(5)))] dsdudr

+(-1)""(m-1)H,

y i J~+oo J»+oo J»+oo (s — )™ gy — pym2

=1 g Jr u a(u)

xh(s,x; (hy (s)),....x; (B (s)))dsdu dr}

-x(t)

< (1= ay) |xp (1) = x ()] + o [Spoxi () = Spx (1))
< (1= o) |xg () = x (1) + O | x () = x (1)

= (1-(1-0) ) |y (8) = x (8)]

< e 0% | — x|
<o DT lxo— x|, VkeN, t=>T,
(97)

which signifies that (20) holds. It follows from (20) and (21)
and that limy _,  x; = x.

Now we show that (b) holds. Let L,,L, € (N, M) and
L,#L,. As in the proof of (a), we conclude that for each
p € {1,2}, there exist GP € (0,1), TP > 1+ |tyl + 7+ |yl and
SLp 1 Q,(N,M) — Q,(N, M) satisfying (91)-(94), where L,
0, T, and §; are replaced by L, 0,, T}, and SLp’ respectively,
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and SLp has a unique fixed point z,, € Q,;(N, M), which is a
positive solution of (5) in Q;(N, M), that is,

z, (1)

=L,+(-1)"" (m-1)H,

X

< J:OO J’+°° J*‘X’ (s—uw)" " u—r)m?

=1 +jr Jr u a(u)

x[g() = f(s2,(f1(9))>-.r2, (fi (s)))] dsdudr
(1) m = 1) H,

. OZO: J+oo J'+oo J-f—oo (s — )" (g — py 2

u a(u)

j=1 t+jr Jr

xh(s,zp (1 (9))5-..2, (hy (s)))dsdudr,
Vit > Tp, pefl,2}.

(98)

In order to prove (b), it is sufficient to show that z; # z,. Note
that (16), (92), (98), and Lemma 1 lead to

|z, (t) = z, (1)

H,
>|L, - L,|-(m-1) 70 lz1 = 2|

+00 +00 [+00 n-m-1_m-2
X J J I rs—up(s) dsdudr
t

+t Jr u la (w)]

H.
- —-1) = -
-1 )
+00 +00 p+00 . m-m—i=1 m=2
X J J J uR(s) dsdudr
t+t Jr u la (1)

m-1)|z, -z
2|L1—L2|——!1 |

J+OO J+m J+w rum—z
X
max{T;,T,} Jr u |61 (u)|

x [HosnfmflP (s)+Hs"™ " 'R (s)] dsdudr

> |Ly = Lo - max {6,,6,} ||z - 2|, Vt>max{T},T,},

(99)
which means that

L1 = L]

o2 -] = 1 + max{6,,6,}

>0, (100)

that is, z, # z,. This completes the proof. O
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Theorem 10. Letm = 1. Assume that there exist two constants
M, N with M > N > 0 and four functions P,Q,R,W ¢
C([ty, +00), R") satisfying (16), (17), (89), and

B |u| n-2
L J |a(u)|[|5| max {P (s),Q(s),|g (s)|}

0 u

+s|"? max {R (s), W (s)}] dsdu (10D

< +00.

Then

(a) for any L € (N, M), there exist 0 € (0,1) and T >
1+ |to| + T + |yl such that for each x, € Q,(N, M), the Mann
iterative sequence {x;}cn, generated by the following scheme

X1 (t)

(1 - o) x, (1)
(_1)71—1 00 +00 [+00 (S _ u)n—Z
I

x[g ()= f (5% (f1 (9))s -3 (i (5))) ]dls du
(_I)n—i 00 400 F+00 (S_u)nfi—Z
[0 AT

(n—i-2)! = " a (u)

+jT

+jT
xh (s, x; (hy (8)) ..., xi (1 (s5))) ds du} ,

t>T, keN,,

* (1 - o) ¢ (T)
(_1)71—1 00 +00 +00 (S _ u)n—Z
O {“ (n—Z)!jzlj J au)

x[g ()= f(sxi (fy (), > (fy (9)))]ds du
(_l)n—i 00 J~+oo J»+oo (s—u)"“H

(n-i-2)%5 u a(u)

T+jt

T+jt

xh (s, 5, (hy (8)) 5o xi (B (s))) ds du} ,

p<t<T, keN,,
(102)

converges to a positive solution x € Q,(N, M) of (5) and has
the error estimate (20), where {oy }ien, is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in O, (N, M).
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Proof. Set L € (N, M). Due to (101), there exist 0 € (0,1) and
T > 1+ |ty + 7+ |y| satisfying (91),

1 +00 +00 u
S
tlr Ju la()

n-2 n—i-2 (103)
s s
X [(n— 2)!P(s) + i 2 s)] dsdu,
1 +00 +00 u
?L Ll|amn
n—2 n—i-2
[(n 2)! lg(S)l +Q(S) WW(S)] dsdu
<min{M - L,L- N}.
(104)

Define a mapping S; : Q,(N, M) — CB([y, +00),R) by

Spx (1)

(_1)”—1 00 +00 +00 (S _ u)n—Z
" (”—2)!; L+jr Ju a(u)
x[g (&)= f(sx(fi ()5 x(fi (9)))] dsdu

_ (_l)n—i 00 ~+00 [+00 (S _ u)n—i—z
+(n_i_2)!jZ;Jt+j‘r L a(u)

xh (s, x (hy (5)),..., x(hy (s)))dsdu,
t>T, x€Q, (N,M),
y<t<T, xeQ (N,M).

[ Srx (1),
(105)

In view of (16), (103), (105), and Lemma 1, we achieve that for
any x, y € Q;(N,M)andt >T

ISLX (t) =Sy (t)l

B 1 QO ~+00 +00 (S _ u)n72
- (”_2)!]; -[f+jr «[4 |la (u)]
<[ f(sx(fi (). x(fi(5))
[y (fi ()50 (fi(9)))| ds du

1 0 +00 +00 (s— u)nfifZ
+(n—i—z>!j_zljt+ﬁju a (u)
x|k (s, x (hy (5), ..., x (h (s)))

~h(s,y(h(s),..., y (hy (s)))| dsdu

I =yl (o (> us"?
- m LH’ Ju |a (u)|P(S) dsdu

“X _ )/” +00 [+00 usn—i—z
+ —T(n—i—z)! LH J-u @ )] —R(s)dsdu
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= u J;OO J:OO Ia?u)|

s s
X[m-2ﬂpby+M—i—D!

n—i-2

R(s)|dsdu

=0x-yl,
(106)

which means that (27) holds. It follows from (17), (104), (105),
and Lemma 1 that for any x € Q,(N,M)andt > T

NEIGESY
1 00 400 +o<)(s_u)n2
(ﬂ 2)' Z Jt+]1 Ju |Gl (u)l
% [lg O] +1f (5% (£ (9) ..o x (fy ()] dsdlu

1 00 400 [+00 (s _u)"—i—z
" (H—i—z)!FZIJt+jT ju |a(u)|

x i (s, x (hy (s)

.....

= ﬁ Lm Em ja )]

1 +00 (400 n—i-2
+ J J us —W (S) dsdu
T(n—i-2)! Jur Ju

la ()]
= % J;OO Lm Ia:lu)l

n-2
[ ooy (9l + Q) +

~—

x (h (s)))| dsdu

|g (s)| +Q(s))dsdu

nfifz
)W(s) dsdu

<min{M - L,L - N},
(107)

which means that S; (Q, (N, M)) € Q,(N, M). Coupled with
(27), we know that S; is a contraction mapping and it has
a unique fixed point x € Q,(N,M). It follows that x €
Q,(N, M) is a positive solution of (5).

In view of (27), (102), and (105), we deduce that

ka+1 () —x (t)|

= (1 - oq) x,. (1)

+ock{L+

x[g(s) -

_\-1 0O 400 [H0O (o _ ,\I-2
ce W

(n- 2)!].:1 u a(u)

F (s (f1(9)5-x (fi (9)))] ds du
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1) & j+00 J+oo (s — )2

(n—i=2)1 5 Jivje Ju a(u)

xh (s, x; (hy (8)) ..., x, (B () ds du} - x(t)

< (1= og) [x (8) = x ()] + oy S () = Spx (1)
< (1= oy) |xg () = x (1)) + O | x () = x (1)
= (1-(1-0)ay) |z () — x (2)]

< e 170 [l — x|

<102 lxo -], VkeNy t=T,
(108)

which signifies that (20) holds. It follows from (20) and (21)
that limy _, X = x.

Now we show that (b) holds. Let L,,L, € (N, M) and
L,#L,. As in the proof of (a), we conclude that for each
p € {1,2}, there exist GP € (0,1), T, > 1+ ltol + 7 + |yl
and SLp 1 Q,(N,M) — Q,(N, M) satistying (91) and (103)-
(105), where L, 6, T, and S, are replaced by L ,,0,, T}, and SLp’
respectively, and S L, has a unique fixed point z, € Q,(N, M),
which is a positive solution of (5) in Q, (N, M). It follows that
foranyt > TP and p € {1,2}

z,(t)=L,+

(_l)n—l 0 ~+00 [+00 (S— u)n—z
(n- 2)!]‘:1 J Ju a(u)

t+jt

x[g) = f (52, (/1 (95,2, (f1 ()] dsdu
) (_1)n—l (&) J-+oo J»+oo (S_u)n—t—z

(i’l—i—Z)!j:l +jt Ju a(u)

xh (s, 2, (1 ()., 2, (hy (5))) dsdu.
(109)

In order to prove (b), we just need to show that z; # z,. Notice
that (16), (103), (109), and Lemma 1 ensure that

|z, (t) = z, (1)

~ ~ 1 Q0 ~+00 [+00 (S_u)n72
L2| (n—Z)!]-_Z;J’er «[A |a (Ll)l
x|f (52, (f1 )52 (£ (9))

~f(sz (i), nz (fi(s))dsdu
1 (o8] J~+OO J~+00 (S _ u)ﬂ*i*Z

S-S el el

> |L,

t+jT
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x|h(s,zy (R (9)5. 52 (1 (5)))
~h(s,z, (hy (5)),..., 2, (W (5)))| ds du

_ +00 [+00 n—2
2|L1—L2|—MJ J % p(s)dsdu
T(n=2)! Jue Ju  la(u)]

+00 (400 n—i—2
J J us R(s)dsdu

t+r Ju la (w)]

|21 - 2| J+00 J+00 u
>|L,-L,|-———
[L1— Lo T max{T}, 5} Ju a1

B 21 - 2|
T(n—1i-2)!

Sn—Z Sn—z—Z
8 [(n-z)!P(S)+ (n-i-2)

> |L) = Ly| - max {6,,6,} |z, - 2|,

'R(s)] dsdu

(110)
which yields that
L - L,
- > ———>0, 111
Iz -z 1 + max{6,,6,} i
that is, z; # z,. This completes the proof. O
3. Remark and Examples

Remark 11. Theorems 2-10 extend, improve, and unifies
Theorems 1-4 in [1], the theorem in [2], Theorems 2.1-2.4
in [4], Theorems 2.1-2.5 in [5, 8], Theorems 1-3 in [9], and
Theorems 1-4 in [11], respectively. The examples below prove
that Theorems 2-10 extend substantially the corresponding
results in [1, 2, 4, 5, 8, 9, 11]. Note that none of the known
results can be applied to these examples.

Example 12. Consider the higher order nonlinear neutral
delay differential equation

(n—m)

. 2\ _ 5 (m
l:(tmﬂ N 1) (x 0+ sin (2t ) cos (t 1)x(t—r)> ]

7+2sin (8t +2t - 1)

. <t2x(t _3)x2(t - 4) )(")

tn—m—i+3 + t2 +1

£ (£ -t)-x*(t-1)
prmtd 4ty )

+

tln(l + t2) - cos? (t2 —t+ 1)
= th—m+3 +1

. VE>2,
(112)
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where 7 > Oandi < m-m -1 Letl = 2,t) = 2,y =
min{2 - 7,-2}, M =10, N = 1, b, = 2/5 and

h (t)=t-3,

fi)y =t -t

Iy (6) =t — 4,
L) =t-1,

sin (21‘2) — Cos (ts - 1)
7+2sin (863 +2t - 1)’

a)=t""1+1, b=

2 2
" uv
h(t,u,v) = meits 4 2 4 1
3.3 4
tu —v
Lwy) = ey
f( ) tn—m+4 +t+2
(113)
tin (1+¢) - cos’ (¢ — £ +1)
g(t)= p2n-m+3 4 1 ’
M? (3t +4M) M (¢ + M)
PO= i =iy
) pmtd 4 p 4 D
3M*?
RO = s o
M3t
W(t) =

tn—m—i+3 +12 4+ 1’

Y (t,u,v) € [ty +00) x [N, M].

It is easy to verify that the conditions of Theorem 2 are
satisfied. Thus Theorem 2 ensures that (112) has uncountably
many positive solutions in Q,(1, 10), and for any L € (5,6),
there exist @ € (0,1) and T > 1 + [t,| + T + || such that the
Mann iterative sequence {xk}keNO generated by (19) and (21)
converges to a positive solution x € Q,(1, 10) of (112) and has
the error estimate (20).

Example 13. Consider the higher order nonlinear neutral
delay differential equation

(n-m)

2 (m)
[(t"+1)<x(t)+4t3t+3x(t—‘r)> ]
(1)

<t2x(tlnt) —(t+ 1)x(t1nt)x(\/ﬂ)>
+
(114)

tn+m—i+3

(2 - tz) arctanf + tx° (t3 + t2) x° (tz)

tn+m+3 + xz (t2)

+

V1 -8 + 1315 + 5t5 cos (£ — 1)

t2n+m+4

, Vt>1,
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where 7 > Oandi < m-m -1 Letl = 2,t) = 1,9 =
min{l - 7,0}, M =6, N =1,b, = 3/4 and

h, (t) = tint, h, (t) = V21,
i) =t +t*, f, @) ="t
" 3t2

= 1, = — ),
a®)=t"+1, b= T

Pu—(t+1Duy
tn+m—i+3

h(t,u,v) =

>

(2 - t2) arctan t + tu*v?

tn+m+3 + V2

ftuv) =

V1 =83 + 1315 + 5t° cos(t3 - 1)

t2n+m+4

gt =

>

SMATT L oM (2 + tz) arctanft + 5M°t

P (t) (tn+m+3 + N2)2

>

(2 + tz) arctant + M°t

tn+m+3 + N2

Q)=

>

2+ 2M (t+1)

tn+m—i+3

Mt*+ M (t +1)

tn+m—i+3

R(t) = , W)=

Y (t,u,v) € [ty +00) x [N, M].
(115)

It is easy to check that the conditions of Theorem 3 are
satisfied. Therefore (114) has uncountably many positive
solutions in Q,(1,6), and for any L € (11/2,6), there exist
0 € (0,1)and T > 1+]to|+7+|y| such that the Mann iterative
sequence {xk}keNO generated by (19) and (21) converges to
a positive solution x € Q,(1,6) of (114) and has the error
estimate (20).

Example 14. Consider the higher order nonlinear neutral
delay differential equation

arctant (rmam)

(m)
5 x(t— T)) ]
(tzx(t3 +t) - x* (£ - 1) )(i)
+

t2n+m_i+3 + x2 (t3 + t)

[(t+1)<x(t)—

(116)
tx (t — 1) sin (tx (t — sint))
+
pentmt3 o 43 4 9

Vi Lsin® (t2 + 2t + 1)

t2n+m+3 +1

, Vt>0,
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where 7 > Oandi < m-m—-1.Letl = 2,t) = 0,y =
min{-7,-1}, M =8, N =1/2,b, = 7/8 and

h @)=t +t, h@t)=t -1,
L) =t-1, f,(t)=t-sint,
1
at)y=t+1, b()= -3 arctant,
tru—v*
htuy) = s
tu sin (t
Fltuv) = u sin (tv)

pem+3 43 2’

£\t + Lsin® (t2+2t+ 1)
gt) =

t2n+m+3 +1 >
Mt? +t Mt
p (t) = t2n+m+3 + t3 + 2’ Q(t) = t2n+m+3 + t3 + 2’
R(f) = S VP M LM
B (t2rtm=i+3 4 N2)2 ’
Mt* + M?
W(t) = YV (t,u,v) € [ty +00) x [N, M]?.

t2n+m—i+3 + N2 ’
117)

It is easy to prove that the conditions of Theorem 4 are satis-
fied. Hence (116) has uncountably many positive solutions in
Q,(1/2,8), and for any L € (1/2, 1), there exist 6 € (0, 1) and
T > 1+ [tyl + 7 + |yl such that the Mann iterative sequence
{xi}ken, generated by (19) and (21) converges to a positive
solution x € Q;(1/2,8) of (116) and has the error estimate
(20).

Example 15. Consider the higher order nonlinear neutral
delay differential equation

) m) 1 (=m)
[(tZi +1) (x ) +2 P x(t - T))( )]

(@)

it In(1+ [x (t—2)]) + 4

( VE+ 12 (- l)x(tz) )
L

(118)
x (t - 12) x (£ - 9)
23 4t |x(t—-3)| +3

t* cos (2t) + arctan

= , Vt>3,
4 4 sin? (1 -2 +14) + 1

wheret > Oandi < m-m-—1.Let]l = 3,t, =0,y =
min{3-7,-9}, M =12,N =5,b, =2 and

hy@)=t-1, h(t) ="t

£, () =t> -9,

hy(t) =t -2,
fi(t) =t-3,
a)=t*+1, b@E)=2"",

Vit + Tu?v

il 4t n (1 + |w)) + 47

fi)=t-12,

h(t,u,v,w) =

t* cos (2t) + arctan t®
74 4+ sin® (1-£3 +14) + 1

gt) =

2
t"uv
tLu,vw) = ——5F———,
A ) 273 4+t lw| + 3
MP (6by + 3Mt + 2b,t™*")

(23 4 3)°

P(t) = , (119)

M
)=,
QO = a3y

M2\/t +1

R(t)= ———
bg(tnﬂJrl +4)2

: M M
x | 3"y 12+ —t+3tln<l + —>]
by by

M3\/t +1

W) = B (e + 1)

3
Y (t,u, v, w) € [ty, +00) X [0, bM] _
0

It is easy to verify that the conditions of Theorem 5 are
satisfied. Hence Theorem 5 ensures that (118) has uncountably
many positive solutions in ), (5, 12), and, forany L € (11, 12),
there exist 0 € (0,1) and T > 1 + |ty| + T + |y| such that the
Mann iterative sequence {xk}keNU generated by (48) and (21)
converges to a positive solution x € Q,(5, 12) of (118) and has
the error estimate (20).

Example 16. Consider the higher order nonlinear neutral
delay differential equation

[(t”‘ 2" 1) (x () - (P +2t+4) x (¢ - r))(m)](n_m)

410 4 X2 (t - 3)

(tx(t—3)x2 (t—4))“)
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VE+ 12 (tInt) - tx* (£ t)
+
(t+1)"" + 22 (tInt)
tln(l + tz) -t + 3cos’ (t3 + 1)

= , Vt>1,
5+ 483 — 1 — tsin’ (12 - 3)

(120)

where > 0,andi <n-m—-1.Letl = 2,¢t, =1,y = min{l -7,
-3, M=6,N=2,b,=3and

h()=t-3, h(t)=t-4,
fi@®) =tlnt, f,(t)=t"—t,
a@®)=t"+20" 41, b)) = -t -2t -4,
tuv?
h(f>u>1’)=m,
3_ 4
f(t,u,v):vt+1u tv

(t+ 1) + 2’

tln(l + t2) — f + 3cos® (t3 + l)

75 + 483 — 1 — tsin® (£ - 3)

>

g(t) =
P(t)

M2
B+ 1)

M? M M’
x |3+ 1) + —tVE+ 1+ 4—t(t + )™ + 6—3t2] ,
2 By =

3

Q) = M(v_uub%),
0

b (t+1)
v )’

_ n+10
R() = b§t2n+19 (t +

3

WO = s

2

Y (t,u,v) € [ty, +00) x [0, M] :
b

(121)

It is easy to check that the conditions of Theorem 6 are
satisfied. Thus Theorem 6 ensures that (120) has uncountably
many positive solutions in (2, 6), and, for any L € (2,4),
there exist @ € (0,1) and T' > 1 + |ty| + T + |y| such that the
Mann iterative sequence {x;}icn, generated by (61) and (21)
converges to a positive solution x € Q;(2, 6) of (120) and has
the error estimate (20).
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Example 17. Consider the higher order nonlinear neutral
delay differential equation

[(PIne) (e +x (- )™

( x(VE-2)+x@t-1) )m
+

g3n=m=it2 4 X2 (t — cost)

(122)
x2 (t—4)+x(\/t— l)x2 (t—sin(t9 + 1))
+ t2n—m+3 +1
sin'® (t5 — i+ l)
= , Vt=>4,

tn+7/2 +1

where 7 > 0,m > 2andi < n-m—1.Let] = 3,¢, = 4,
y = min{4 — 7,0}, M = 100, N = 1 and

hy(t)=Vt-2, hy(t)=2t—1, hs(t)=t-cost,
i) =t-4, f(=Vt-1, fy®)=t-sin(t’+1),
a(t)=t"Int, b@)=1,
u+v
hbuvw) = F-ms 5
2 2
u +vw
fuvw) = e
sin13(t5—\/?+l) IM + 3M?2
9IO0=—mn1 > PO=Gamm,
M2 +M3 2t3n—m—i+2 + 6M2
QW)= Gz, RO=——
t +1 (t3n—m—z+2 + Nz)
oM
W (t) =

$3n-m=i+2 | N2 >

Y (t,u, v, w) € [ty, +00) x [N, M]’.
(123)

It is easy to check that the conditions of Theorem 7 are
satisfied. Thus (122) has uncountably many positive solutions
in Q,(1,100), and, for any L € (1, 100), there exist 8 € (0,1)
and T > 1+[ty|+7+|y| such that the Mann iterative sequence
{xi}ken, generated by (66) and (21) converges to a positive
solution x € Q;(1,100) of (122) and has the error estimate
(20).
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Example 18. Consider the higher order nonlinear neutral
delay differential equation

(n-1)

t2

[M(x(t) +x(t—‘r))’]

@@

Sy |

(-2 -xt (VETTI-1)
+< ) (124)
X(t=3)—t
£ 4 x2 (t - (-1)")
sin (#* - V&2 +1)

=— 7 Vt>3
"3 4 Int

where 7 > 0,m = landi < n—2.Letl = 2,t, = 3,y =
min{3 — 7,0}, M = 10, N = 9 and

h(t)=t-2, h@#)=Vi+1-1,
i) =t=-3 f,(t)=t-(-1)",
2 + sin (t+ \/?)
a(t) = BT E— b(t) =1,
u3 —t2V4
by = s e
w—t
ftuv) = m,
sin (£ - V7 + 1) (125)
gt) = ———7——

t"3 +Int

M (5M3 +2t+ 2Mt3"+4)

P = (£ 4 Nz)z
M+t
QU=
M (3 +4M?) M (1+Mt?)
RO)=—F—— WWO=—Z5—77
3+t +1 3 41

V (t,u,v) € [ty,+00) x [N, M]*.

It is easy to check that the conditions of Theorem 8 are
satisfied. Thus Theorem 8 ensures that (124) has uncountably
many positive solutions in Q, (9, 10), and, for any L € (9, 10),
there exist @ € (0,1) and T' > 1 + |ty| + T + |y| such that the
Mann iterative sequence {x;}en, generated by (78) and (21)
converges to a positive solution x € ,(9,10) of (124) and
has the error estimate (20).
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Example 19. Consider the higher order nonlinear neutral
delay differential equation

(67 In (4 4+ sin (£ = VE)) (x (6) - x (£ - )™ "

)
t
+ (tnm+4 + x4 (t _ \/Z) )
sin (t3 —2u+ VO + 1)

tmm it — x (£ 3)|

tcos® (t7 -t 4 1)
= , Vt=>4,
t" + 2t — cos® (12 - 3)

(126)

wheret > 0,m > 2andi < n-m—1.Let] = 1,¢, = 4,
y=min{4 - 7,1}, M =7, N = 5and

h(t)=t-+Vt, fit)=t-3,
a@)=t""1In (4+sin (tz— \/Z)),

t
gn—m+d 4 >

b(t)=-1, h(tu)=

M 4 |t — u
(127)
tcos’ (t7 —tt s 1)

t"+ 2t —cos (2 - 3)°

g =

1 1

P(t) = Q) =

2n+2m > prm >

3

R(t) = W(t) =

$2n=2m+7 > prm+3 ’

V (t,u) € [ty, +00) x [N, M]*.

It is easy to check that the conditions of Theorem 9 are
satisfied. Thus Theorem 9 ensures that (126) has uncountably
many positive solutions in Q,(5,7), and, for any L € (5,7),
there exist 0 € (0,1) and T > 1 + |ty| + T + |y| such that the
Mann iterative sequence {x;} ke, generated by (90) and (21)
converges to a positive solution x € Q,(5,7) of (126) and has
the error estimate (20).

Example 20. Consider the higher order nonlinear neutral
delay differential equation

[ L -xte- r))’](n_l)

t —sin (t8 —4f° - 1) ®
+
7 4 |x (= 1) — 2 (t - 2)|
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In (1 + x? (t — arctan t))
1216 4 x2 (t — 4)
~ tIn (t + cos (t3 - 1))

s |

+

, V=5,
(128)

where 7 > 0,m = landi < n—2.Let] = 2,¢t, =
min{5-1,1}, M =4, N = 2 and

h(t)=t-1,

5y =

h,(t)=t-2, f;(t) =t —arctant,

1
t_3)

L) =t-4, a(t)= b(t) = -1,
t—sin(t8—4t5_ 1)

htuv) = v an |u—v3|

In (1 + uz)

t2n+6 + VZ

>

t1n (t+cos(t3 - 1))
> g(t) = tn+8 +1 >

f(tuv) =

2M (2M7 +£7°)
t4n+12

M2
> Q(t) = m)

P(t) =

2+ 6M?
t2n+13

R(t) = o W)=

tn+6 ’
V (t,u,v) € [ty, +00) X [N, M]*.
(129)

It is easy to check that the conditions of Theorem 10 are
satisfied. Thus Theorem 10 ensures that (128) has uncountably
many positive solutions in ,(2,4), and, for any L € (2,4),
there exist @ € (0,1) and T' > 1 + |ty| + T + |y| such that the
Mann iterative sequence {x;};cy, generated by (102) and (21)
converges to a positive solution x € Q,(2,4) of (128) and has
the error estimate (20).
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