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Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables satisfying the Rosenthal-type maximal inequality. Complete convergence is

studied for linear statistics that areweighted sums of identically distributed randomvariables under a suitablemoment condition. As
an application, theMarcinkiewicz-Zygmund-type strong law of large numbers is obtained. Our result generalizes the corresponding
one of Zhou et al. (2011) and improves the corresponding one of Wang et al. (2011, 2012).

1. Introduction

Throughout the paper, let 𝐼(𝐴) be the indicator function
of the set 𝐴. 𝐶 denotes a positive constant which may be
different in various places, and 𝑎

𝑛
= 𝑂(𝑏

𝑛
) stands for 𝑎

𝑛
≤

𝐶𝑏
𝑛
. Denote log𝑥 = lnmax(𝑥, 𝑒).
Let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of identically distributed

random variables and {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} an array

of constants. The strong convergence results for weighted
sums ∑𝑛

𝑖=1
𝑎
𝑛𝑖
𝑋
𝑖
have been studied by many authors; see, for

example, Choi and Sung [1], Cuzick [2], Wu [3], Bai and
Cheng [4], Chen and Gan [5], Cai [6], Sung [7, 8], Shen [9],
Wang et al. [10–14], Zhou et al. [15], Wu [16–18], Xu and
Tang [19], and so forth. Many useful linear statistics are these
weighted sums. Examples include least squares estimators,
nonparametric regression function estimators, and jackknife
estimates among others. Bai and Cheng [4] proved the strong
law of large numbers for weighted sums:

1

𝑏
𝑛

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖
󳨀→ 0, a.s., (1)

when {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} is a sequence of independent and

identically distributed random variables with 𝐸𝑋 = 0 and

𝐸 exp(ℎ|𝑋|
𝛾

) < ∞ for some ℎ > 0 and 𝛾 > 0, and {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤

𝑛, 𝑛 ≥ 1} is an array of constants satisfying

𝐴
𝛼
≐ lim sup
𝑛→∞

𝐴
𝛼,𝑛

< ∞, 𝐴
𝛼

𝛼,𝑛
≐

1

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

, (2)

for some 1 < 𝛼 < 2, where 𝑏
𝑛
= 𝑛
1/𝛼

(log 𝑛)1/𝛾+𝛾(𝛼−1)/𝛼(1+𝛾).
Cai [6] generalized the result of Bai and Cheng [4] to the

case of negatively associated (NA, in short) random variables
and obtained the following complete convergence result
for weighted sums of identically distributed NA random
variables.

Theorem 1. Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of NA random

variables with identical distributions. And let {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤

𝑛, 𝑛 ≥ 1} be a triangular array of constants satisfying
∑
𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛) for 0 < 𝛼 ≤ 2. Let 𝑏
𝑛
= 𝑛
1/𝛼log1/𝛾𝑛 for some

𝛾 > 0. Furthermore, assume that 𝐸𝑋 = 0 when 1 < 𝛼 ≤ 2. If
𝐸 exp(ℎ|𝑋|

𝛾

) < ∞ for some ℎ > 0, then

∞

∑
𝑛=1

1

𝑛
𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞, ∀𝜀 > 0. (3)

Recently, Wang et al. [14] extended the result of Cai [6]
for sequences of NA random variables to the case of arrays
of rowwise negatively orthant-dependent (NOD, in short)
random variables. Sung [8] improved the result of Cai [6]
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for NA random variables under much weaker conditions.
Zhou et al. [15] generalized the result of Sung [8] to the
case of 𝜌

∗-mixing random variables when 𝛼 > 𝛾. The
technique used in Sung [8] is the result of Chen et al. [20]
for NA random variables, which is not proved for 𝜌∗-mixing
random variables.Themain purpose of the paper is to further
study the strong convergence for a class of random variables
satisfying the Rosenthal-type maximal inequality by using
a different method from that of Sung [8]. We not only
generalize the result of Zhou et al. [15] for 𝜌∗-mixing random
variables to the case of a sequence of random variables
satisfying the Rosenthal-type maximal inequality, but also
consider the case of 𝛼 ≤ 𝛾. In addition, our main result
improves the corresponding one of Wang et al. [11, 14], since
the exponential moment condition is weakened to moment
condition.

2. Main Results

In this section, wewill study the strong convergence for a class
of random variables satisfying the Rosenthal-type maximal
inequality by using a different method from that of Sung [8].
As an application, the Marcinkiewicz-Zygmund-type strong
law of large numbers is obtained.

Theorem 2. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of identically

distributed random variables. Let {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be

an array of constants satisfying ∑
𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛) for some
0 < 𝛼 ≤ 2. 𝐸𝑋

𝑛
= 0 when 1 < 𝛼 ≤ 2. Let 𝑏

𝑛
= 𝑛
1/𝛼log1/𝛾𝑛 for

some 𝛾 > 0. Assume that for any 𝑞 ≥ 2, there exists a positive
constant 𝐶

𝑞
depending only on 𝑞 such that

𝐸(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

(𝑌
𝑛𝑖
− 𝐸𝑌
𝑛𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

)

≤ 𝐶
𝑞

[

[

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑌𝑛𝑖

󵄨󵄨󵄨󵄨
𝑞

+ (

𝑛

∑
𝑖=1

E𝑌2
𝑛𝑖
)

𝑞/2

]

]

,

(4)

where 𝑌
𝑛𝑖

= −𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
< −𝑏
𝑛
) + 𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏

𝑛
) +

𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
> 𝑏
𝑛
) or 𝑌

𝑛𝑖
= 𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
). Furthermore,

suppose that

∞

∑
𝑛=1

𝑛
−1

[

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)]

𝑞/2

< ∞ (5)

for Y
𝑛𝑖

= −𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖

< −𝑏
𝑛
) + 𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏

𝑛
) +

𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
> 𝑏
𝑛
). If

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

< ∞, for 𝛼 > 𝛾,

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼 log 󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 < ∞, for 𝛼 = 𝛾,

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

< ∞, for 𝛼 < 𝛾,

(6)

then (3) holds.

Proof. We only need to prove that (3) holds for 𝑌
𝑛𝑖

=

−𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
< −𝑏
𝑛
) + 𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
) + 𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
> 𝑏
𝑛
).

The proof for 𝑌
𝑛𝑖
= 𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
) is analogous.

Without loss of generality, we may assume that
∑
𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

≤ 𝑛. It is easy to check that for any 𝜀 > 0,

(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
)

⊂ (max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)⋃(max

1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑌
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) ,

(7)

which implies that

𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
)

≤ 𝑃(max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑏
𝑛
) + 𝑃(max

1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑌
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
)

≤

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)

+ 𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

(𝑌
𝑛𝑖
− 𝐸𝑌
𝑛𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
− max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝐸𝑌
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) .

(8)

Firstly, we will show that

𝑏
−1

𝑛
max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝐸𝑌
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0, as 𝑛 󳨀→ ∞. (9)

When 1 < 𝛼 ≤ 2, we have by 𝐸𝑋
𝑛
= 0, Markov’s inequality

and (6) that

𝑏
−1

𝑛
max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝐸𝑌
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)

+ 𝑏
−1

𝑛
max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝐸𝑋
𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)

+ 𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)

≤ 𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

+ 𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

≤ 2𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

(log 𝑛)−𝛼/𝛾 󳨀→ 0, as 𝑛 󳨀→ ∞.

(10)
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When 0 < 𝛼 ≤ 1, we have by Markov’s inequality and (6)
again that

𝑏
−1

𝑛
max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝐸𝑌
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
) + 𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑛
)

=

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
) + 𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑛
)

≤ 𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

+ 𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑛
)

≤ 𝑏
−𝛼

𝑛
𝑛𝐸

󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨
𝛼

+ 𝑏
−𝛼

𝑛
𝑛𝐸

󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨
𝛼

= 2𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

(log 𝑛)−𝛼/𝛾 󳨀→ 0, as 𝑛 󳨀→ ∞.

(11)

By (10) and (11), we can get (9) immediately. Hence, for 𝑛 large
enough,

𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
)

≤

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
) + 𝑃(max

1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

(𝑌
𝑛𝑖
− 𝐸𝑌
𝑛𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝜀

2
𝑏
𝑛
) .

(12)

To prove (3), we only need to show that

𝐼 ≐

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
) < ∞, (13)

𝐽 ≐

∞

∑
𝑛=1

𝑛
−1

𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

(𝑌
𝑛𝑖
− 𝐸𝑌
𝑛𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝜀

2
𝑏
𝑛
) < ∞. (14)

Firstly, we will prove (13). By ∑𝑛
𝑖=1

|𝑎
𝑛𝑖
|
𝛼

≤ 𝑛 and (6), we can
get that

𝐼 ≤

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝛼

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)

≤

∞

∑
𝑛=1

𝑛
−2

(log 𝑛)−𝛼/𝛾

×

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼(

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1
󵄨󵄨󵄨󵄨
𝛼

> 𝑛(log 𝑛)𝛼/𝛾)

≤

∞

∑
𝑛=1

𝑛
−2

(log 𝑛)−𝛼/𝛾

×

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

> (log 𝑛)𝛼/𝛾)

≤

∞

∑
𝑛=1

𝑛
−1

(log 𝑛)−𝛼/𝛾𝐸󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

> log 𝑛)

=

∞

∑
𝑛=1

𝑛
−1

(log 𝑛)−𝛼/𝛾

×

∞

∑
𝑚=𝑛

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1))

=

∞

∑
𝑚=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1))

×

𝑚

∑
𝑛=1

𝑛
−1

(log 𝑛)−𝛼/𝛾

≤

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝐶

∞

∑
𝑚=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1)) ,

for𝛼 > 𝛾,

𝐶

∞

∑
𝑚=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1))

× log log𝑚, for𝛼 = 𝛾,

𝐶

∞

∑
𝑚=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1))

×(log𝑚)
1−𝛼/𝛾

, for𝛼 < 𝛾

≤

{{

{{

{

𝐶𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

, for𝛼 > 𝛾,

𝐶𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼 log 󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 , for 𝛼 = 𝛾,

𝐶𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

, for 𝛼 < 𝛾

< ∞,

(15)

which implies (13).
In the following, we will prove (14). Let 𝑞 >

max{2, 𝛼, 𝛾, (2𝛾/𝛼)}. By Markov’s inequality and condition
(4), we have

𝐽 ≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑞

𝑛
𝐸(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

(𝑌
𝑛𝑖
− 𝐸𝑌
𝑛𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑞

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑌𝑛𝑖

󵄨󵄨󵄨󵄨
𝑞

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑞

𝑛
(

𝑛

∑
𝑖=1

𝐸𝑌
2

𝑛𝑖
)

𝑞/2

≐ 𝐽
1
+ 𝐽
2
.

(16)

To prove (14), it suffices to show that 𝐽
1
< ∞ and 𝐽

2
< ∞.
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For 𝑗 ≥ 1 and 𝑛 ≥ 2, denote

𝐼
𝑛𝑗
= {1 ≤ 𝑖 ≤ 𝑛 :

𝑛

𝑗 + 1
<
󵄨󵄨󵄨󵄨𝑎𝑛𝑖

󵄨󵄨󵄨󵄨
𝛼

≤
𝑛

𝑗
} . (17)

In view of ∑𝑛
𝑖=1

|𝑎
𝑛𝑖
|
𝛼

≤ 𝑛, it is easy to see that {𝐼
𝑛𝑗
, 𝑗 ≥ 1} are

disjoint and ⋃
∞

𝑗=1
𝐼
𝑛𝑗

= {1 ≤ 𝑖 ≤ 𝑛 : 𝑎
𝑛𝑖

̸= 0}. Hence, we have
for all𝑚 ≥ 1 that

𝑛 ≥

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

= ∑
{1≤𝑖≤𝑛:𝑎

𝑛𝑖
̸= 0}

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

=

∞

∑
𝑗=1

∑
𝑖∈𝐼
𝑛𝑗

󵄨󵄨󵄨󵄨𝑎𝑛𝑖
󵄨󵄨󵄨󵄨
𝛼

≥ 𝑛

∞

∑
𝑗=1

(𝑗 + 1)
−1

♯𝐼
𝑛𝑗

≥ 𝑛

∞

∑
𝑗=𝑚

(𝑗 + 1)
−𝑞/𝛼

(𝑗 + 1)
𝑞/𝛼−1

♯𝐼
𝑛𝑗

≥ 𝑛

∞

∑
𝑗=𝑚

(𝑗 + 1)
−𝑞/𝛼

(𝑚 + 1)
𝑞/𝛼−1

♯𝐼
𝑛𝑗
,

(18)

which implies that for all𝑚 ≥ 1,

∞

∑
𝑗=𝑚

(𝑗 + 1)
−𝑞/𝛼

♯𝐼
𝑛𝑗
≤ 𝐶𝑚

1−𝑞/𝛼

, 𝑛 ≥ 2. (19)

By 𝐶
𝑟
’s inequality, (13) and (17), we can get that

𝐽
1
≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑞

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑛
)

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

𝑏
−𝑞

𝑛

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑛
)

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1−𝑞/𝛼

(log 𝑛)−𝑞/𝛾

×

∞

∑
𝑗=1

∑
𝑖∈𝐼
𝑛𝑗

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (𝑗 + 1)
1/𝛼

(log 𝑛)1/𝛾)

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1−𝑞/𝛼

(log 𝑛)−𝑞/𝛾

×

∞

∑
𝑗=1

𝑛
𝑞/𝛼

𝑗
−𝑞/𝛼

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (𝑗 + 1)
1/𝛼

(log 𝑛)1/𝛾) ♯𝐼
𝑛𝑗

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝑞/𝛾

×

∞

∑
𝑗=1

𝑗
−𝑞/𝛼

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log 𝑛)1/𝛾) ♯𝐼
𝑛𝑗

+ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝑞/𝛾

×

∞

∑
𝑗=1

𝑗
−𝑞/𝛼

𝑗

∑
𝑘=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 (𝑘
1/𝛼

(log 𝑛)1/𝛾 < 󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨

≤ (𝑘 + 1)
1/𝛼

(log 𝑛)1/𝛾) ♯𝐼
𝑛𝑗

≐ 𝐽
11
+ 𝐽
12
.

(20)

If 𝛼 > 𝛾, we have by (19) and 𝐸|𝑋
1
|
𝛼

< ∞ that

𝐽
11

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝑞/𝛾𝐸󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log 𝑛)1/𝛾)

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝛼/𝛾𝐸󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log 𝑛)1/𝛾)

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝛼/𝛾 < ∞.

(21)

If 𝛼 ≤ 𝛾, we have by (6) and (19) that

𝐽
11

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝑞/𝛾𝐸󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log 𝑛)1/𝛾)

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝑞/𝛾

×

𝑛

∑
𝑚=2

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 ((log (𝑚 − 1))
1/𝛾

<
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log𝑚)
1/𝛾

)

= 𝐶

∞

∑
𝑚=2

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 ((log (𝑚 − 1))
1/𝛾

<
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log𝑚)
1/𝛾

)

×

∞

∑
𝑛=𝑚

𝑛
−1

(log 𝑛)−𝑞/𝛾
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≤ 𝐶

∞

∑
𝑚=2

(log𝑚)
1−𝑞/𝛾

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼

× ((log (𝑚 − 1))
1/𝛾

<
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log𝑚)
1/𝛾

)

≤ 𝐶

∞

∑
𝑚=2

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

𝐼 ((log (𝑚 − 1))
1/𝛾

<
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log𝑚)
1/𝛾

)

≤ 𝐶𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

< ∞.

(22)

By (21) and (22), we can get that 𝐽
11

< ∞. Next, we will prove
that 𝐽
12

< ∞.
It follows by (6) and (19) again that

𝐽
12

= 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝑞/𝛾

×

∞

∑
𝑘=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼 (𝑘
1/𝛼

(log 𝑛)1/𝛾 < 󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨

≤ (𝑘 + 1)
1/𝛼

(log 𝑛)1/𝛾)

×

∞

∑
𝑗=𝑘

𝑗
−𝑞/𝛼

♯𝐼
𝑛𝑗

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝑞/𝛾

×

∞

∑
𝑘=1

𝑘
1−𝑞/𝛼

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑞

𝐼

× (𝑘
1/𝛼

(log 𝑛)1/𝛾 < 󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨 ≤ (𝑘 + 1)

1/𝛼

(log 𝑛)1/𝛾)

≤ 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝛼/𝛾

×

∞

∑
𝑘=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (𝑘
1/𝛼

(log 𝑛)1/𝛾 < 󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨

≤ (𝑘 + 1)
1/𝛼

(log 𝑛)1/𝛾)

= 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝛼/𝛾𝐸󵄨󵄨󵄨󵄨𝑋1
󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 > (log 𝑛)1/𝛾)

= 𝐶

∞

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝛼/𝛾

×

∞

∑
𝑚=𝑛

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 ((log𝑚)
1/𝛾

<
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log (𝑚 + 1))
1/𝛾

)

= 𝐶

∞

∑
𝑚=2

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 ((log𝑚)
1/𝛾

<
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 ≤ (log (𝑚 + 1))
1/𝛾

)

×

𝑚

∑
𝑛=2

𝑛
−1

(log 𝑛)−𝛼/𝛾

≤

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝐶

∞

∑
𝑚=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1)) ,

for𝛼 > 𝛾,

𝐶

∞

∑
𝑚=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1))

× log log𝑚, for𝛼 = 𝛾,

𝐶

∞

∑
𝑚=1

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (log𝑚 <
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

≤ log (𝑚 + 1))

×(log𝑚)
1−𝛼/𝛾

, for𝛼 < 𝛾

≤

{{

{{

{

𝐶𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

, for𝛼 > 𝛾,

𝐶𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼 log 󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 , for 𝛼 = 𝛾,

𝐶𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛾

, for 𝛼 < 𝛾

< ∞.

(23)

By 𝐽
11

< ∞ and 𝐽
12

< ∞, we can get that 𝐽
1
< ∞.

To prove (14), it suffices to show that 𝐽
2
< ∞. By 𝐶

𝑟
’s

inequality, conditions (5) and (6), we can get that

𝐽
2
≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

[

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)]

𝑞/2

+ 𝐶

∞

∑
𝑛=1

𝑛
−1

𝑏
−𝑞

𝑛
[

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨
2

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑛
)]

𝑞/2

≤ 𝐶

∞

∑
𝑛=1

𝑛
−1

[

𝑛

∑
𝑖=1

𝑏
−𝛼

𝑛
𝐸
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑎𝑛𝑖𝑋1

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑛
)]

𝑞/2

≤ 𝐶(𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝛼

)
𝑞/2

∞

∑
𝑛=1

𝑛
−1

(log 𝑛)−𝛼𝑞/2𝛾 < ∞.

(24)

Therefore, (14) follows from (16) and 𝐽
1

< ∞, 𝐽
2

< ∞

immediately. This completes the proof of the theorem.

The following result provides the Marcinkiewicz-
Zygmund-type strong law of large numbers for weighted
sums ∑𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖
of a class of random variables satisfying the

Rosenthal-type maximal inequality.

Theorem 3. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of identically

distributed random variables. Let {𝑎
𝑛
, 𝑛 ≥ 1} be a sequence

of constants satisfying ∑𝑛
𝑖=1

|𝑎
𝑖
|
𝛼

= 𝑂(𝑛) for some 0 < 𝛼 ≤ 2.
𝐸𝑋
𝑛
= 0 when 1 < 𝛼 ≤ 2. Let 𝑏

𝑛
= 𝑛
1/𝛼log1/𝛾𝑛 for some

𝛾 > 0. Assume that for any 𝑞 ≥ 2, there exists a positive
constant 𝐶

𝑞
depending only on 𝑞 such that (4) holds, where
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𝑌
𝑛𝑖
= −𝑏
𝑛
𝐼(𝑎
𝑖
𝑋
𝑖
< −𝑏
𝑛
) + 𝑎
𝑖
𝑋
𝑖
𝐼(|𝑎
𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
) + 𝑏
𝑛
𝐼(𝑎
𝑖
𝑋
𝑖
> 𝑏
𝑛
)

or 𝑌
𝑛𝑖
= 𝑎
𝑖
𝑋
𝑖
𝐼(|𝑎
𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
). Furthermore, suppose that

∞

∑
𝑛=1

𝑛
−1

[

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑖𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑏
𝑛
)]

𝑞/2

< ∞ (25)

for 𝑌
𝑛𝑖
= −𝑏
𝑛
𝐼(𝑎
𝑖
𝑋
𝑖
< −𝑏
𝑛
) + 𝑎
𝑖
𝑋
𝑖
𝐼(|𝑎
𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
) + 𝑏
𝑛
𝐼(𝑎
𝑖
𝑋
𝑖
>

𝑏
𝑛
). If (6) holds, then

∞

∑
𝑛=1

1

𝑛
𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞, ∀𝜀 > 0, (26)

1

𝑏
𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖
󳨀→ 0 a.s., as 𝑛 󳨀→ ∞. (27)

Proof. The proof of (26) is the same as that ofTheorem 2. So
the details are omitted. It suffices to show (27). Denote 𝑆

𝑛
=

∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖
for each 𝑛 ≥ 1. It follows by (26) that

∞ >

∞

∑
𝑛=1

𝑛
−1

𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝜀𝑏
𝑛
)

=

∞

∑
𝑖=0

2
𝑖+1

−1

∑

𝑛=2
𝑖

𝑛
−1

𝑃(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝜀𝑛
1/𝛼

(log 𝑛)1/𝛾)

≥
1

2

∞

∑
𝑖=1

𝑃(max
1≤𝑗≤2

𝑖

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝜀2
(𝑖+1)/𝛼

(log 2𝑖+1)
1/𝛾

) .

(28)

By Borel-Cantelli lemma, we obtain that

lim
𝑖→∞

max
1≤𝑗≤2

𝑖

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑗

󵄨󵄨󵄨󵄨󵄨

2(𝑖+1)/𝛼(log 2𝑖+1)1/𝛾
= 0 a.s. (29)

For all positive integers 𝑛, there exists a positive integer 𝑖
0
such

that 2𝑖0−1 ≤ 𝑛 < 2
𝑖
0 . We have by (29) that

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝑏
𝑛

≤ max
2
𝑖
0
−1
≤𝑛<2
𝑖
0

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝑏
𝑛

≤
2
2/𝛼max

1≤𝑗≤2
𝑖
0

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑗

󵄨󵄨󵄨󵄨󵄨

2(𝑖0+1)/𝛼(log 2𝑖0+1)1/𝛾
(
𝑖
0
+ 1

𝑖
0
− 1

)

1/𝛾

󳨀→ 0 a.s.,

as 𝑖
0
󳨀→ ∞,

(30)

which implies (27). This completes the proof of the theorem.

If the Rosenthal type inequality for the maximal partial
sum is replaced by the partial sum, then we can get the
following complete convergence result for a class of random
variables. The proof is similar to that of Theorem 2. So the
details are omitted.

Theorem 4. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of identically

distributed random variables. Let {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be

an array of constants satisfying ∑
𝑛

𝑖=1
|𝑎
𝑛𝑖
|
𝛼

= 𝑂(𝑛) for some
0 < 𝛼 ≤ 2. 𝐸𝑋

𝑛
= 0 when 1 < 𝛼 ≤ 2. Let 𝑏

𝑛
= 𝑛
1/𝛼log1/𝛾𝑛 for

some 𝛾 > 0. Assume that for any 𝑞 ≥ 2, there exists a positive
constant 𝐶

𝑞
depending only on 𝑞 such that

𝐸(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝑌
𝑛𝑖
− 𝐸𝑌
𝑛𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

)

≤ 𝐶
𝑞

[

[

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑌𝑛𝑖

󵄨󵄨󵄨󵄨
𝑞

+ (

𝑛

∑
𝑖=1

𝐸𝑌
2

𝑛𝑖
)

𝑞/2

]

]

,

(31)

where 𝑌
𝑛𝑖

= −𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
< −𝑏
𝑛
) + 𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏

𝑛
) +

𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
> 𝑏
𝑛
) or 𝑌

𝑛𝑖
= 𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
). Furthermore,

suppose that (5) holds for 𝑌
𝑛𝑖

= −𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖

< −𝑏
𝑛
) +

𝑎
𝑛𝑖
𝑋
𝑖
𝐼(|𝑎
𝑛𝑖
𝑋
𝑖
| ≤ 𝑏
𝑛
) + 𝑏
𝑛
𝐼(𝑎
𝑛𝑖
𝑋
𝑖
> 𝑏
𝑛
). If (6) satisfies, then

∞

∑
𝑛=1

1

𝑛
𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑏
𝑛
) < ∞, ∀𝜀 > 0. (32)

Remark 5. There are many sequences of dependent random
variables satisfying (4) for all 𝑞 ≥ 2. Examples include
sequences of NA random variables (see Shao [21]), 𝜌∗-mixing
random variables (see Utev and Peligrad [22]), 𝜑-mixing ran-
dom variables with the mixing coefficients satisfying certain
conditions (seeWang et al. [23]),𝜌−-mixing randomvariables
with the mixing coefficients satisfying certain conditions (see
Wang and Lu [24]), and asymptotically almost negatively
associated random variables (see Yuan and An [25]). There
are also many sequences of dependent random variables
satisfying (31) for all 𝑞 ≥ 2. Examples not only include
the sequences of above, but also include sequences of NOD
random variables (see Asadian et al. [26]) and extended
negatively dependent random variables (see Shen [27]).
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