Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2013, Article ID 193138, 12 pages
http://dx.doi.org/10.1155/2013/193138

Research Article

Hindawi

Enhanced Symplectic Synchronization between Two Different
Complex Chaotic Systems with Uncertain Parameters

Cheng-Hsiung Yang

Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, 43 Section 4,

Keelung Road, Taipei 106, Taiwan

Correspondence should be addressed to Cheng-Hsiung Yang; chyangl23123@mail.ntust.edu.tw

Received 12 October 2012; Accepted 13 April 2013

Academic Editor: Haydar Akca

Copyright © 2013 Cheng-Hsiung Yang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An enhanced symplectic synchronization of complex chaotic systems with uncertain parameters is studied. The traditional chaos
synchronizations are special cases of the enhanced symplectic synchronization. A sufficient condition is given for the asymptotical
stability of the null solution of error dynamics. The enhanced symplectic synchronization may be applied to the design of secure

communication. Finally, numerical simulations results are performed to verify and illustrate the analytical results.

1. Introduction

A synchronized mechanism that enables a system to maintain
a desired dynamical behavior (the goal or target) even when
intrinsically chaotic has many applications ranging from
biology to engineering [1-4]. Thus, it is of considerable
interest and potential utility to devise control techniques
capable of achieving the desired type of behavior in nonlinear
and chaotic systems. Many approaches have been presented
for the synchronization of chaotic systems [5-10]. There are
a chaotic master system and either an identical or a different
slave system. Our goal is the synchronization of the chaotic
master and the chaotic slave by coupling or by other methods.
The symplectic chaos synchronization concept [11]

y=H(txy)+F(t) )

is studied, where x, y are the state vectors of the master
system and of the slave system, respectively, and F(t) is a
given function of time in different form. The F(t) may be a
regular motion function or a chaotic motion function. When
H(t,x, y) + F(t) = x and H(t,x, y) = x, (1) reduces to the
generalized chaos synchronization and the traditional chaos
synchronization given in [1-3], respectively. In this paper, a
new enhance symplectic chaos synchronization:

y=H(t:X y,xy)+F(t). 2)

As numerical examples, we select hyperchaotic Chen
system [12] and hyperchaotic Lorenz system [13] as the master
system and the slave system, respectively.

This paper is organized as follows. In Section 2, by
the Lyapunov asymptotical stability theorem, a symplectic
synchronization scheme is given. In Section 3, various feed-
backs of nonlinear controllers are designed for the enhanced
symplectic synchronization of a hyperchaotic Chen system
with uncertain parameters and a hyperchaotic Lorenz system.
Numerical simulations are also given in Section 3. Finally,
some concluding remarks are given in Section 4.

2. Enhanced Symplectic
Synchronization Scheme

There are two different nonlinear chaotic systems. The part-
ner A controls the partner B partially. The partner A is given
by

x=ftxA®), 3)

where x = [xl,xz,...,xn]T € R" is a state vector, A(t) =
[Al(t),Az(t),...,AM(t)]T € RM is a vector of uncertain
coefficients in f, and f is a vector function.
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The partner B is given by
y=g(tyB(), (42)
where y = [y, 95 ...,¥,]" € R"is a state vector, B(t) =

[B,(t), B,(t),..., Bm(t)]T € R" is a vector of uncertain
coeflicients in g, and g is a vector function different from f.
After a controller u(t) is added, partner B becomes

y=g(ty,B®)+u()), (4b)
’un(t)]T

where u(t) = [u(t), uy(t),... € R" is the control
vector.

Our goal is to design the controller u(t) so that the
state vector y of the partner B asymptotically approaches
H(t, x, y,x, y) + F(t), a given function H(t, X, y, x, y) plus a
given vector function F(t) = [F,(t), F,(f),... ,Fn(t)]T which
is a regular or a chaotic function. Define error vector e(t) =

le)sey... e,

e=H(t, %, y,x,y)—y+F(1), (5)
Mg, =0 Q
is demanded.
From (5), it is obtained that
'=aa—H+VH‘If y+E(t), (7)
T

where ¥ = [£ 7 % y] .
Using (3), (4a), and (4b), (7) can be rewritten as

OH OH_ OH_. OoH
=3 Tt a_y-” af(t’x’A(t))
(8)

+ %Ig(t,y,B(t))—g(t,y)B(t))—u(t)+F(t)-

Proof. A positive definite Lyapunov function V'(e) is chosen
(14, 15] as

V(e) = %eTe. 9)

Its derivative along any solution of (8) is

. OH O0H . 0H. oH
Vig=e {a Yok 97 o
0
x f(t,x,A(t)) + ai;g(t, ¥, B(1)) (10)

gty B@) + F @) —u() }

In (10), the u(t) is designed so that Vie) = eT'CnX,,e, where
C,x, is a diagonal negative definite matrix. The V is a negative
definite function of e. O

Remark 1. Note that e approaches zero when time approaches
infinitly, according to Lyapunov theorem of asymptotical sta-
bility. The enhanced symplectic synchronization is obtained
[12, 13, 16-19].
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3. Numerical Results for the Enhanced
Symplectic Chaos Synchronization of Chen
System with Uncertain Parameters and
Hyperchaotic Lorenz System

To further illustrate the effectiveness of the controller, we
select hyperchaotic Chen system and hyperchaotic Lorenz
system as the master system and the slave system, respectively.
Consider

%) = a(x, = x;) + Xy
X, = dx; +cx, — X1X5,
(11)
X3 = —bxy + xx,,
X4 = Xy + X5X3,
=a (=) + Ve
N =biyr == s
(12)

V3= —aYst i)

Yi=d1ys = 013
where a, b, ¢, d, v, a;, by, ¢;, and d, are parameters. The
parameters of master system and slave system are chosen as
a=3,b=35c=11,d=77r=01,a9 =11, b =
28, ¢, =2.8,and d; = 1.2.

The controllers u,, u,, u;, and u, are added to the four
equations of (12), respectively as follows:

yr=ay (3= y1) + yatup,

Vo =biyi =y, = Y1yt
_ (13)
V3 =—GYs+t 1), +Us,

Ve =d1ys— Ny tug

The initial values of the states of the Chen system and of
the Lorenz system are taken as x,(0) = 11, x,(0) = 13, x;(0)
=12, x,(0) = 12, ,(0) = —11, y,(0) = -13, y5(0) = -12,
and y,(0) = —12.

= x;(),
= x3(t). They are
~x7y; (i = 1,2,3,4)

Case 1 (a symplectic synchronization). We take F, (t)
Ey(t) = x](t), F;(t) = x3(t), and E,(t)
chaotic functions of time. H;(x, y,t) =
are given. By (6), we have

lime; = thm (—xizy,- -y + xj) =0,

t — 00
. . 4, i=1, (14)
i=1,2,3,4 j=1. .
i—1, i+l
From (7), we have

. 2. . . 2

= =2X,Y; = X Y — i+ 33X,
(15)

4, i=1,

1=1,254 5= {i—l i#1
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Equation (8) can be expressed as
é; = —2y1x; [a(x, — x;) + x4]
- (1 + xf) x [ay (2 = »1) + yal
—uy +3x5 (rxy + x,%3),

= —2y,x, (dx; +cx, — x,x3)

Q.
N
|

- (1 + xg) X (biyr = 2= n1ys)
— 1y +3x; [a (3, —x)) + 1],

= =233 (=bx; + x,x,)

0.
w
|

- (1 + xg) X (=ay3 + y152)

2
—uy +3x; (dx; +cx, — x,%3),

€y = = 2,3, (rxy + Xyx3)

- (1 + xi) x (dyyy = n1y3)

—uy + 355 (=bx; + x,%,),
2 3

wheree; = —x7y; — ¥ + x5, €, =

2 3 _ .2 3
—X3y3 = y3+ Xy and ey = =Xy, — Yy + X3
Choose a positive definite Lyapunov function as

V(e ey e5e4) = % (el +e+es+e]).
Its time derivative along any solution of (16) is
V=e {_zylxl [a (%, = %) + 4]
- (1 + x%) x[ay (2= y1) + ya] —1
+ 3x, (rx, + x,%;) }
+e, {—2y2x2 (dx; +cxy — x,x3)
— (1) x By =32 = 31y)
—uy +3x7 [a(xy, — x;) + x,] }
+es {—2y3x3 (=bx; + x,x,)
- (1 + xi) X (= ys + 319,) — Us
+ 35 (dx; + cxy — x,%3) }
te, {—2y4x4 (rxy + x,%5)
- (1 + xi) X (d1ys = y193)

— uy + 355 (=bxy + x,x,) } .

(16)

2 3 _
XY, T~ Vo T Xy €3 =

17)

(18)

3
According to (10), we get the controller
up = = 2y1x; [a (xy = xp) + x4 + 355 (rx, + x,%3)
- (1 + x?) x [ay (y, = y1) + yal +ey,
Uy = = 29,5, (dxy +cxy = x1x3) + 3xf [a (33 = x1) + x4
- (1 + x%) < (biyy =y, = 3193) + e
Uy = —293%; (=bxs + x,%,) + 3% (dox; + cx, — X, X3)
+ (1 + xi) x(cys = n1y2) +es
Uy = = 2935, (rx, + X,%5) + 3x5 (=bx; + X, X,)
- (1 + xi) X (dyyy = y1y3) + ey
(19)
Equation (18) becomes
V:—(ef+e§+e§+ei)<0, (20)

which is negative definite. The Lyapunov asymptotical sta-
bility theorem is satisfied. The symplectic synchronization
of the Chen system and the Lorenz system is achieved. The
numerical results are shown in Figures 1, 2, and 3. After 1
second, the motion trajectories enter a chaotic attractor.

Case 2 (a symplectic synchronization with uncertain param-
eters). The master Chen system with uncertain variable
parameters is

% = a(t) (x, —x)) + x4

X, =d (t) x, +c(t) x5 — x1%3,
(21)
X5 = =b(t) x5 + x%,,

Xy =1 () x4 + X5%5,
where a(t), b(t), c(t), d(t), and r(t) are uncertain parameters.
In simulation, we take

a(t)=a(l+k, sinwt), bt)=b(1+k,sinw,t),

c(t) =c (1 +kysinwst), d(t)=d(1+k,sinw,t),

r(t)=r(1+kssinwst),

(22)
wherek,, k,, ks, ky, ks, w;, w,, ws, w,,and w; are constants.
Take k, = 0.3, k, = 0.5, ky = 0.2, k, = 0.4, ks = 0.6, w, =
13, w, = 17, w; = 19, w, = 23, and w; = 29. So, (21) is
chaotic system, shown in Figure 4.

We take Fy(t) = x,(t), F,(t) = x;(t), F5(t) = x3(t), and
E,(t) = xg (t). They are chaotic functions of time. H;(x, y,t) =
—xfy,- (i =1,2,3,4) are given. By (6), we have

. . 2 3
Jmer= Jim (- x) =0

. L i=1,
i=1L23,4 j=1"
1—1,
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—— Master system
— Slave system

()

FIGURE I: Projections of phase portrait for master system (11) and slave system (12).

From (7), we have
. ) 2. . .2
€ = =2X,;Y; — X Yy — i+ 3%,

4, i=1,
i-1, i+l

i=1,2,3,4 j= {
Equation (8) can be expressed as
= =2y1x; [a(®) (x, — xp) + x4
- (1 +xf) < [ay (v2 = 31) + ya + 1]
+3; (r (8) x4 + x3%3)

= =2y,x, (d (t) x; + ¢ (t) x, — x,x3)

Q.
N
|

- (1 + xi) X (byy1 = y2 = N1y + 1)

+ 3Xf [a(t) (x, = x1) + 4],
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Jt:?;}é 20

—— Master system
—— Slave system

(d)

&y = =232 (b (t) x5 + x,x,)
- (1 + xg) X (=ys + Y1y, + us)
+3x5 (d (t) x, +¢(t) x5 — x,%3),

= —2y4%, (7’ (£) x4 + x2x3)

e, =
2
—(1+x3) x (dyys = y1ys + )
+3x2 (<b () x5 + x,%,)
(25)
where e, = —xfy1 -+ xi, e, = —x§y2 Nt xf, € =

2 3 _ .2 3
TX3)3 — Y3t Xy fn_ld €4 = "X Yy~ Yot X3
Choose a positive definite Lyapunov function as

V (e, ey e5.€4) = (ef te e+ ei). (26)

N =



Abstract and Applied Analysis

400 -5
(a)

x10t

-100 ;. 1 N

Vs

x10*

0
100

-1000 _y5 !

(b)

-500
—-100 -1000

(d)

)2

FIGURE 2: Projections of the phase portrait for chaotic system (13) of Case 1.

Its time derivative along any solution of (25) is
V=e {—2)/1x1 [a(t) (x, = x;) + x4]
= (1) x[a (= 3) + 3l -y
+ 3x, (r () x4 + x,%;3) }
+e, {—Zyzxz (d@®) x; +c)x, — x,x3)
~(1+ %) x (B = y2 = 11ys) 1y
+ 35 [a(t) (3, — %) + x4] }
(27)
+e; {—2y3x3 (=b (1) x5 + x,x,)
- (1 + xg) X (= ys + y195) — us
+ 355 (d (1) x, + ¢ (8) x, — x,x3) |
+e, {—2y4x4 (r () x4 + x,%3)
= (1+x3) x (d1ys = y175)

— uy + 355 (<b (t) x5 + x,%,) } :

According to (10), we get the controller

u, =

<
N
|

Us

Uy, =

=2y [a(t) (3, = %) + x4]

+ 35 (r (£) x4 + x,%3)

- (1 +xf) (a1 (72 = 1) = yul +ers

= =29,%, (d () x; +c(t) x5 — x,%3)

+3x0 [a(t) (= x,) + x4]

- (1 + xé) (Biy1 = 2= n1ys) + e
=2y3%; (b () x5 + x1x,)

+ 3x§ (d () x; +c(t) x5 — x1x3)
+(1453) (@ys =) +es,

= 2y4x4 (r () x4 + X3%3)

+3x3 (b () x5 + X, X,)

- (1 + xi) (diys = y1p5) + ey

1000

(28)
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FIGURE 3: Time histories of states, state errors, F,, F,, F;, F,, H,, H,, H;, and H, for Case 1.
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FIGURE 4: Projections of the phase portrait for chaotic system (21).

Equation (27) becomes
V=—(ef+e§+e§+ei)<0, (29)

which is negative definite. The Lyapunov asymptotical sta-
bility theorem is satisfied. The symplectic synchronization of
the Chen system with uncertain parameters and the Lorenz
system is achieved. The numerical results are shown in
Figures 5 and 6. After 1 second, the motion trajectories enter
a chaotic attractor.

Case 3 (an enhanced symplectic synchronization with
uncertain parameters). We take F,(t) = xi(t), E,(t) =
xi(t), E@®) = x;(t), and F,(t) = xg(t). They are chaotic
functions of time. Hy(%, y,x, y,t) = —xy; — X — Ky (i =
1,2,3,4) are given. The K value is 0.0001. By (6), we have

. . 2 . . 3
tgngoei = tll?go (_xi Yi— % —Kyi—yi+ xj) =0,
4, i=1, G0

ek = {i—l i#1

From (7) we have
. . 2. . . . . 2
€ = —2x;%;y; — X y; — X — Ky = y; + 3% x5,
4, i=1,

=1.234 j= {1—1 i+1

Equation (8) can be expressed as

é = —2y1x; [a(t) (x, — x;) + x4]
- (1 +xf) X [ay (yy = y1) + yu +1q]
— &y = Ky + 355 (1 (8) x4 + %55,
éy = =2y,%, (d () x; + ¢ (t) x5 — x,X3)

- (1 + x%) X (byyy = y2 = N1y + 1)
- %, - Kj, + Sxf [a(t) (2, = x;) +x4]

ey = —2y3%; (b () x5 + x,x,)

- (1 + xé) X (=ays + y192 +u3)
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FIGURE 5: Projections of the phase portrait for chaotic system (13) of Case 2.

— %y = Ky + 355 (d (8) x; + ¢ () X, — X, %3) ~ % - Kj, +3x; (r(t)x4+x2x3)}

€1= =24, (1 (£) X4 + x,%3) +e, {—2y2x2 (d () x; +c(t) xy — x,x3)

2
- (1 ' X4) (s = s + 1) - (1 + x%) X (byy1 =y = n1ys) + 1y
— %y = Ky + 3% (<b (8) x5 + x,%,)

- %, - Kj, + 3xf [a(t) (x, — x1) + x4] }

(32)
+e51-2y3%5 (=b () x5 + x,x,)
where e, = _’ﬁyl N —le ~ Ky + x5, ¢, = _";)’2 V2 3{ w B
xzz— Ky, + x7, e5 = —x3yg -y —% —Kyy;+x5,and e, = - (1 +x§) X (=cys3 + y1y,) + U
X Va Vi Xy - K)Q t X '
Choose a positive definite Lyapunov function as — & - Kj, + 3x§ (d (1) x; +c () x, — x,X;) }
1
V(el,ez,e3,e4) = E(e% +e§+e§ +ei). (33) +e4{—2y4x4 (r (®) x4+x2x3)
- ot : - —(1+x2)><(d - )+u
Its time derivative along any solution of (32) is 4 1Ya =) 4
. . . 2
V=e¢ {—2;\/1x1 [a(®) (x; — x1) + x4] = %4~ Kjjy +3x5 (-0 () x5 + x,x,) } .

—(1+xf)>< [ay (3, = y1) + yul + 1y (34)
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FIGURE 7: Projections of the phase portrait for chaotic system (13) of Case 3.

According to (10), we get the controller

uy = =2yx; [a(t) (x; — x;) + x,]
- % -Kj + 3xi (r () x4 + x,%3)

- (1 +xf) [ (72 =) + ya] + 1

=2y,%, (d () x; + ¢ (t) x5 — x7x3)

U
- %, -Kj, + 3xf [a(t) (x, = x;) + x4]

- (1 + x§> (i =y, = nys) + e

Uy = =255 (b (£) x5 + x,x,)
— &y = Kjiy +3x5 (d (£) x; + ¢ () %, — x,%3)
+ (1 * xé) (cys = y102) +es,

Uy = —2y,%, (r () x4 + x,%5) — %4

-Kj,+ 3x§ (=b(t) x5 + x,x,)

- (1 + xi) (diys—ny;) +eq
(35)
Equation (34) becomes
V:—(ef+e§+e§+ei)<0, (36)

which is negative definite. The Lyapunov asymptotical sta-
bility theorem is satisfied. The enhanced symplectic syn-
chronization of the Chen system with uncertain parameters
and the Lorenz system is achieved. The numerical results
are shown in Figures 7 and 8. After 1 second, the motion
trajectories enter a chaotic attractor.

4. Conclusions

We achieve the novel enhanced symplectic synchronization
of a Chen system with uncertain parameters, and a Lorenz
system is obtained by the Lyapunov asymptotical stability
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theorem. All the theoretical results are verified by numerical
simulations to demonstrate the effectiveness of the three
cases of proposed synchronization schemes. The enhanced
symplectic synchronization of chaotic systems with uncertain
parameters can be used to increase the security of secret
communication.
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