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In this paper, a two-species nonautonomous stochastic mutualism system is investigated. The intrinsic growth rates of the two
species at time t are estimated by 𝑟

𝑖
(𝑡) + 𝜎

𝑖
(𝑡)𝐵̇

𝑖
(𝑡), 𝑖 = 1, 2, respectively. Viewing the different intensities of the noises 𝜎

𝑖
(𝑡), 𝑖 = 1, 2

as two parameters at time t, we conclude that there exists a global positive solution and the pth moment of the solution is bounded.
We also show that the system is permanent, including stochastic permanence, persistence in mean, and asymptotic boundedness in
time average. Besides, we show that the large white noise will make the system nonpersistent. Finally, we establish sufficient criteria
for the global attractivity of the system.

1. Introduction

For more than three decades, mutualism of multispecies has
attracted the attention of bothmathematicians and ecologists.
By definition, in a mutualism of multispecies, the interac-
tion is beneficial for the growth of other species. Lotka-
Volterra mutualism systems have long been used as standard
models to mathematically address questions related to this
interaction. Among these, nonautonomous Lotka-Volterra
mutualism models are studied by many authors, see [1–7]
and references therein. The classical nonautonomous Lotka-
Volterra mutualism system can be expressed as follows:

𝑥̇
𝑖 (
𝑡) = 𝑥𝑖 (

𝑡)

[

[

[

[

𝑟
𝑖 (
𝑡) − 𝑎𝑖𝑖 (

𝑡) 𝑥𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑎
𝑖𝑗 (
𝑡) 𝑥𝑗 (

𝑡)

]

]

]

]

,

𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛 is the density of the 𝑖th population

at time 𝑡, 𝑟
𝑖
(𝑡) > 0, 𝑖 = 1, 2, . . . , 𝑛 is the intrinsic growth

rate of the 𝑖th population at time 𝑡, 𝑟
𝑖
(𝑡)/𝑎

𝑖𝑖
(𝑡) > 0, 𝑖 =

1, 2, . . . , 𝑛 is the carrying capacity at time 𝑡, and coefficient
𝑎
𝑖𝑗
(𝑡) > 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛 describes the influence of the 𝑗th

population upon the 𝑖th population at time 𝑡.

It is shown in [1] that if different conditions hold (see
conditions (a)–(e) in [1]), then the solution of system (1) is
bounded, permanent, extinct, and global attractive, respec-
tively.However, when the intrinsic growth rate and coefficient
𝑎
𝑖𝑗
(𝑡) are periodic, it is shown in [3] that there exists positive

periodic solution and almost periodic solutions are obtained.
From another point of view, environmental noise always

exists in real life. It is an interesting problem, bothmathemat-
ically and biologically, to determine how the structure of the
model changes under the effect of a fluctuating environment.
Many authors studied the biological models with stochastic
perturbation, see [8–12] and references therein. In [8] Ji et
al. discussed the following two-species stochastic mutualism
system

𝑑𝑥
1 (
𝑡) = 𝑥

1 (
𝑡) [(𝑟1

− 𝑎
11
𝑥
1 (
𝑡) + 𝑎12

𝑥
2 (
𝑡)) 𝑑𝑡 + 𝜎1

𝑑𝐵
1 (
𝑡)] ,

𝑑𝑥
2 (
𝑡) = 𝑥

2 (
𝑡) [(𝑟2

+ 𝑎
21
𝑥
1 (
𝑡) − 𝑎22

𝑥
2 (
𝑡)) 𝑑𝑡 + 𝜎2

𝑑𝐵
2 (
𝑡)] ,

(2)

where 𝐵
𝑖
(𝑡), 𝑖 = 1, 2 are mutually independent one dimen-

sional standard Brownian motions with 𝐵
𝑖
(0) = 0, 𝑖 = 1, 2,

and𝜎
𝑖
, 𝑖 = 1, 2 are the intensities of white noise. It is shown in

[8] that if 𝑎
11
𝑎
22
> 𝑎

12
𝑎
21
then there is a unique nonnegative

solution of system (2). For small white noise there is a sta-
tionary distribution of (2) and it has ergodic property.
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Biologically, this implies that with small perturbation of
environment, the stability of the two species varies with the
intensity of white noise, and both species will survive.

However, almost all known stochasticmodels assume that
the growth rate and the carrying capacity of the population
are independent of time 𝑡. In contrast, the natural growth
rates of many populations vary with 𝑡 in real situation, for
example, due to the seasonality. As a matter of fact, nonau-
tonomous stochastic population systems have recently been
studied by many authors, for example, [13–17].

In this paper we consider the system

𝑑𝑥
1 (
𝑡) = 𝑥1 (

𝑡) [(𝑟1 (
𝑡) − 𝑎11 (

𝑡) 𝑥1 (
𝑡) + 𝑎12 (

𝑡) 𝑥2 (
𝑡)) 𝑑𝑡

+𝜎
1 (
𝑡) 𝑑𝐵1 (

𝑡) ] ,

𝑑𝑥
2 (
𝑡) = 𝑥

2 (
𝑡) [(𝑟2 (

𝑡) + 𝑎21 (
𝑡) 𝑥1 (

𝑡) − 𝑎22 (
𝑡) 𝑥2 (

𝑡)) 𝑑𝑡

+𝜎
2 (
𝑡) 𝑑𝐵2 (

𝑡) ] ,

(3)

where 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝜎

𝑖
(𝑡), 𝑖, 𝑗 = 1, 2 are all continuous bounded

nonnegative functions on [0, +∞).The objective of our study
is to investigate the long-time behavior of system (3). As in
[8], we mainly discuss when the system is persistent and
when it is not under a fewer conditions. More specifically,
we show that there is a positive solution of system (3) and its
𝑝th moment bounded in Section 2. In Section 3, we deduce
the persistence of the system. If the white noise is not large
such that 𝑟𝑙

𝑖
− ((𝜎

𝑢

𝑖
)
2
/2) > 0, 𝑖 = 1, 2, we will prove that the

solution of system (3) is a stochastic persistence. In addition,
we show that every component of the solution is persistent
in mean. We further deduce that every component of the
solution of system (3) is an asymptotic boundedness inmean.
In Section 4, we show that largerwhite noisewillmake system
(3) nonpersistent. Finally, we study the global attractivity of
system (3).

Throughout this paper, unless otherwise specified, let
(Ω, {F

𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with a filtra-

tion {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right
continuous and F

0
contains all 𝑃-null sets). Let 𝑅2

+
be the

positive cone of 𝑅2, namely, 𝑅2
+
= {𝑥 ∈ 𝑅

2
: 𝑥

𝑖
> 0, 𝑖 = 1, 2}.

If 𝑥 ∈ 𝑅
𝑛, its norm is denoted by |𝑥| = (∑

𝑛

𝑖=1
𝑥
2

𝑖
)

1/2. If 𝑓(𝑡)
is a continuous bounded function on [0, +∞), we use the
notation sup

𝑓
𝑢
= sup

𝑡∈[0,+∞)

𝑓 (𝑡) , 𝑓
𝑙
= min

𝑡∈[0,+∞)

𝑓 (𝑡) . (4)

2. Existence and Uniqueness of
the Positive Solution

In population dynamics, the first concern is that the solution
should be nonnegative. In order to do that a stochastic differ-
ential equation can have a unique global (i.e., no explosion
at any finite time) solution for any given initial value, the
coefficients of the equation are generally required to satisfy
the linear growth condition and local Lipschitz condition
(Mao [18]). However, the coefficients of system (3) do not

satisfy the linear growth condition, though they are locally
Lipschitz continuous, so the solution of system (3) may
explode at a finite time. Following the way developed byMao
et al. [19], we show that there is a unique positive solution of
(3).

Theorem 1. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
. Then, there is a

unique positive solution 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡)) of system (3) on

𝑡 ≥ 0 for any given initial value 𝑥(0) ∈ 𝑅
2

+
, and the solution

will remain in 𝑅2
+
with probability 1, namely, 𝑥(𝑡) ∈ 𝑅2

+
for all

𝑡 ≥ 0 almost surely.

The proof ofTheorem 1 is similar to [8]. But it is skilled in
taking the value of 𝜖. We show it here.

Proof. Since the coefficients of the equation are locally Lips-
chitz continuous, for any given initial value 𝑥(0) ∈ 𝑅

2

+
there

is an unique local solution 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
),

where 𝜏
𝑒
is the explosion time. To show that this solution is

global, we need to show that 𝜏
𝑒
= ∞ a.s. Let 𝑚

0
> 1 be

sufficiently large for every component of 𝑥(0) lying within
the interval [1/𝑚

0
, 𝑚

0
]. For each integer 𝑚 ≥ 𝑚

0
, define the

stopping time

𝜏
𝑚
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : min {𝑥

1(
𝑡) , 𝑥2(

𝑡)}

≤

1

𝑚

or max {𝑥
1(
𝑡) , 𝑥2(

𝑡)} ≥ 𝑚},

(5)

where throughout this paper we set inf 0 = ∞ (as usual 0
denotes the empty set). Clearly, 𝜏

𝑚
is increasing as𝑚 → ∞.

Set 𝜏
∞

= lim
𝑚→∞

𝜏
𝑚
, whence 𝜏

∞
≤ 𝜏

𝑒
a.s. If we can show

that 𝜏
∞
= ∞ a.s., then 𝜏

𝑒
= ∞ a.s. and 𝑥(𝑡) ∈ 𝑅

2

+
a.s. for all

𝑡 ≥ 0. In other words, to complete the proof, all we need to
show is that 𝜏

∞
= ∞ a.s. If this statement is false, there is a

pair of constant 𝑇 > 0 and 𝜀 ∈ (0, 1) such that

𝑃 {𝜏
∞
≤ 𝑇} > 𝜀. (6)

Hence, there is an integer𝑚
1
≥ 𝑚

0
such that

𝑃 {𝜏
𝑚
≤ 𝑇} ≥ 𝜀 ∀𝑚 ≥ 𝑚

1
. (7)

We define

𝑉 (𝑥) = 𝑎
𝑢

21
(𝑥

1
− 1 − log𝑥

1
) + 𝑎

𝑢

12
(𝑥

2
− 1 − log𝑥

2
) . (8)

By Itô’s formula, we have

𝑑𝑉 (𝑥) = {𝑎
𝑢

21
(1−

1

𝑥
1

)𝑥
1
[𝑟
1 (
𝑡)−𝑎11 (

𝑡) 𝑥1
+𝑎

12 (
𝑡) 𝑥2

]

+𝑎
𝑢

12
(1−

1

𝑥
2

)𝑥
2
[𝑟
2 (
𝑡)+𝑎21 (

𝑡) 𝑥1
−𝑎

22 (
𝑡) 𝑥2

]

+

1

2

[𝑎
𝑢

21
𝜎
2

1
(𝑡) + 𝑎

𝑢

12
𝜎
2

2
(𝑡)] } 𝑑𝑡
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+ 𝑎
𝑢

21
𝜎
1 (
𝑡) (𝑥1

− 1) 𝑑𝐵
1 (
𝑡)

+ 𝑎
𝑢

12
𝜎
2 (
𝑡) (𝑥2

− 1) 𝑑𝐵
2 (
𝑡)

:= 𝐿𝑉𝑑𝑡 + 𝑎
𝑢

21
𝜎
1 (
𝑡) (𝑥1

− 1) 𝑑𝐵
1 (
𝑡)

+ 𝑎
𝑢

12
𝜎
2 (
𝑡) (𝑥2

− 1) 𝑑𝐵
2 (
𝑡) ,

(9)

where

𝐿𝑉 = 𝑎
𝑢

21
(1 −

1

𝑥
1

)𝑥
1
[𝑟
1 (
𝑡) − 𝑎11 (

𝑡) 𝑥1
+ 𝑎

12 (
𝑡) 𝑥2

]

+ 𝑎
𝑢

12
(1 −

1

𝑥
2

)𝑥
2
[𝑟
2 (
𝑡) + 𝑎21 (

𝑡) 𝑥1
− 𝑎

22 (
𝑡) 𝑥2

]

+

1

2

[𝑎
𝑢

21
𝜎
2

1
(𝑡) + 𝑎

𝑢

12
𝜎
2

2
(𝑡)]

≤ 𝑎
𝑢

21
[ (𝑟

𝑢

1
+ 𝑎

𝑢

11
) 𝑥

1
− 𝑎

𝑙

12
𝑥
2
− 𝑎

𝑙

11
𝑥
2

1

+𝑎
𝑢

12
𝑥
1
𝑥
2
− 𝑟

𝑙

1
+

1

2

(𝜎
𝑢

1
)
2
]

+ 𝑎
𝑢

12
[ (𝑟

𝑢

2
+ 𝑎

𝑢

22
) 𝑥

2
− 𝑎

𝑙

21
𝑥
1
− 𝑎

𝑙

22
𝑥
2

2

+𝑎
𝑢

21
𝑥
1
𝑥
2
− 𝑟

𝑙

2
+

1

2

(𝜎
𝑢

2
)
2
] .

(10)

According to Young inequality, note that 𝑥
1
𝑥
2

≤ 𝜖𝑥
2

1
+

(1/4𝜖)𝑥
2

2
, where 𝑎𝑢

21
/2𝑎

𝑙

22
< 𝜖 < 𝑎

𝑙

11
/2𝑎

𝑢

12
, then,

𝐿𝑉 ≤ 𝑎
𝑢

21
[ (𝑟

𝑢

1
+ 𝑎

𝑢

11
) 𝑥

1
− 𝑎

𝑙

12
𝑥
2
− 𝑎

𝑙

11
𝑥
2

1

+𝑎
𝑢

12
(𝜖𝑥

2

1
+

1

4𝜖

𝑥
2

2
) − 𝑟

𝑙

1
+

1

2

(𝜎
𝑢

1
)
2
]

+ 𝑎
𝑢

12
[ (𝑟

𝑢

2
+ 𝑎

𝑢

22
) 𝑥

2
− 𝑎

𝑙

21
𝑥
1
− 𝑎

𝑙

22
𝑥
2

2

+𝑎
𝑢

21
(𝜖𝑥

2

1
+

1

4𝜖

𝑥
2

2
) − 𝑟

𝑙

2
+

1

2

(𝜎
𝑢

2
)
2
]

= − (𝑎
𝑢

21
𝑎
𝑙

11
− 2𝜖𝑎

𝑢

21
𝑎
𝑢

12
) 𝑥

2

1

+ [𝑎
𝑢

21
(𝑟
𝑢

1
+ 𝑎

𝑢

11
) − 𝑎

𝑢

12
𝑎
𝑙

21
] 𝑥

1

− 𝑎
𝑢

21
𝑟
𝑙

1
+

1

2

𝑎
𝑢

21
(𝜎

𝑢

1
)
2

− (𝑎
𝑢

12
𝑎
𝑙

22
−

1

2𝜖

𝑎
𝑢

21
𝑎
𝑢

12
)𝑥

2

2

+ [𝑎
𝑢

12
(𝑟
𝑢

2
+ 𝑎

𝑢

22
) − 𝑎

𝑢

21
𝑎
𝑙

12
] 𝑥

2

− 𝑎
𝑢

12
𝑟
𝑙

2
+

1

2

𝑎
𝑢

12
(𝜎

𝑢

2
)
2

≤ 𝐾.

(11)

Since 𝑎𝑢
21
/2𝑎

𝑙

22
< 𝜖 < 𝑎

𝑙

11
/2𝑎

𝑢

12
, we obtain −(𝑎𝑢

21
𝑎
𝑙

11
− 2𝜖𝑎

𝑢

12
) <

0 and −(𝑎𝑢
12
𝑎
𝑙

22
− (1/2𝜖)𝑎

𝑢

21
𝑎
𝑢

12
) < 0. Hence, 𝐾 is a positive

constant. Integrating both sides of (9) from 0 to 𝜏
𝑚
∧ 𝑇, we

therefore obtain

𝑉 (𝑥 (𝜏
𝑚
∧ 𝑇)) − 𝑉 (𝑥 (0))

≤ ∫

𝜏
𝑚
∧𝑇

0

𝐾𝑑𝑡 + ∫

𝜏
𝑚
∧𝑇

0

𝑎
𝑢

21
𝜎
1 (
𝑡) (𝑥1 (

𝑡) − 1) 𝑑𝐵1 (
𝑡)

+ ∫

𝜏
𝑚
∧𝑇

0

𝑎
𝑢

12
𝜎
2 (
𝑡) (𝑥2 (

𝑡) − 1) 𝑑𝐵2 (
𝑡) .

(12)

Whence, taking expectations yields

𝐸 [𝑉 (𝑥 (𝜏
𝑚
∧ 𝑇))] ≤ 𝑉 (𝑥 (0)) + 𝐾𝐸 (𝜏𝑚

∧ 𝑇)

≤ 𝑉 (𝑥 (0)) + 𝐾𝑇.

(13)

Set Ω
𝑚
= {𝜏

𝑚
≤ 𝑇} for 𝑚 ≥ 𝑚

1
and by (7), 𝑃(Ω

𝑚
) ≥ 𝜀. Note

that for every 𝜔 ∈ Ω
𝑚
, there is 𝑥

1
(𝜏
𝑚
, 𝜔) or 𝑥

2
(𝜏
𝑚
, 𝜔) equals

either𝑚 or 1/𝑚, and therefore

𝑉 (𝑥 (𝜏
𝑚
, 𝜔))

≥ min {𝑎𝑢
21
, 𝑎

𝑢

12
} (𝑚 − 1 − log𝑚) ∧ ( 1

𝑚

− 1 − log 1

𝑚

)

:= ℎ (𝑚) ,

(14)

where lim
𝑚→∞

ℎ(𝑚) = ∞. It then follows from (13) that

𝐸 [𝑉 (𝑥 (0))] + 𝐾𝑇 ≥ 𝐸 [1
Ω
𝑚

⋅ 𝑉 (𝑥 (𝜏
𝑚
, 𝜔))] ≥ 𝜖ℎ (𝑚) ,

(15)

where 1
Ω
𝑚

is the indicator function of Ω
𝑚
. Letting 𝑚 → ∞

leads to the contradiction

∞ > 𝑉 (𝑥 (0)) + 𝐾𝑇 = ∞, (16)

so we must have 𝜏
∞

= ∞ a.s. This completes the proof of
Theorem 1.

Remark 2. By Theorem 1, we observe that for any given
initial value 𝑥(0) ∈ 𝑅

2

+
, there is a unique solution 𝑥(𝑡) =

(𝑥
1
(𝑡), 𝑥

2
(𝑡)) of system (3) on 𝑡 ≥ 0 and the solution will

remain in 𝑅
2

+
with probability 1, no matter how large the

intensities of white noise are. So, under the same assumption
there is an global unique positive solution of the correspond-
ing deterministic system of system (3).

Next, we show that the 𝑝th moment of the solution of
system (3) is bounded in time average.
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Theorem 3. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
. Then there exists a

positive constant𝐾(𝑝) such that the solution 𝑥(𝑡) of system (3)
has the following property:

𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)] ≤ 𝐾 (𝑝) , ∀𝑡 ∈ [0,∞) , 𝑝 > 1,

(17)

where 𝑐
1
, 𝑐
2
satisfy

(𝑎
𝑢

21
)
𝑝+1

𝑎
𝑙

11
(𝑎

𝑙

22
)

𝑝
<

𝑐
1

𝑐
2

<

𝑎
𝑙

22
(𝑎

𝑙

11
)

𝑝

(𝑎
𝑢

12
)
𝑝+1

. (18)

Proof. By Itô’s formula, we have

𝑑𝑥
𝑝

1
(𝑡) = 𝑝𝑥

𝑝

1
(𝑡) [(𝑟1 (

𝑡) − 𝑎11 (
𝑡) 𝑥1 (

𝑡) + 𝑎12 (
𝑡) 𝑥2 (

𝑡)) 𝑑𝑡

+𝜎
1 (
𝑡) 𝑑𝐵1 (

𝑡) ]

+

1

2

𝑝 (𝑝 − 1) 𝑥
𝑝

1
(𝑡) 𝜎

2

1
(𝑡) 𝑑𝑡

= 𝑝 [(𝑟
1 (
𝑡) +

𝑝 − 1

2

𝜎
2

1
(𝑡)) 𝑥

𝑝

1
(𝑡) − 𝑎11 (

𝑡) 𝑥
𝑝+1

1
(𝑡)

+𝑎
12 (

𝑡) 𝑥
𝑝

1
(𝑡) 𝑥2 (

𝑡) ] 𝑑𝑡

+ 𝜎
1 (
𝑡) 𝑝𝑥

𝑝

1
(𝑡) 𝑑𝐵1 (

𝑡)

= 𝑝 [𝛼
1 (
𝑡) 𝑥

𝑝

1
(𝑡) − 𝑎11 (

𝑡) 𝑥
𝑝+1

1
(𝑡)

+𝑎
12 (

𝑡) 𝑥
𝑝

1
(𝑡) 𝑥2 (

𝑡)] 𝑑𝑡

+ 𝜎
1 (
𝑡) 𝑝𝑥

𝑝

1
(𝑡) 𝑑𝐵1 (

𝑡)

≤ 𝑝 [𝛼
𝑢

1
𝑥
𝑝

1
(𝑡) − 𝑎

𝑙

11
𝑥
𝑝+1

1
(𝑡) + 𝑎

𝑢

12
𝑥
𝑝

1
(𝑡) 𝑥2 (

𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

1
𝑥
𝑝

1
(𝑡) 𝑑𝐵1 (

𝑡) ,

(19)

where 𝛼
1
(𝑡) = 𝑟

1
(𝑡) + ((𝑝 − 1)/2)𝜎

2

1
(𝑡), and

𝑑𝑥
𝑝

2
(𝑡) = 𝑝𝑥

𝑝

2
(𝑡) [(𝑟2 (

𝑡) − 𝑎22 (
𝑡) 𝑥2 (

𝑡) + 𝑎21 (
𝑡) 𝑥1 (

𝑡)) 𝑑𝑡

+𝜎
2 (
𝑡) 𝑑𝐵2 (

𝑡) ]

+

1

2

𝑝 (𝑝 − 1) 𝑥
𝑝

2
(𝑡) 𝜎

2

2
(𝑡) 𝑑𝑡

= 𝑝 [(𝑟
2 (
𝑡) +

𝑝 − 1

2

𝜎
2

2
(𝑡)) 𝑥

𝑝

2
(𝑡) − 𝑎22 (

𝑡) 𝑥
𝑝+1

2
(𝑡)

+𝑎
21 (

𝑡) 𝑥
𝑝

2
(𝑡) 𝑥1 (

𝑡) ] 𝑑𝑡

+ 𝜎
2 (
𝑡) 𝑝𝑥

𝑝

2
(𝑡) 𝑑𝐵2 (

𝑡)

= 𝑝 [𝛼
2 (
𝑡) 𝑥

𝑝

2
(𝑡) − 𝑎22 (

𝑡) 𝑥
𝑝+1

2
(𝑡)

+𝑎
21 (

𝑡) 𝑥
𝑝

2
(𝑡) 𝑥1 (

𝑡)] 𝑑𝑡 + 𝜎2 (
𝑡) 𝑝𝑥

𝑝

2
(𝑡) 𝑑𝐵2 (

𝑡)

≤ 𝑝 [𝛼
𝑢

2
𝑥
𝑝

2
(𝑡) − 𝑎

𝑙

22
𝑥
𝑝+1

2
(𝑡) + 𝑎

𝑢

21
𝑥
𝑝

2
(𝑡) 𝑥1 (

𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

2
𝑥
𝑝

2
(𝑡) 𝑑𝐵2 (

𝑡) ,

(20)

where 𝛼
2
(𝑡) = 𝑟

2
(𝑡) + ((𝑝 − 1)/2)𝜎

2

2
(𝑡). According to Young

inequality, we obtain

𝑥
𝑝

1
(𝑡) 𝑥2 (

𝑡) ≤ 𝜖1
𝑥
𝑝+1

1
(𝑡) +

1

𝑝 + 1

(

𝑝

𝑝 + 1

)

𝑝

(

1

𝜖
1

)

𝑝

𝑥
𝑝+1

2
(𝑡) ,

𝜖
1
=

𝑝𝑎
𝑙

11

(𝑝 + 1) 𝑎
𝑢

12

,

𝑥
𝑝

2
(𝑡) 𝑥1 (

𝑡) ≤ 𝜖2
𝑥
𝑝+1

2
(𝑡) +

1

𝑝 + 1

(

𝑝

𝑝 + 1

)

𝑝

(

1

𝜖
2

)

𝑝

𝑥
𝑝+1

1
(𝑡) ,

𝜖
2
=

𝑝𝑎
𝑙

22

(𝑝 + 1) 𝑎
𝑢

21

.

(21)

Thus, we have

𝑑𝑥
𝑝

1
(𝑡) ≤ 𝑝 [𝛼

𝑢

1
𝑥
𝑝

1
(𝑡) − 𝑎

𝑙

11
𝑥
𝑝+1

1
(𝑡) + 𝑎

𝑢

12
𝜖
1
𝑥
𝑝+1

1
(𝑡)

+𝑎
𝑢

12

1

𝑝 + 1

(

𝑝

𝑝 + 1

)

𝑝

(

1

𝜖
1

)

𝑝

𝑥
𝑝+1

2
(𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

1
𝑥
𝑝

1
(𝑡) 𝑑𝐵1 (

𝑡) ,

𝑑𝑥
𝑝

2
(𝑡) ≤ 𝑝 [𝛼

𝑢

2
𝑥
𝑝

2
(𝑡) − 𝑎

𝑙

22
𝑥
𝑝+1

2
(𝑡) + 𝑎

𝑢

21
𝜖
2
𝑥
𝑝+1

2
(𝑡)

+𝑎
𝑢

21

1

𝑝 + 1

(

𝑝

𝑝 + 1

)

𝑝

(

1

𝜖
2

)

𝑝

𝑥
𝑝+1

1
(𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

2
𝑥
𝑝

2
(𝑡) 𝑑𝐵2 (

𝑡) .

(22)

Since 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, there exist two positive constants 𝑐

1
, 𝑐
2

which satisfy

(𝑎
𝑢

21
)
𝑝+1

𝑎
𝑙

11
(𝑎

𝑙

22
)

𝑝
<

𝑐
1

𝑐
2

<

𝑎
𝑙

22
(𝑎

𝑙

11
)

𝑝

(𝑎
𝑢

12
)
𝑝+1

. (23)

Therefore,

𝑑 (𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡))

≤−𝑝[(𝑐
1
𝑎
𝑙

11
−𝑐

1
𝑎
𝑢

12
𝜖
1
−𝑐

2
𝑎
𝑢

21

𝑝
𝑝

(𝑝+1)
𝑝+1

𝜖
𝑝

2

)𝑥
𝑝+1

1
(𝑡)

+(𝑐
2
𝑎
𝑙

22
−𝑐

1
𝑎
𝑢

21
𝜖
2
−𝑐

1
𝑎
𝑢

12

𝑝
𝑝

(𝑝+1)
𝑝+1
𝜖
𝑝

1

)𝑥
𝑝+1

2
(𝑡)

−

2

∑

𝑖=1

𝑐
𝑖
𝛼
𝑢

𝑖
𝑥
𝑝

𝑖
(𝑡)] 𝑑𝑡 +

2

∑

𝑖=1

𝑐
𝑖
𝑝𝜎

𝑢

𝑖
𝑥
𝑝

𝑖
(𝑡) 𝑑𝐵𝑖 (

𝑡) .

(24)

From (23) and the values of 𝜖
1
, 𝜖
2
, we obtain

𝑎
𝑢

21
(𝑝

𝑝
/(𝑝 + 1)

𝑝+1
𝜖
𝑝

2
)

𝑎
𝑙

11
− 𝑎

𝑢

12
𝜖
1

<

𝑐
1

𝑐
2

<

𝑎
𝑙

22
− 𝑎

𝑢

21
𝜖
2

𝑎
𝑢

12
(𝑝

𝑝
/(𝑝 + 1)

𝑝+1
𝜖
𝑝

1
)

,

(25)
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which implies that 𝑐
1
𝑎
𝑙

11
−𝑐

1
𝑎
𝑢

12
𝜖
1
−𝑐

2
𝑎
𝑢

21
(𝑝

𝑝
/(𝑝+1)

𝑝+1
𝜖
𝑝

2
) > 0

and 𝑐
2
𝑎
𝑙

22
− 𝑐

1
𝑎
𝑢

21
𝜖
2
− 𝑐

1
𝑎
𝑢

12
(𝑝

𝑝
/((𝑝 + 1)

𝑝+1
𝜖
𝑝

1
)) > 0. Let

𝛼 = max {𝛼𝑢
1
, 𝛼

𝑢

2
} ,

𝛽 = min{𝑐−(𝑝+1)/𝑝
1

[𝑐
1
𝑎
𝑙

11
− 𝑐

1
𝑎
𝑢

12
𝜖
1
− 𝑐

2
𝑎
𝑢

21

𝑝
𝑝

(𝑝 + 1)
𝑝+1

𝜖
𝑝

2

] ,

𝑐
−(𝑝+1)/𝑝

2
[𝑐

2
𝑎
𝑙

22
− 𝑐

1
𝑎
𝑢

21
𝜖
2
− 𝑐

1
𝑎
𝑢

12

𝑝
𝑝

(𝑝 + 1)
𝑝+1

𝜖
𝑝

1

]} ,

(26)

then we have

𝑑 (𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡))

≤ 𝑝[𝛼(

2

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑡)) − 𝛽(

2

∑

𝑖=1

𝑐
1+(1/𝑝)

𝑖
𝑥
𝑝+1

𝑖
)]𝑑𝑡

+

2

∑

𝑖=1

𝑐
𝑖
𝑝𝜎

𝑢

𝑖
𝑥
𝑝

𝑖
(𝑡) 𝑑𝐵𝑖 (

𝑡) .

(27)

Hence, we get

𝑑𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)]

𝑑𝑡

≤ 𝑝𝛼𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)]

− 𝑝𝛽𝐸 [𝑐
1+(1/𝑝)

1
𝑥
𝑝+1

1
(𝑡) + 𝑐

1+(1/𝑝)

2
𝑥
𝑝+1

2
(𝑡)]

≤ 𝑝𝛼𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡)+𝑐2

𝑥
𝑝

2
(𝑡)]

− 𝑝𝛽 {[𝐸 (𝑐
1
𝑥
𝑝

1
(𝑡))]

1+(1/𝑝)

+[𝐸 (𝑐
2
𝑥
𝑝

2
(𝑡))]

1+(1/𝑝)

}

≤ 𝑝𝛼𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)]

− 𝑝𝛽 ⋅ 2
−1/𝑝

[𝐸 (𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡))]

1+(1/𝑝)

.

(28)

By the comparison theorem, we get

lim sup
𝑡→∞

𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)] ≤ 2(

𝛼

𝛽

)

𝑝

:= 𝑀 (𝑝) , (29)

which implies that there is a 𝑇
0
> 0, such that

𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)] ≤ 2𝑀(𝑝) , ∀𝑡 > 𝑇

0
. (30)

Besides, note that 𝐸[𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐

2
𝑥
𝑝

2
(𝑡)] is continuous, then

there is a 𝑀̃(𝑝) > 0 such that

𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)] ≤ 𝑀̃ (𝑝) , ∀𝑡 ∈ [0, 𝑇

0
] . (31)

Let 𝐾(𝑝) = max{2𝑀(𝑝), 𝑀̃(𝑝)}, then

𝐸 [𝑐
1
𝑥
𝑝

1
(𝑡) + 𝑐2

𝑥
𝑝

2
(𝑡)] ≤ 𝐾 (𝑝) , ∀𝑡 ∈ [0,∞) . (32)

3. Persistence

Theorem 1 shows that the solution of system (3)will remain in
the positive cone 𝑅2

+
if 𝑎𝑙

11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
. Studying a population

system, we pay more attention on whether the system is
persistent. In this section, we first show that the solution
is a stochastic permanence. Next we show that the solution
is persistent in time average. Moreover, we show that the
solution 𝑥(𝑡) of system (3) is an asymptotic boundedness in
time average.

3.1. Stochastic Permanence. Let 𝑦(𝑡) be the solution of a
randomized nonautonomous competitive equation:

𝑑𝑦
𝑖 (
𝑡) = 𝑦𝑖 (

𝑡)
[

[

(𝑏
𝑖 (
𝑡)−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑦𝑗 (

𝑡))𝑑𝑡 + 𝜎
𝑖 (
𝑡) 𝑑𝐵𝑖 (

𝑡)
]

]

,

𝑖 = 1, 2, . . . , 𝑛,

(33)

where 𝐵
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, are independent standard

Brownian motions, 𝑦(0) = 𝑦
0
> 0 while 𝑦

0
is independent

of 𝐵(𝑡), and 𝑏
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝜎

𝑖
(𝑡) are all continuous bounded

nonnegative functions on [0, +∞).

Lemma 4 (see [15]). Assume that 𝑏𝑙
𝑖
− ((𝜎

𝑢

𝑖
)
2
/2) > 0, 𝑖 =

1, 2, . . . , 𝑛, then for any given initial value 𝑦(0) ∈ 𝑅
𝑛

+
, the

solution 𝑦(𝑡) of (36) has the properties

lim sup
𝑡→∞

𝐸(

1

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

𝜃
) ≤ 𝐻, (34)

where 𝐻 is a constant, 𝜃 is an arbitrary positive constant
satisfying

𝜃max
1≤𝑖≤𝑛

(𝜎
𝑢

𝑖
)
2
< 2min

1≤𝑖≤𝑛

(𝑏
𝑖 (
𝑡) −

𝜎
2

𝑖
(𝑡)

2

)

𝑙

. (35)

Let𝑁(𝑡) be the solution of a randomized nonautonomous
logistic equation

𝑑𝑁 (𝑡) = 𝑁 (𝑡) [(𝑎 (𝑡) − 𝑏 (𝑡)𝑁 (𝑡)) 𝑑𝑡 + 𝛼 (𝑡) 𝑑𝐵 (𝑡)] , (36)

where 𝐵(𝑡) is a 1-dimensional standard Brownian motion,
𝑁(0) = 𝑁

0
> 0, and𝑁

0
is independent of 𝐵(𝑡).

Lemma 5 (see [13]). Assume that 𝑎(𝑡), 𝑏(𝑡), and 𝛼(𝑡) are
bounded continuous functions defined on [0,∞), 𝑎(𝑡) > 0

and 𝑏(𝑡) > 0. Then there exists a unique continuous positive
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solution of (36) for any initial value𝑁(0) = 𝑁
0
> 0, which is

global and represented by

𝑁(𝑡) = exp{∫
𝑡

0

[𝑎 (𝑠) − (

𝛼
2
(𝑠)

2

)] 𝑑𝑠 + 𝛼 (𝑠) 𝑑𝐵 (𝑠)}

× ((

1

𝑁
0

)+∫

𝑡

0

𝑏 (𝑠) exp{∫
𝑠

0

[𝑎 (𝜏)−(

𝛼
2
(𝜏)

2

)]𝑑𝜏

+𝛼 (𝜏) 𝑑𝐵 (𝜏) } 𝑑𝑠)

−1

,

𝑡 ≥ 0.

(37)

From Lemma 4 we have the following.

Lemma 6. Assume that 𝑎𝑙 − ((𝛼𝑢)2/2) > 0, then for any given
initial value 𝑁(0) ∈ 𝑅

+
, the solution 𝑁(𝑡) of (36) has the

properties

lim sup
𝑡→∞

𝐸(

1

𝑁
𝜃
(𝑡)

) ≤ 𝐻, (38)

where𝐻 is a constant, 𝜃 is positive constant satisfying

𝜃(𝛼
𝑢
)
2
< 2[𝑎

𝑙
−

(𝛼
𝑢
)
2

2

] . (39)

Let 𝜙(𝑡) = (𝜙
1
(𝑡), 𝜙

2
(𝑡))

𝑇 be the solution of

𝑑𝜙
𝑖 (
𝑡) = 𝜙𝑖 (

𝑡) [(𝑟𝑖 (
𝑡) − 𝑎𝑖𝑖 (

𝑡) 𝜙𝑖 (
𝑡)) 𝑑𝑡 + 𝜎𝑖 (

𝑡) 𝑑𝐵𝑖 (
𝑡)] ,

𝑖 = 1, 2,

(40)

where 𝐵
𝑖
(𝑡), 𝑖 = 1, 2, are independent standard Brownian

motions, 𝜙(0) = 𝜙
0
> 0, and 𝜙

0
∈ 𝑅

2

+
, 𝑟

𝑖
(𝑡), 𝑎

𝑖𝑖
(𝑡), 𝜎

𝑖
(𝑡), 𝑖 =

1, 2 are all continuous bounded nonnegative functions on
[0, +∞). From Lemma 4 it is easy to know the following.

Lemma 7. Assume that 𝑟𝑙
𝑖
= 𝑟

𝑙

𝑖
− ((𝜎

𝑢

𝑖
)
2
/2) > 0, 𝑖 = 1, 2, then

for any given initial value 𝜙(0) ∈ 𝑅2
+
, the solution 𝜙(𝑡) of (40)

has the properties

lim sup
𝑡→∞

𝐸(

1

𝜙
𝜃

𝑖
(𝑡)

) ≤ 𝐻
𝑖
, 𝑖 = 1, 2, (41)

where 𝐻
𝑖
, 𝑖 = 1, 2 are two constants, 𝜃 is positive constant

satisfying

𝜃(𝜎
𝑢

𝑖
)
2
< 2𝑟

𝑙

𝑖
, 𝑖 = 1, 2. (42)

Lemma 8. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝑥
0
∈ 𝑅

2

+
, the solution 𝑥(𝑡) of system (3) has the

properties

𝑥
𝑖 (
𝑡) ≥ 𝜙𝑖 (

𝑡) , 𝑖 = 1, 2, (43)

lim sup
𝑡→∞

𝐸(

1

𝑥
𝜃

𝑖
(𝑡)

) ≤ 𝐻
𝑖
, 𝑖 = 1, 2, (44)

where 𝐻
𝑖
, 𝑖 = 1, 2 are two constants, 𝜃 is positive constant

satisfying

𝜃(𝜎
𝑢

𝑖
)
2
< 2𝑟

𝑙

𝑖
, 𝑖 = 1, 2. (45)

Proof. Equation (43) follows directly from the classical com-
parison theorem of stochastic differential equations (see
[20]). Thus, we obtain

lim sup
𝑡→∞

𝐸(

1

𝑥
𝜃

𝑖
(𝑡)

) ≤ lim sup
𝑡→∞

𝐸(

1

𝜙
𝜃

𝑖
(𝑡)

) ≤ 𝐻
𝑖
, 𝑖 = 1, 2.

(46)

Definition 9. System (3) is said to be stochastically permanent
if for any 𝜀 ∈ (0, 1), there exists a pair of positive constants 𝛿 =
𝛿(𝜖) and 𝑀 = 𝑀(𝜖) such that for any initial value 𝑥

0
∈ 𝑅

2

+
,

the solution obeys

lim inf
𝑡→∞

𝑃 {𝑥
𝑖 (
𝑡) ≤ 𝑀 (𝜖)} ≥ 1 − 𝜖,

lim inf
𝑡→∞

𝑃 {𝑥
𝑖 (
𝑡) ≥ 𝛿 (𝜖)} ≥ 1 − 𝜖, 𝑖 = 1, 2.

(47)

Theorem 10. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, 𝑟

𝑙

𝑖
> 0, 𝑖 = 1, 2,

then system (3) is stochastically permanent.

The proof is a simple application of the Chebyshev
inequality, we omit it.

3.2. Persistence in Time Average. Theorem 10 shows that if the
white noise is not large, the solution of system (3) is survive
with large probability. In this part, we show 𝑥(𝑡) is persistence
in mean.

Lemma 11. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝜙(0) ∈ 𝑅
2

+
, the solution 𝜙(𝑡) of (40) has the

properties

𝑧
𝑖 (
𝑡) 𝑒

−[max
0≤𝑠≤𝑡

∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)−∫

𝑡

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)]

≤ 𝜙
𝑖 (
𝑡) ≤ 𝑧𝑖 (

𝑡) 𝑒
−[min

0≤𝑠≤𝑡
∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)−∫

𝑡

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)]
,

𝑖 = 1, 2,

(48)

where 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧

2
(𝑡)) is the solution of

𝑑𝑧
𝑖 (
𝑡) = 𝑧𝑖 (

𝑡) [𝑟𝑖 (
𝑡) −

𝜎
2

𝑖
(𝑡)

2

− 𝑎
𝑢

𝑖𝑖
𝑧
𝑖 (
𝑡)] 𝑑𝑡,

𝑧
𝑖 (
0) = 𝜙𝑖 (

0) , 𝑖 = 1, 2.

(49)
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Proof. From Lemma 5, we know

1

𝜙
𝑖 (
𝑡)

=

1

𝜙
𝑖 (
0)

𝑒
−∫
𝑡

0

[𝑟
𝑖
(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠+𝜎

𝑖
(𝑠)𝑑𝐵
𝑖
(𝑠)

+ 𝑎
𝑢

𝑖𝑖
∫

𝑡

0

𝑒
−∫
𝑡

0

[𝑟
𝑖
(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠+𝜎

𝑖
(𝑠)𝑑𝐵
𝑖
(𝑠)

× 𝑒
+∫
𝑠

0

[𝑟
𝑖
(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏+𝜎

𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)
𝑑𝑠

= 𝑒
−∫
𝑡

0

𝜎
𝑖
(𝑠)𝑑𝐵
𝑖
(𝑠)
[

1

𝜙
𝑖 (
0)

𝑒
−∫
𝑡

0

[𝑟
𝑖
(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠

+ 𝑎
𝑢

𝑖𝑖
∫

𝑡

0

𝑒
−∫
𝑡

𝑠

[𝑟
𝑖
(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏

× 𝑒
∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)
𝑑𝑠]

≤ 𝑒
−∫
𝑡

0

𝜎
𝑖
(𝑠)𝑑𝐵
𝑖
(𝑠)
[

1

𝜙
𝑖 (
0)

𝑒
−∫
𝑡

0

[𝑟
𝑖
(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠

+ 𝑎
𝑢

𝑖𝑖
𝑒
max
0≤𝑠≤𝑡

(∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏))

×∫

𝑡

0

𝑒
−∫
𝑡

𝑠

[𝑟
𝑖
(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏

𝑑𝑠]

≤

𝑒
max
0≤𝑠≤𝑡

[∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)]−∫

𝑡

0

𝜎
𝑖
(𝑠)𝑑𝐵
𝑖
(𝑠)

𝑧
𝑖 (
𝑡)

.

(50)

Similarly, we have

1

𝜙
𝑖 (
𝑡)

≥ 𝑒
−∫
𝑡

0

𝜎
𝑖
(𝑠)𝑑𝐵
𝑖
(𝑠)
[

1

𝜙
𝑖 (
0)

𝑒
−∫
𝑡

0

[𝑟
𝑖
(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠

+ 𝑎
𝑢

𝑖𝑖
𝑒
min
0≤𝑠≤𝑡

(∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏))

×∫

𝑡

0

𝑒
−∫
𝑡

𝑠

[𝑟
𝑖
(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏

𝑑𝑠]

≥

𝑒
min
0≤𝑠≤𝑡

[∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)]−∫

𝑡

0

𝜎
𝑖
(𝑠)𝑑𝐵
𝑖
(𝑠)

𝑧
𝑖 (
𝑡)

.

(51)

Lemma 12. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝑧(0) ∈ 𝑅
2

+
, the solution 𝑧(𝑡) of (49) has the

following properties

𝑧̃
𝑖 (
𝑡) ≤ 𝑧𝑖 (

𝑡) ≤ 𝑧̂𝑖 (
𝑡) ,

lim
𝑡→∞

𝑧̃
𝑖 (
𝑡) =

𝑟
𝑙

𝑖

𝑎
𝑢

𝑖𝑖

, lim
𝑡→∞

𝑧̂
𝑖 (
𝑡) =

𝑟
𝑢

𝑖

𝑎
𝑢

𝑖𝑖

,

(52)

where 𝑧̃(𝑡) = (𝑧̃
1
(𝑡), 𝑧̃

2
(𝑡)), 𝑧̂(𝑡) = (𝑧̂

1
(𝑡), 𝑧̂

2
(𝑡)) are the

solutions of the two equations, respectively,

𝑑𝑧̃
𝑖 (
𝑡) = 𝑧̃𝑖 (

𝑡) [𝑟
𝑙

𝑖
− 𝑎

𝑢

𝑖𝑖
𝑧̃
𝑖 (
𝑡)] 𝑑𝑡, 𝑧̃

𝑖 (
0) = 𝑧𝑖 (

0) , 𝑖 = 1, 2,

(53)

𝑑𝑧̂
𝑖 (
𝑡) = 𝑧̂𝑖 (

𝑡) [𝑟
𝑢

𝑖
− 𝑎

𝑢

𝑖𝑖
𝑧̂
𝑖 (
𝑡)] 𝑑𝑡, 𝑧̂

𝑖 (
0) = 𝑧𝑖 (

0) , 𝑖 = 1, 2.

(54)

Proof. Let 𝑧̃(𝑡) = (𝑧̃
1
(𝑡), 𝑧̃

2
(𝑡)), 𝑧̂(𝑡) = (𝑧̂

1
(𝑡), 𝑧̂

2
(𝑡)) are the

solutions of SDE (53) and (54), respectively, with the positive
initial value 𝑧(0). By Lemma 5, we know

𝑧̃
𝑖 (
𝑡) =

𝑒
𝑟
𝑙

𝑖
𝑡

1/𝑧̃
𝑖 (
0) + (𝑎

𝑢

𝑖𝑖
/𝑟
𝑙

𝑖
) (𝑒

𝑟
𝑙

𝑖
𝑡
− 1)

,

𝑧̂
𝑖 (
𝑡) =

𝑒
𝑟
𝑢

𝑖
𝑡

1/𝑧̂
𝑖 (
0) + (𝑎

𝑢

𝑖𝑖
/𝑟
𝑢

𝑖
) (𝑒

𝑟
𝑢

𝑖
𝑡
− 1)

.

(55)

Thus,

lim
𝑡→∞

𝑧̃
𝑖 (
𝑡) =

𝑟
𝑙

𝑖

𝑎
𝑢

𝑖𝑖

, lim
𝑡→∞

𝑧̂
𝑖 (
𝑡) =

𝑟
𝑢

𝑖

𝑎
𝑢

𝑖𝑖

. (56)

By the classical comparison theorem of ordinary differential
equations, we know

𝑧̃
𝑖 (
𝑡) ≤ 𝑧𝑖 (

𝑡) ≤ 𝑧̂𝑖 (
𝑡) . (57)

Lemma 13. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝜙(0) ∈ 𝑅
2

+
, the solution 𝜙(𝑡) of (40) has the

properties

lim
𝑡→∞

log𝜙
𝑖 (
𝑡)

𝑡

= 0, 𝑎.𝑠. (58)

Proof. By Lemma 12, we know

𝑒
−[max

0≤𝑠≤𝑡
∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)−∫

𝑡

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)]

≤

𝜙
𝑖 (
𝑡)

𝑧
𝑖 (
𝑡)

≤ 𝑒
−[min

0≤𝑠≤𝑡
∫
𝑠

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)−∫

𝑡

0

𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏)]
.

(59)

So, we have

∫

𝑡

0

𝜎
𝑖 (
𝜏) 𝑑𝐵𝑖 (

𝜏)−max
0≤𝑠≤𝑡

∫

𝑠

0

𝜎
𝑖 (
𝜏) 𝑑𝐵𝑖 (

𝜏)

≤ log𝜙
𝑖 (
𝑡)−log 𝑧𝑖 (𝑡)

≤∫

𝑡

0

𝜎
𝑖 (
𝜏) 𝑑𝐵𝑖 (

𝜏)

−min
0≤𝑠≤𝑡

∫

𝑠

0

𝜎
𝑖 (
𝜏) 𝑑𝐵𝑖 (

𝜏) .

(60)

Let𝑀
𝑖
(𝑡) = ∫

𝑡

0
𝜎
𝑖
(𝜏)𝑑𝐵

𝑖
(𝜏), then

⟨𝑀
𝑖
,𝑀

𝑖
⟩
𝑡
= ∫

𝑡

0

𝜎
2

𝑖
(𝜏) 𝑑𝜏. (61)
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Since 𝜎
𝑖
(𝑡), 𝑖 = 1, 2 are bounded, then

lim
𝑡→∞

⟨𝑀
𝑖
,𝑀

𝑖
⟩
𝑡

𝑡

= lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝜎
2

𝑖
(𝜏) 𝑑𝜏 < ∞, a.s. (62)

By the strong law of large numbers, we know

lim
𝑡→∞

𝑀
𝑖 (
𝑡)

𝑡

= lim
𝑡→∞

∫

𝑡

0
𝜎
𝑖 (
𝜏) 𝑑𝐵𝑖 (

𝜏)

𝑡

= 0, a.s. (63)

Thus,

lim
𝑡→∞

max
0≤𝑠≤𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑀
𝑖 (
𝑠)

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, a.s. (64)

Then from (60) we obtain

lim
𝑡→∞

log𝜙
𝑖 (
𝑡)

𝑡

= 0, a.s. (65)

Lemma 14. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝜙(0) ∈ 𝑅
2

+
, the solution 𝜙(𝑡) of (40) has the

properties

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝜙
𝑖 (
𝑠) 𝑑𝑠 ≥

𝑟
𝑙

𝑖

𝑎
𝑢

𝑖𝑖

, 𝑎.𝑠. (66)

Proof. By Itô’s formula, we have

𝑑 log𝜙
𝑖 (
𝑡) = [𝑟𝑖 (

𝑡) −

𝜎
2

𝑖
(𝑡)

2

− 𝑎
𝑢

𝑖𝑖
𝜙
𝑖 (
𝑡)] 𝑑𝑡 + 𝜎𝑖 (

𝑡) 𝑑𝐵𝑖 (
𝑡) .

(67)

Integrating both sides of this equation from 0 to 𝑡 yields

log𝜙
𝑖 (
𝑡)

𝑡

−

log𝜙
𝑖 (
0)

𝑡

=

∫

𝑡

0
[𝑟
𝑖 (
𝑠) − (𝜎

2

𝑖
(𝑠) /2)] 𝑑𝑠

𝑡

−

𝑎
𝑢

𝑖𝑖
∫

𝑡

0
𝜙
𝑖 (
𝑠) 𝑑𝑠

𝑡

+

∫

𝑡

0
𝜎
𝑖 (
𝑠) 𝑑𝐵𝑖 (

𝑠)

𝑡

.

(68)

By Lemma 13, we know that

lim
𝑡→∞

∫

𝑡

0
𝜎
𝑖 (
𝑠) 𝑑𝐵𝑖 (

𝑠)

𝑡

= lim
𝑡→∞

log𝜙
𝑖 (
𝑡)

𝑡

= 0, a.s. (69)

Hence,

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝜙
𝑖 (
𝑠) 𝑑𝑠 =

1

𝑎
𝑢

𝑖𝑖

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

[𝑟
𝑖 (
𝑠) −

𝜎
2

𝑖
(𝑠)

2

] 𝑑𝑠

≥

𝑟
𝑙

𝑖

𝑎
𝑢

𝑖𝑖

, a.s.

(70)

Definition 15. System (3) is said to be persistent in time
average if

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
𝑖 (
𝑠) 𝑑𝑠 > 0, 𝑖 = 1, 2. (71)

Theorem 16. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and 𝑟𝑙

𝑖
> 0, 𝑖 =

1, 2, then the solution 𝑥(𝑡) of system (3) with any initial value
𝑥(0) ∈ 𝑅

2

+
has the following property:

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
𝑖 (
𝑠) 𝑑𝑠 ≥

𝑟
𝑙

𝑖

𝑎
𝑢

𝑖𝑖

,

lim inf
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

≥ 0, 𝑎.𝑠.,

(72)

and so system (3) is persistent in time average.

Proof. By Lemma 8, we know that

𝑥
𝑖 (
𝑡) ≥ 𝜙𝑖 (

𝑡) 𝑖 = 1, 2, (73)

where 𝜙(𝑡) = (𝜙
1
(𝑡), 𝜙

2
(𝑡)) is the solution of system (40).

Moreover, by Lemma 14 we know that

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
𝑖 (
𝑠) 𝑑𝑠 ≥ lim inf

𝑡→∞

1

𝑡

∫

𝑡

0

𝜙
𝑖 (
𝑠) 𝑑𝑠 ≥

𝑟
𝑙

𝑖

𝑎
𝑢

𝑖𝑖

, a.s.

(74)

Hence, by Lemma 13 we know that

lim inf
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

≥ lim inf
𝑡→∞

log𝜙
𝑖 (
𝑡)

𝑡

= 0, a.s. (75)

3.3. Asymptotic Boundedness of Integral Average. Theorem 16
shows that every component of the solution 𝑥(𝑡) of system (3)
will survive forever in time average, if the white noise is not
large. In this part, we further deduce that every component of
𝑥(𝑡) of system (3) will be an asymptotic boundedness in time
average. Before we give the result, we do some preparation
work.

Lemma 17. Let 𝑓 ∈ 𝐶[[0,∞) × Ω, (0,∞)], 𝐹(𝑡) ∈ ((0,∞) ×

Ω, 𝑅). If there exist positive constants 𝜆
0
and 𝜆 such that

log𝑓 (𝑡) ≥ 𝜆𝑡 − 𝜆0 ∫
𝑡

0

𝑓 (𝑠) 𝑑𝑠 + 𝐹 (𝑡) , 𝑡 ≥ 0, 𝑎.𝑠., (76)

and lim
𝑡→∞

(𝐹(𝑡)/𝑡) = 0 a.s., then

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≥

𝜆

𝜆
0

, 𝑎.𝑠. (77)

Proof. The proof is similar to the proof of Lemma in [21]. Let

𝜑 (𝑡) = ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠. (78)

Since 𝑓 ∈ 𝐶[[0,∞) × Ω, (0,∞)], 𝜑(𝑡) is differentiable on
[0,∞) and

𝑑𝜑 (𝑡)

𝑑𝑡

= 𝑓 (𝑡) > 0, for 𝑡 ≥ 0. (79)
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Substituting 𝑑𝜑(𝑡)/𝑑𝑡 and 𝜑(𝑡) into (76), we obtain the
following:

log
𝑑𝜑 (𝑡)

𝑑𝑡

≥ 𝜆𝑡 − 𝜆
0
𝜑 (𝑡) + 𝐹 (𝑡) , (80)

thus

𝑒
𝜆
0
𝜑(𝑡) 𝑑𝜑 (𝑡)

𝑑𝑡

≥ 𝑒
𝜆𝑡+𝐹(𝑡)

, for 𝑡 ≥ 0. (81)

Note that lim
𝑡→∞

(𝐹(𝑡)/𝑡) = 0 a.s., then for 0 < 𝜀 <

min{1, 𝜆}, ∃𝑇 = 𝑇(𝜔) > 0 andΩ
𝜀
⊂ Ω such that𝑃(Ω

𝜀
) > 1−𝜀

and 𝐹(𝑡) ≥ −𝜀𝑡, 𝑡 ≥ 𝑇, 𝜔 ∈ Ω
𝜀
. Then we have

𝑒
𝜆
0
𝜑(𝑡) 𝑑𝜑 (𝑡)

𝑑𝑡

≥ 𝑒
(𝜆−𝜀)𝑡

, for 𝑡 ≥ 𝑇, 𝜔 ∈ Ω
𝜀
. (82)

Integrating inequality (82) from 0 to 𝑡 results in the following:

𝜆
−1

0
[𝑒
𝜆
0
𝜑(𝑡)

− 𝑒
𝜆
0
𝜑(𝑇)

] ≥ (𝜆 − 𝜀)
−1
[𝑒
(𝜆−𝜀)𝑡

− 𝑒
(𝜆−𝜀)𝑇

] . (83)

This inequality can be rewritten into

𝑒
𝜆
0
𝜑(𝑡)

≥ 𝑒
𝜆
0
𝜑(𝑇)

+ 𝜆
0(
𝜆 − 𝜀)

−1
[𝑒
(𝜆−𝜀)𝑡

− 𝑒
(𝜆−𝜀)𝑇

] . (84)

Taking the logarithm of both sides and dividing both sides by
𝑡(> 0) yields

𝜑 (𝑡)

𝑡

≥ 𝜆
−1

0

log {𝑒𝜆0𝜑(𝑇) + 𝜆
0(
𝜆 − 𝜀)

−1
[𝑒

(𝜆−𝜀)𝑡−𝑒
(𝜆−𝜀)𝑇

]}

𝑡

.
(85)

Then,

lim inf
𝑡→∞

𝜑 (𝑡)

𝑡

≥

𝜆 − 𝜀

𝜆
0

, 𝜔 ∈ Ω
𝜀
. (86)

Letting 𝜀 → ∞ yields

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≥

𝜆

𝜆
0

, a.s. (87)

This finishes the proof of the Lemma.

Theorem 18. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and 𝑟𝑙

𝑖
> 0, 𝑖 =

1, 2, then the solution 𝑥(𝑡) of system (3) with any initial value
𝑥(0) ∈ 𝑅

2

+
has the property

𝑥
∗

𝑖
≤ lim

𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
𝑖 (
𝑠) 𝑑𝑠 ≤ 𝑥

∗

𝑖
, 𝑖 = 1, 2, 𝑎.𝑠., (88)

where

𝑥
∗

1
=

𝑎
𝑢

22
𝑟
𝑙

1
+ 𝑎

𝑙

12
𝑟
𝑙

2

𝑎
𝑢

11
𝑎
𝑢

22
− 𝑎

𝑙

12
𝑎
𝑙

21

, 𝑥
∗

2
=

𝑎
𝑢

11
𝑟
𝑙

2
+ 𝑎

𝑙

21
𝑟
𝑙

1

𝑎
𝑢

11
𝑎
𝑢

22
− 𝑎

𝑙

12
𝑎
𝑙

21

,

𝑥
∗

1
=

𝑎
𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2

𝑎
𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

12
𝑎
𝑢

21

, 𝑥
∗

2
=

𝑎
𝑙

11
𝑟
𝑢

2
+ 𝑎

𝑢

21
𝑟
𝑢

1

𝑎
𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

12
𝑎
𝑢

21

.

(89)

Proof. To prove the results, we only need to prove

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
𝑖 (
𝑠) 𝑑𝑠 ≥ 𝑥

∗

𝑖
, 𝑖 = 1, 2, a.s. (90)

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
𝑖 (
𝑠) 𝑑𝑠 ≤ 𝑥

∗

𝑖
, 𝑖 = 1, 2, a.s. (91)

By Itô’s formula, we have

𝑑 log𝑥
1 (
𝑡)

= [𝑟
1 (
𝑡) −

1

2

𝜎
2

1
(𝑡) − 𝑎11 (

𝑡) 𝑥1 (
𝑡) + 𝑎12 (

𝑡) 𝑥2 (
𝑡)] 𝑑𝑡

+ 𝜎
1 (
𝑡) 𝑑𝐵1 (

𝑡) ,

𝑑 log𝑥
2 (
𝑡)

= [𝑟
2 (
𝑡) −

1

2

𝜎
2

2
(𝑡) + 𝑎21 (

𝑡) 𝑥1 (
𝑡) − 𝑎22 (

𝑡) 𝑥2 (
𝑡)] 𝑑𝑡

+ 𝜎
2 (
𝑡) 𝑑𝐵2 (

𝑡) .

(92)

First, we prove (91). Integrating both sides of (92) from 0 to 𝑡
yields

log𝑥
1 (
𝑡) = log𝑥

1 (
0) + ∫

𝑡

0

𝑟
1 (
𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑎
11 (

𝑠) 𝑥1 (
𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑎
12 (

𝑠) 𝑥2 (
𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠) ,

log𝑥
2 (
𝑡) = log𝑥

2 (
0) + ∫

𝑡

0

𝑟
2 (
𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑎
22 (

𝑠) 𝑥2 (
𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑎
21 (

𝑠) 𝑥1 (
𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎
2 (
𝑠) 𝑑𝐵2 (

𝑠) ,

(93)

where 𝑟
𝑖
(𝑠) = 𝑟

𝑖
(𝑠) − (1/2)𝜎

2

𝑖
(𝑠), 𝑖 = 1, 2. Since 𝑥

𝑖
(𝑡) > 0, 𝑖 =

1, 2, hence

log𝑥
1 (
𝑡) ≤ log𝑥

1 (
0) + 𝑟

𝑢

1
𝑡 − 𝑎

𝑙

11
∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠

+ 𝑎
𝑢

12
∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠) ,

log𝑥
2 (
𝑡) ≤ log𝑥

2 (
0) + 𝑟

𝑢

2
𝑡 − 𝑎

𝑙

22
∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠

+ 𝑎
𝑢

21
∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎
2 (
𝑠) 𝑑𝐵2 (

𝑠) .

(94)
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So we have

𝑎
𝑙

22
log𝑥

1 (
𝑡) + 𝑎

𝑢

12
log𝑥

2 (
𝑡)

≤ 𝑎
𝑙

22
[log𝑥

1 (
0) + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠)] + 𝑎
𝑙

22
𝑟
𝑢

1
𝑡

+ 𝑎
𝑢

12
[log𝑥

2 (
0) + ∫

𝑡

0

𝜎
2 (
𝑠) 𝑑𝐵2 (

𝑠)] + 𝑎
𝑢

12
𝑟
𝑢

2
𝑡

− (𝑎
𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

21
𝑎
𝑢

12
)∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠.

(95)

ByTheorem 16, we know that

lim inf
𝑡→∞

log𝑥
𝑖 (
𝑡)

𝑡

≥ 0, 𝑖 = 1, 2, a.s. (96)

Obviously,

lim
𝑡→∞

log𝑥
𝑖 (
0) + ∫

𝑡

0
𝜎
𝑖 (
𝑠) 𝑑𝐵𝑖 (

𝑠)

𝑡

= 0, 𝑖 = 1, 2, a.s. (97)

Hence, we have

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠 ≤

𝑎
𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2

𝑎
𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

21
𝑎
𝑢

12

≜ 𝑥
∗

1
, a.s. (98)

Similarly, we have

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠 ≤

𝑎
𝑙

11
𝑟
𝑢

2
+ 𝑎

𝑢

12
𝑟
𝑢

1

𝑎
𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

21
𝑎
𝑢

12

≜ 𝑥
∗

2
, a.s. (99)

Next, we prove that (90) is true. Taking integration both
sides of (92) from 0 to 𝑡, we have

log𝑥
1 (
𝑡) ≥ log𝑥

1 (
0) + 𝑟

𝑙

1
𝑡 − 𝑎

𝑢

11
∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠

+ 𝑎
𝑙

12
∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠) ,

log𝑥
2 (
𝑡) ≥ log𝑥

2 (
0) + 𝑟

𝑙

2
𝑡 − 𝑎

𝑢

22
∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠

+ 𝑎
𝑙

21
∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎
2 (
𝑠) 𝑑𝐵2 (

𝑠) .

(100)

ByTheorem 16 we know that

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠 ≥

𝑟
𝑙

1

𝑎
𝑢

11

≜ 𝑀
1
, a.s.,

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠 ≥

𝑟
𝑙

2

𝑎
𝑢

22

≜ 𝑁
1
, a.s.,

(101)

then for any 𝜀 > 0, there is a 𝑇(𝜔) > 0 such that

1

𝑡

∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠 ≥ 𝑁1

− 𝜀, (102)

for 𝑡 > 𝑇(𝜔). It follows from (100) that, for 𝑡 > 𝑇(𝜔),

log𝑥
1 (
𝑡) ≥ log𝑥

1 (
0) + 𝑟

𝑙

1
𝑡 − 𝑎

𝑢

11
∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠

+ 𝑎
𝑙

12
(𝑁

1
− 𝜀) 𝑡 + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠)

= log𝑥
1 (
0) − 𝑎

𝑢

11
∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠

+ [𝑟
𝑙

1
+ 𝑎

𝑙

12
(𝑁

1
− 𝜀)] 𝑡 + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠) .

(103)

From Lemma 17, we have

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠 ≥

𝑟
𝑙

1
+ 𝑎

𝑙

12
(𝑁

1
− 𝜀)

𝑎
𝑢

11

:= 𝑀
2
> 𝑀

1
.

(104)

Similarly, we have

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠 ≥

𝑟
𝑙

2
+ 𝑎

𝑙

21
(𝑀

1
− 𝜀)

𝑎
𝑢

22

:= 𝑁
2
> 𝑁

1
.

(105)

Continuing this process, we obtain two sequences 𝑀
𝑛
,

𝑁
𝑛
(𝑛 = 1, 2, . . .) such that

𝑀
𝑛
=

𝑟
𝑙

1
+ 𝑎

𝑙

12
(𝑁

𝑛−1
− 𝜀)

𝑎
𝑢

11

, (106)

𝑁
𝑛
=

𝑟
𝑙

2
+ 𝑎

𝑙

21
(𝑀

𝑛−1
− 𝜀)

𝑎
𝑢

22

. (107)

By induction, we can easily show that 𝑀
𝑛+1

> 𝑀
𝑛
, 𝑁

𝑛+1
>

𝑁
𝑛
, 𝑛 = 1, 2, . . ., that is, sequences {𝑀

𝑛
, 𝑛 = 1, 2, . . .} and

{𝑁
𝑛
, 𝑛 = 1, 2, . . .} are nondecreasing.Moreover, note that (98)

and (99), then the sequences {𝑀
𝑛
, 𝑛 = 1, 2, . . .} and {𝑁

𝑛
, 𝑛 =

1, 2, . . .}, have upper bounds.Therefore, there are two positive
𝑀,𝑁 such that

lim
𝑛→∞

𝑀
𝑛
= 𝑀, lim

𝑛→∞
𝑁
𝑛
= 𝑁,

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠 ≥ 𝑀, lim inf

𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
2 (
𝑠) 𝑑𝑠 ≥ 𝑁,

(108)

which together with (106) implies

𝑎
𝑢

11
𝑀− 𝑎

𝑙

12
𝑁 = 𝑟

𝑙

1
− 𝜀𝑎

𝑙

12
,

𝑎
𝑢

22
𝑁 − 𝑎

𝑙

21
𝑀 = 𝑟

𝑙

2
− 𝜀𝑎

𝑙

21
.

(109)

Letting 𝜀 → 0 yields

𝑀 =

𝑎
𝑢

22
𝑟
𝑙

1
+ 𝑎

𝑙

12
𝑟
𝑙

2

𝑎
𝑢

11
𝑎
𝑢

22
− 𝑎

𝑙

12
𝑎
𝑙

21

≜ 𝑥
∗

1
,

𝑁 =

𝑎
𝑢

11
𝑟
𝑙

1
+ 𝑎

𝑙

21
𝑟
𝑙

2

𝑎
𝑢

11
𝑎
𝑢

22
− 𝑎

𝑙

12
𝑎
𝑙

21

≜ 𝑥
∗

1
.

(110)
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Hence,

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥
𝑖 (
𝑠) 𝑑𝑠 ≥ 𝑥

∗

𝑖
, 𝑖 = 1, 2, a.s., (111)

which is as required.

4. Nonpersistence

In this section, we discuss the dynamics of system (3) as the
white noise is getting larger. We show that system (3) will
be nonpersistent if the white noise is large, which does not
happen in the deterministic system.

Definition 19. System (3) is said to be nonpersistent, if there
are positive constants 𝑞

1
, 𝑞

2
such that

lim
𝑡→∞

2

∏

𝑖=1

𝑥
𝑞
𝑖

𝑖
(𝑡) = 0 a.s. (112)

Theorem20. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and 𝑎𝑙

22
𝑟
𝑢

1
+𝑎

𝑢

12
𝑟
𝑢

2
<

0, then system (3) is nonpersistent, where 𝑟
𝑖
(𝑠) = 𝑟

𝑖
(𝑠) −

(𝜎
2

𝑖
(𝑠)/2), 𝑖 = 1, 2.

Proof. Since 𝑥
𝑖
(𝑡) > 0, 𝑖 = 1, 2 and 𝑎𝑙

11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, from (93)

we have

𝑎
𝑙

22
log𝑥

1 (
𝑡) + 𝑎

𝑢

12
log𝑥

2 (
𝑡)

≤ {𝑎
𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2
} 𝑡 − (𝑎

𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

21
𝑎
𝑢

12
)∫

𝑡

0

𝑥
1 (
𝑠) 𝑑𝑠

+ 𝑎
𝑙

22
[log𝑥

1 (
0) + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠)]

+ 𝑎
𝑢

12
[log𝑥

2 (
0) + ∫

𝑡

0

𝜎
2 (
𝑠) 𝑑𝐵2 (

𝑠)]

≤ 𝐾
1
𝑡 + 𝑎

𝑙

22
[log𝑥

1 (
0) + ∫

𝑡

0

𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠)]

+ 𝑎
𝑢

12
[log𝑥

2 (
0) + ∫

𝑡

0

𝜎
2 (
𝑠) 𝑑𝐵2 (

𝑠)] ,

(113)

where𝐾
1
= 𝑎

𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2
which together with

lim
𝑡→∞

𝑎
𝑙

22
[log𝑥

1 (
0) + ∫

𝑡

0
𝜎
1 (
𝑠) 𝑑𝐵1 (

𝑠)]

𝑡

= lim
𝑡→∞

𝑎
𝑢

12
[log𝑥

2 (
0) + ∫

𝑡

0
𝜎
2 (
𝑠) 𝑑𝐵2 (

𝑠)]

𝑡

= 0, a.s.,
(114)

implies

lim
𝑡→∞

1

𝑡

[𝑎
𝑙

22
log𝑥

1 (
𝑡) + 𝑎

𝑢

12
log𝑥

2 (
𝑡)] ≤ 𝐾1

, a.s. (115)

If 𝐾
1
< 0, then there must be

lim
𝑡→∞

𝑥
𝑎
𝑙

22

1
(𝑡) 𝑥

𝑎
𝑢

12

2
(𝑡) = 0, a.s. (116)

Hence, system (3) is nonpersistent.

Theorem 21. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and (𝑎

𝑢

21
𝑟
𝑢

1
+

𝑎
𝑙

11
𝑟
𝑢

2
) < 0, then system (3) is nonpersistent, where 𝑟

𝑖
(𝑠) =

𝑟
𝑖
(𝑠) − (𝜎

2

𝑖
(𝑠)/2), 𝑖 = 1, 2.

Here we omit the proof ofTheorem 21 which is similar to
the proof of Theorem 20.

Remark 22. If (𝜎𝑙
𝑖
)
2
> 2𝑟

𝑢

𝑖
, 𝑖 = 1, 2, then the conditions in

Theorems 20 and 21 are obviously satisfied, respectively. That
is to say, the large white noise will lead to the population
system being non-persistent.

5. Global Attractivity

In this section, we turn to establishing sufficient criteria for
the global attractivity of stochastic system (3).

Definition 23. Let 𝑥(𝑡), 𝑦(𝑡) be two arbitrary solutions of
system (3) with initial values 𝑥(0), 𝑦(0) ∈ 𝑅

2

+
, respectively.

If

lim
𝑡→∞

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
= 0, a.s., (117)

then we say system (3) is globally attractive.

Theorem 24. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, then system (3) is

globally attractive.

Proof. Let 𝑥(𝑡), 𝑦(𝑡) be two arbitrary solutions of system (3)
with initial values 𝑥(0), 𝑦(0) ∈ 𝑅

2

+
. By the Itô’s formula, we

have

𝑑 log𝑥
𝑖 (
𝑡) = [𝑟

𝑖 (
𝑡) −

1

2

𝜎
2

𝑖
(𝑡) − 𝑎𝑖𝑖 (

𝑡) 𝑥𝑖 (
𝑡) + 𝑎𝑖𝑗 (

𝑡) 𝑥𝑗 (
𝑡)] 𝑑𝑡

+ 𝜎
𝑖 (
𝑡) 𝑑𝐵𝑖 (

𝑡) , 𝑖, 𝑗 = 1, 2, 𝑗 ̸= 𝑖,

𝑑 log𝑦
𝑖 (
𝑡) = [𝑟

𝑖 (
𝑡) −

1

2

𝜎
2

𝑖
(𝑡) − 𝑎𝑖𝑖 (

𝑡) 𝑦𝑖 (
𝑡) + 𝑎𝑖𝑗 (

𝑡) 𝑦𝑗 (
𝑡)] 𝑑𝑡

+ 𝜎
𝑖 (
𝑡) 𝑑𝐵𝑖 (

𝑡) , 𝑖, 𝑗 = 1, 2, 𝑗 ̸= 𝑖.

(118)

Then,

𝑑 (log𝑥
𝑖 (
𝑡) − log𝑦

𝑖 (
𝑡))

= {−𝑎
𝑖𝑖 (
𝑡) [𝑥𝑖 (

𝑡) − 𝑦𝑖 (
𝑡)] + 𝑎𝑖𝑗 (

𝑡) [𝑥𝑖 (
𝑡) − 𝑦𝑖 (

𝑡)]} 𝑑𝑡,

𝑖, 𝑗 = 1, 2, 𝑗 ̸= 𝑖.

(119)
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Since 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, there exist two positive constants 𝑐

1
, 𝑐
2

which satisfy

𝑎
𝑢

21

𝑎
𝑙

11

<

𝑐
1

𝑐
2

<

𝑎
𝑙

22

𝑎
𝑢

12

. (120)

Thus, 𝑐
1
𝑎
𝑙

11
− 𝑐

2
𝑎
𝑢

21
> 0, 𝑐

2
𝑎
𝑙

22
− 𝑐

1
𝑎
𝑢

12
> 0.

Consider a Lyapunov function 𝑉(𝑡) defined by

𝑉 (𝑡) = 𝑐
1

󵄨
󵄨
󵄨
󵄨
log𝑥

1 (
𝑡) − log𝑦

1 (
𝑡)
󵄨
󵄨
󵄨
󵄨

+ 𝑐
2

󵄨
󵄨
󵄨
󵄨
log𝑥

2 (
𝑡) − log𝑦

2 (
𝑡)
󵄨
󵄨
󵄨
󵄨
, 𝑡 ≥ 0.

(121)

A direct calculation of the right differential 𝑑+𝑉(𝑡) of 𝑉(𝑡)
along the ordinary differential equation (119) leads to

𝑑
+
𝑉 (𝑡) = 𝑐

1
sgn (𝑥

1 (
𝑡) − 𝑦1 (

𝑡)) 𝑑 [log𝑥1 (𝑡) − log𝑦
1 (
𝑡)]

+ 𝑐
2
sgn (𝑥

2 (
𝑡) − 𝑦2 (

𝑡)) 𝑑 [log𝑥2 (𝑡) − log𝑦
2 (
𝑡)]

= 𝑐
1
sgn (𝑥

1 (
𝑡) − 𝑦1 (

𝑡))

× [−𝑎
11 (

𝑡) (𝑥1 (
𝑡) − 𝑦1 (

𝑡)) 𝑑𝑡

+𝑎
12 (

𝑡) (𝑥2 (
𝑡) − 𝑦2 (

𝑡)) 𝑑𝑡]

+ 𝑐
2
sgn (𝑥

2 (
𝑡) − 𝑦2 (

𝑡))

× [𝑎
21 (

𝑡) (𝑥1 (
𝑡) − 𝑦1 (

𝑡)) 𝑑𝑡

−𝑎
22 (

𝑡) (𝑥2 (
𝑡) − 𝑦2 (

𝑡)) 𝑑𝑡]

≤ − 𝑐
1
𝑎
𝑙

11

󵄨
󵄨
󵄨
󵄨
𝑥
1 (
𝑡) − 𝑦1 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+ 𝑐
1
𝑎
𝑢

12

󵄨
󵄨
󵄨
󵄨
𝑥
2 (
𝑡) − 𝑦2 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

− 𝑐
2
𝑎
𝑙

22

󵄨
󵄨
󵄨
󵄨
𝑥
2 (
𝑡) − 𝑦2 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+ 𝑐
2
𝑎
𝑢

21

󵄨
󵄨
󵄨
󵄨
𝑥
1 (
𝑡) − 𝑦1 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

= − (𝑐
1
𝑎
𝑙

11
− 𝑐

2
𝑎
𝑢

21
)
󵄨
󵄨
󵄨
󵄨
𝑥
1 (
𝑡) − 𝑦1 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

− (𝑐
2
𝑎
𝑙

22
− 𝑐

1
𝑎
𝑢

12
)
󵄨
󵄨
󵄨
󵄨
𝑥
2 (
𝑡) − 𝑦2 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≤ − 𝛾

2

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖 (
𝑡) − 𝑦𝑖 (

𝑡)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡,

(122)

where 𝛾 = min{𝑐
1
𝑎
𝑙

11
− 𝑐

2
𝑎
𝑢

21
, 𝑐

2
𝑎
𝑙

22
− 𝑐

1
𝑎
𝑢

12
}. Integrating both

sides of (122) form 0 to 𝑡, we have

𝑉 (𝑡) + 𝛾∫

𝑡

0

2

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖 (
𝑠) − 𝑦𝑖 (

𝑠)
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 ≤ 𝑉 (0) < ∞. (123)

Let 𝑡 → ∞, we obtain

∫

∞

0

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠) − 𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 ≤ ∫

∞

0

2

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖 (
𝑠) − 𝑦𝑖 (

𝑠)
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤

𝑉 (0)

𝛾

< ∞ a.s.

(124)

Note that 𝑢(𝑡) = 𝑥(𝑡) − 𝑦(𝑡). Clearly, 𝑢(𝑡) ∈ 𝐶(𝑅
+
, 𝑅

2
) a.s. It

is straightforward to see from (124) that

lim inf
𝑡→∞

|𝑢 (𝑡)| = 0 a.s. (125)

Next, we prove that

lim
𝑡→∞

|𝑢 (𝑡)| = 0 a.s. (126)

ByTheorem 3 we obtain that the 𝑝th moment of the solution
of system (3) is bounded, the following proof is similar to the
proof of Theorem 6.2 in [15] and hence is omitted.
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