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By using successive approximation, we prove existence and uniqueness result for a class of nonlinear stochastic differential
equations. Moreover, it is shown that the solution of such equations is a diffusion process and its diffusion coefficients are found.

1. Introduction

Differential equations, which are not solved for the derivative,
have found diverse applications in many fields. Examples of
equations of this type are Lagrange equations of classical
mechanics or Euler equations.

Consideration of real objects under the influence of
random factors leads to nonlinear stochastic differential
equations, which are not solved for stochastic differential.
Such equations were introduced by Kolmanovskii and Nosov
in [1] for construction of stochastic analogues of neutral
functional differential equations. Works [1–5] were devoted
to the problems of existence, uniqueness, and properties of
solutions of neutral stochastic differential (delay) equations
in finite dimensional spaces. Existence of solutions for such
equations inHilbert spaceswas studied in papers [6–9]. In the
paper [9] the author considered a stochastic equationwithout
delay. In the monograph of Kolmanovskĭı and Shăıkhet [10]
conditions were obtained for optimality in control problems
for these equations.

In this paper we will study the existence and uniqueness
of solutions for a class of nonlinear stochastic differential
equations, which are not solved for the stochastic differential.

Statement of the Problem. Let us consider a nonlinear stochas-
tic differential equation:

𝑑 (𝑥 − 𝐺 (𝑡, 𝑥)) = 𝑎 (𝑡, 𝑥) 𝑑𝑡 + 𝜎 (𝑡, 𝑥) 𝑑𝑊 (𝑡) , (1)
which is not solved for the stochastic differential.

Here 𝑥 ∈ 𝑅
𝑑
, 𝑡 ≥ 𝑡0, 𝐺(𝑡, 𝑥), and 𝑎(𝑡, 𝑥) are 𝑑-

dimensional vector functions; 𝜎(𝑡, 𝑥) is a 𝑑 × 𝑚 matrix and
𝑊(𝑡) is an𝑚-dimensional Wiener process with independent
components. Let 𝑥 be a random vector in 𝑅𝑑, such that
𝐸|𝑥|
2
< ∞. Assume that 𝑥 does not depend on𝑊(𝑡)−𝑊(𝑡0),

𝐹𝑡 = 𝜎{𝑥,𝑊(𝑠) − 𝑊(𝑡0), 𝑡0 ≤ 𝑠 ≤ 𝑡}.

Definition 1. An 𝐹𝑡-dimensional process 𝑥(𝑡) is said to be the
solution of (1) if 𝑥(𝑡0) = 𝑥 and

𝑥 − 𝐺 (𝑡, 𝑥 (𝑡)) = 𝑥 − 𝐺 (𝑡0, 𝑥)

+ ∫

𝑡

𝑡0

𝑎 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠)

(2)

holds for every 𝑡 ≥ 𝑡0 with probability 1.
A solution 𝑥(𝑡) is said to be unique if for any continuous

solutions 𝑥(𝑡), 𝑦(𝑡) such that 𝑥(𝑡0) = 𝑦(𝑡0) = 𝑥 one has
𝑃{sup

𝑠∈[𝑡0 ,𝑡]
|𝑥(𝑠) − 𝑦(𝑠)| > 0} = 0 for all 𝑡 ≥ 𝑡0.

In this work we use the method of successive approxima-
tions to establish existence and uniqueness (pathwise) of the
solution of (1). We study its probability properties. We prove
that 𝑥(𝑡) is diffusion process and find coefficients of diffusion.

2. Main Results

Firstly we prove the theorem of existence and uniqueness of
the solution.
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Theorem 2. Assume that 𝐺(𝑡, 𝑥) is a continuous function;
𝑎(𝑡, 𝑥), 𝜎(𝑡, 𝑥) are measurable functions for 𝑥 ∈ 𝑅𝑑, 𝑡 ≥ 𝑡0
and satisfy the following conditions:

(1) there exists a constant 𝐶 > 0, such that |𝐺(𝑡, 𝑥)| +
|𝑎(𝑡, 𝑥)| + ‖𝜎(𝑡, 𝑥)‖ ≤ 𝐶(1 + |𝑥|) for 𝑥 ∈ 𝑅𝑑, 𝑡 ≥ 𝑡0;

(2) there exist constants 𝐿1 > 0 and 𝐿 > 0 such that
|𝐺(𝑡, 𝑥) − 𝐺(𝑡, 𝑥

󸀠
)| ≤ 𝐿1|𝑥 − 𝑥

󸀠
| and

󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑡, 𝑥) − 𝑎 (𝑡, 𝑥

󸀠
)
󵄨󵄨󵄨󵄨󵄨
+
󵄩󵄩󵄩󵄩󵄩
𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑥

󸀠
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐿

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥
󸀠󵄨󵄨󵄨󵄨󵄨

(3)

for 𝑥, 𝑥󸀠 ∈ 𝑅𝑑, 𝑡 ≥ 𝑡0.

If 𝐿1 < (1/6)
3/4, then there exists a unique continuous

solution 𝑥(𝑡) of (1) with probability 1 for all 𝑡 ≥ 𝑡0. Moreover
it has a bounded second moment such that 𝐸|𝑥(𝑡)|2 < ∞ for
all 𝑡 ≥ 𝑡0.

Proof. To find a solution of the integral equation (2), we
use the method of successive approximations. We start by
choosing an initial approximation 𝑥0(𝑡) = 𝑥.

At the next step,

𝑥1 (𝑡) = 𝑥 + 𝐺 (𝑡, 𝑥) − 𝐺 (𝑡0, 𝑥)

+ ∫

𝑡

𝑡0

𝑎 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠) .

(4)

Consequently,

𝑥𝑛+1 (𝑡) = 𝑥 + 𝐺 (𝑡, 𝑥𝑛 (𝑡)) − 𝐺 (𝑡0, 𝑥)

+ ∫

𝑡

𝑡0

𝑎 (𝑠, 𝑥𝑛 (𝑠)) 𝑑𝑠 + ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑥𝑛 (𝑠)) 𝑑𝑊 (𝑠) .

(5)

Consider an interval [𝑡0, 𝑇] such that 𝐵 = 3(𝐿
2

1
+ 5(𝑇 −

𝑡0)𝐿
2
) < 1. Note that it can be always achieved by choosing a

sufficiently small 𝑇 − 𝑡0 and by the conditions on 𝐿1.
We prove that a solution exists on this interval.
From (4) it follows that

𝐸
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

󵄨󵄨󵄨󵄨
2
≤ 3(𝐸

󵄨󵄨󵄨󵄨𝐺 (𝑡, 𝑥) − 𝐺 (𝑡0, 𝑥)
󵄨󵄨󵄨󵄨
2
+ 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

𝑎(𝑠, 𝑥)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+∫

𝑡

𝑡0

𝐸‖𝜎 (𝑠, 𝑥)‖
2
𝑑𝑊 (𝑠))

≤ 3 (𝐶1 (1 + 𝐸|𝑥|
2
) + (𝑇 − 𝑡0)

2
𝐶1 (1 + 𝐸|𝑥|

2
)

+ (𝑇 − 𝑡0) 𝐶1 (1 + 𝐸|𝑥|
2
) ) ,

(6)

where 𝐶1 is a constant independent of 𝑡0, 𝑇, and 𝑥.

Next, estimate

𝐸 sup
𝑡∈[𝑡0,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛+1 (𝑡) − 𝑥𝑛 (𝑡)
󵄨󵄨󵄨󵄨
2
,

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
󵄨󵄨󵄨󵄨
2

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐺 (𝑡, 𝑥)−𝐺 (𝑡0, 𝑥)+∫

𝑡

𝑡0

𝑎 (𝑠, 𝑥) 𝑑𝑠+∫

𝑡

𝑡0

𝜎 (𝑠, 𝑥) 𝑑𝑊 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 3[
󵄨󵄨󵄨󵄨𝐺 (𝑡, 𝑥) − 𝐺 (𝑡0, 𝑥)

󵄨󵄨󵄨󵄨
2
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

𝑎 (𝑠, 𝑥) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

𝜎 (𝑠, 𝑥) 𝑑𝑊 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

≤ 3[𝐶1 (1 + |𝑥|
2
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

𝑎 (𝑠, 𝑥) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

𝜎 (𝑠, 𝑥) 𝑑𝑊 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

] .

(7)

Therefore,

𝐸 sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
󵄨󵄨󵄨󵄨
2

≤ 3(𝐶1 (1 + 𝐸|𝑥|
2
) + 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

𝑡0

𝑎 (𝑠, 𝑥) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+𝐸 sup
𝑡∈[𝑡0,𝑇]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

)

≤ 3(𝐶1 (1 + 𝐸|𝑥|
2
) + (𝑇 − 𝑡0) ∫

𝑇

𝑡0

𝐶1 (1 + 𝐸|𝑥|
2
) 𝑑𝑠

+4∫

𝑇

𝑡0

𝐶1 (1 + 𝐸|𝑥|
2
) 𝑑𝑠)

≤ 3 (1 + (𝑇 − 𝑡0)
2
+ 4 (𝑇 − 𝑡0)) 𝐶1 (1 + 𝐸|𝑥|

2
) .

(8)

The estimation of the stochastic integral follows from its
properties. Similar to [11, p.20], we have

𝐸 sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛+1 (𝑡) − 𝑥𝑛 (𝑡)
󵄨󵄨󵄨󵄨
2

≤ 3(𝐿
2

1
sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥𝑛−1 (𝑡)
󵄨󵄨󵄨󵄨
2

+ (𝑇 − 𝑡0) ∫

𝑇

𝑡0

𝐿
2󵄨󵄨󵄨󵄨𝑥𝑛 (𝑠) − 𝑥𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨
2
𝑑𝑠

+ sup
𝑡∈[𝑡0,𝑇]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

(𝜎 (𝑠, 𝑥𝑛 (𝑠))−𝜎 (𝑠, 𝑥𝑛−1 (𝑠))) 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

) .

(9)
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Thus, we have

𝐸 sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛+1 (𝑡) − 𝑥𝑛 (𝑡)
󵄨󵄨󵄨󵄨
2

≤ 3(𝐿
2

1
𝐸 sup
𝑡∈[𝑡0,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥𝑛−1 (𝑡)
󵄨󵄨󵄨󵄨
2

+ (𝑇 − 𝑡0)
2
𝐿
2
𝐸 sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥𝑛−1 (𝑡)
󵄨󵄨󵄨󵄨
2

+4∫

𝑇

𝑡0

𝐿
2
𝐸
󵄨󵄨󵄨󵄨𝑥𝑛 (𝑠) − 𝑥𝑛−1 (𝑠)

󵄨󵄨󵄨󵄨
2
𝑑𝑠)

≤ 3 (𝐿
2

1
+ (𝑇 − 𝑡0)

2
𝐿
2
+ 4𝐿
2
(𝑇 − 𝑡0))

× 𝐸 sup
𝑡∈[𝑡0,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑠) − 𝑥𝑛−1 (𝑠)
󵄨󵄨󵄨󵄨
2

= 𝐵𝐸 sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥𝑛−1 (𝑡)
󵄨󵄨󵄨󵄨
2

≤ 𝐵
𝑛
𝐸 sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
󵄨󵄨󵄨󵄨
2

≤ 𝐵
𝑛
3 (1 + 5 (𝑇 − 𝑡0)) 𝐶1 (1 + 𝐸|𝑥|

2
) .

(10)

Since 𝐵 < 1, it then follows that the series

∞

∑

𝑛=1

𝑃{ sup
𝑡∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥𝑛+1 (𝑡) − 𝑥𝑛 (𝑡)
󵄨󵄨󵄨󵄨 >

1

𝑛2
}

≤

∞

∑

𝑛=1

𝐵
𝑛
𝑛
4
3 (1 + 5 (𝑇 − 𝑡0)) 𝐶1 (1 + 𝐸|𝑥|

2
)

(11)

converges.
This implies the uniform convergence with probability 1

of the series

𝑥 +

∞

∑

𝑛=0

(𝑥𝑛+1 (𝑡) − 𝑥𝑛 (𝑡)) , (12)

on the interval [𝑡0, 𝑇]. Its sum is 𝑥(𝑡). So 𝑥𝑛(𝑡) converges to
some random process. Every 𝑥𝑛(𝑡) is continuous with prob-
ability 1. Whence it follows that the limit 𝑥(𝑡) is continuous
with probability 1, too.

Then prove uniqueness of this continuous solution.
Assume that there exists a second continuous solution 𝑦(𝑡)

of (1). Denote by 𝜘𝑁(𝑡) the random variable which equals 1
if |𝑥(𝑠)| ≤ 𝑁, |𝑦(𝑠)| ≤ 𝑁 and it equals 0 otherwise. Then

𝜘𝑁 (𝑡) (𝑥 (𝑡) − 𝑦 (𝑡))

= 𝜘𝑁 (𝑡) (𝐺 (𝑡, 𝑥 (𝑡)) − 𝐺 (𝑡, 𝑦 (𝑡)))

+ 𝜘𝑁 (𝑡) [∫

𝑇

𝑡0

𝜘𝑁 (𝑠) [𝑎 (𝑠, 𝑥 (𝑠)) − 𝑎 (𝑠, 𝑦 (𝑠))] 𝑑𝑠

+ ∫

𝑡

𝑡0

𝜘𝑁 (𝑠) [𝜎 (𝑠, 𝑥 (𝑠))

−𝜎 (𝑠, 𝑦 (𝑠)) ] 𝑑𝑊 (𝑠)] .

(13)

Therefore,

𝐸 (𝜘𝑁 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2
)

≤ 3 [𝐸 (𝜘𝑁 (𝑡) 𝐿
2

1

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
2
)

+ (𝑡 − 𝑡0) ∫

𝑡

𝑡0

𝐸 (𝜘𝑁 (𝑠)
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2
) 𝑑𝑠

+∫

𝑡

𝑡0

𝐸 (𝜘𝑁 (𝑠) 𝐿
2󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2
) 𝑑𝑠] .

(14)

The last inequality implies the estimation

(1 − 3𝐿
2

1
) 𝐸 (𝜘𝑁 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
2
)

≤ (1 + (𝑇 − 𝑡0)) 𝐿
2
∫

𝑡

𝑡0

𝐸 (𝜘𝑁 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2
) 𝑑𝑠.

(15)

By the Gronwall-Bellman inequality and the above inequality
together, we have

𝐸 (𝜘𝑁 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2
) = 0. (16)

So,

𝑃 {𝑥 (𝑡) ̸= 𝑦 (𝑡)} ≤ 𝑃{ sup
𝑠∈[𝑡0 ,𝑡]

|𝑥 (𝑠)| > 𝑁}

+ 𝑃{ sup
𝑠∈[𝑡0 ,𝑡]

󵄨󵄨󵄨󵄨𝑦 (𝑠)
󵄨󵄨󵄨󵄨 > 𝑁} .

(17)

Probabilities at the right-hand side of the above inequality
approach to zero as 𝑁 → ∞, because 𝑥(𝑡) and 𝑦(𝑡) are
continuous with probability 1. Therefore 𝑥(𝑡) and 𝑦(𝑡) are
stochastic equivalent.

We conclude that

𝑃{ sup
𝑠∈[𝑡0 ,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨 > 0} = 0. (18)

Hence, the existence and uniqueness of the solution are
proved on [𝑡0, 𝑇].
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Next, we show boundedness of a second moment of the
solution. Denote again by 𝜘𝑁(𝑡) the indicator of the set

{𝜔 : sup
𝑠∈[𝑡0 ,𝑡]

|𝑥 (𝑠) − 𝑥| ≤ 𝑁} . (19)

Then

𝜘𝑁 (𝑡) (𝑥 (𝑡) − 𝑥)

= 𝜘𝑁 (𝑡) (𝐺 (𝑡, 𝑥 (𝑡)) − 𝐺 (𝑡0, 𝑥))

+ 𝜘𝑁 (𝑡) ∫

𝑡

𝑡0

𝜘𝑁 (𝑠) 𝑎 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ 𝜘𝑁 (𝑡) ∫

𝑡

𝑡0

𝜘𝑁 (𝑠) 𝜎 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠) .

(20)

Similarly, we have

𝐸(𝜘𝑁 (𝑡) (𝑥 (𝑡) − 𝑥))
2

≤ 3 [𝐸𝜘𝑁 (𝑡) (𝐿1 |𝑥 (𝑡) − 𝑥|

+ |𝐺 (𝑡, 𝑥)| +
󵄨󵄨󵄨󵄨𝐺 (𝑡0, 𝑥)

󵄨󵄨󵄨󵄨)
2

+ (𝑇 − 𝑡0) ∫

𝑡

𝑡0

𝐸(𝜘𝑁 (𝑠) ( |𝑎 (𝑠, 𝑥 (𝑠)) − 𝑎 (𝑠, 𝑥)|

+ |𝑎 (𝑠, 𝑥 (𝑠))| )

2

)𝑑𝑠

+ ∫

𝑡

𝑡0

𝐸 (𝜘𝑁 (𝑠) ( |𝜎 (𝑠, 𝑥 (𝑠)) − 𝜎 (𝑠, 𝑥)|

+ |𝜎 (𝑠, 𝑥 (𝑠))|)
2
) 𝑑𝑠]

≤ 9𝐿
2

1
𝐸 (𝜘𝑁 (𝑡) |𝑥 (𝑡) − 𝑥|

2
) + 18𝐶1 (1 + 𝐸|𝑥|

2
)

+ 6 (𝑇 − 𝑡0) ∫

𝑡

𝑡0

𝐸 (𝜘𝑁 (𝑠) 𝐿
2
|𝑥 (𝑠) − 𝑥|

2
) 𝑑𝑠

+ 6(𝑇 − 𝑡0)
2
𝐶1 (1 + 𝐸|𝑥|

2
)

+ 6∫

𝑡

𝑡0

𝐸 (𝜘𝑁 (𝑠) 𝐿
2
|𝑥 (𝑠) − 𝑥|

2
) 𝑑𝑠

+ 6(𝑇 − 𝑡0)
2
𝐶1 (1 + 𝐸|𝑥|

2
) .

(21)

So,

(1 − 9𝐿
2

1
) 𝐸 (𝜘𝑁 (𝑠) |𝑥 (𝑠) − 𝑥|

2
)

≤ 18𝐶1 (1 + 𝐸|𝑥|
2
) + 12 (𝑇 − 𝑡0) 𝐶1 (1 + 𝐸|𝑥|

2
)

+ (6𝐿
2
(𝑇 − 𝑡0) + 6𝐿

2
)∫

𝑡

𝑡0

𝐸 (𝜘𝑁 (𝑠) |𝑥 (𝑠) − 𝑥|
2
) 𝑑𝑠.

(22)

Use the Gronwall-Bellman inequality to find the estimation

𝐸𝜘𝑁 (𝑡) |𝑥 (𝑡) − 𝑥|
2
≤ 𝐷(1 + 𝐸|𝑥|

2
) , (23)

where 𝐷 is a constant independent of𝑁. Applying the Fatou
lemma to the last inequality and assuming that𝑁 → ∞, we
have

𝐸|𝑥 (𝑡) − 𝑥|
2
≤ 𝐷(1 + 𝐸|𝑥|

2
) . (24)

Since 𝐸|𝑥|2 ≤ ∞, then it follows from [8] that 𝐸|𝑥|2 < ∞ for
every 𝑡 ∈ [𝑡0, 𝑇].

Thus existence, uniqueness, and boundedness of the
second moment of the solution 𝑥(𝑡) are proved on [𝑡0, 𝑇].
Since the constant 𝐵 is dependent only on 𝑇 − 𝑡0 and 𝐸|𝑥|

2
<

∞, and𝑥(𝑇) is independent of 𝑊(𝑠)−𝑊(𝑇) for 𝑠 ⩾ 𝑇, then by
similar manner we can prove the existence and uniqueness of
the solution of the IVPwith initial conditions (𝑇, 𝑥(𝑇)) on the
interval [𝑇, 𝑇1], where 𝑇1 is chosen such that the inequality
3(𝐿
2

1
+ 5(𝑇1 − 𝑇)𝐿

2
) < 1.

This procedure can be repeated in order to extend the
solution of (1) to the entire semiaxis 𝑡 ⩾ 𝑡0. The theorem is
proved.

Notes. The existence and uniqueness of the solution can be
obtained as corollary from work [1], where this result was
proved for an SDE of neutral type by replacing a condition for
Lipschitz constant 𝐿1 < (1/6)

3/4 with more weak condition
𝐿1 < 1. But by using our method, paths of obtained solution
are continuous with probability 1. Otherwise, in the pointed
work only the measurability of the solution and boundedness
of its second moment were stated.

Now, we state some probability properties of the solution
obtained in Theorem 2. We prove that under assumptions of
Theorem 2, the solution of (1) is a Markov random process.
Moreover, if the coefficients are continuous then it is a
diffusion process. We will find its diffusion coefficients.

Theorem 3. Under conditions (1)-(2) of Theorem 2 the solu-
tion 𝑥(𝑡) of (1) is aMarkov process with a transition probability
defined by

𝑃 (𝑡, 𝑥, 𝑠, 𝐴) = 𝑃 {𝑥𝑡,𝑥 (𝑠) ∈ 𝐴} , (25)

where 𝑥𝑡,𝑥(𝑠) is a solution of that equation

𝑥𝑡,𝑥 (𝑠) = 𝐺 (𝑠, 𝑥𝑡,𝑥 (𝑠)) + 𝑥 − 𝐺 (𝑡, 𝑥)

+ ∫

𝑠

𝑡

𝑎 (𝑢, 𝑥𝑡,𝑥 (𝑢)) 𝑑𝑢

+ ∫

𝑠

𝑡

𝜎 (𝑢, 𝑥𝑡,𝑥 (𝑢)) 𝑑𝑊 (𝑢) ,

(26)

where 𝑠 ⩾ 𝑡 ⩾ 𝑡0, 𝑥 ∈ 𝑅𝑑.

Proof. As in Theorem 2, we solve (1) by the method of
successive approximations. It can be shown that 𝑥𝑡,𝑥(𝑠) is
completely defined by the nonrandom initial value 𝑥 and the
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process𝑊(𝑠) − 𝑊(𝑡) for 𝑠 > 𝑡, which are independent of 𝐹𝑡.
Since𝑥(𝑡) is a solution of (2), it is𝐹𝑡measurable. Hence𝑥𝑡,𝑥(𝑠)
is independent of 𝑥(𝑡) and events from𝐹𝑡. Note that, from the
uniqueness of the solution 𝑥(𝑠) for 𝑠 > 𝑡, it follows that it is a
unique solution of the equation

𝑥 (𝑠) = 𝐺 (𝑠, 𝑥 (𝑠))

+ 𝑥 (𝑡) − 𝐺 (𝑡, 𝑥 (𝑡)) + ∫

𝑠

𝑡

𝑎 (𝑢, 𝑥 (𝑢)) 𝑑𝑢

+ ∫

𝑠

𝑡

𝜎 (𝑢, 𝑥 (𝑢)) 𝑑𝑊 (𝑢) .

(27)

Since the process 𝑥𝑡,𝑥(𝑡)(𝑠) is also a solution of this equation,
then 𝑥(𝑠) = 𝑥𝑡,𝑥(𝑡)(𝑠) with probability 1.

As for the rest, the proof is the same as the proof of the
theorem for ordinary stochastic equations [11]. The theorem
is proved.

We have a corollary from this theorem.

Corollary 4. Suppose that conditions of Theorem 2 are satis-
fied. Then

(1) if functions 𝐺, 𝑎, and 𝜎 are independent of 𝑡, then the
solution 𝑥(𝑡) is a homogeneous Markov process;

(2) if functions 𝐺, 𝑎, and 𝜎 are periodic functions with
period 𝜃, then a transition probability is periodic
function; that is, 𝑃(𝑡 + 𝜃, 𝑥, 𝑠 + 𝜃, 𝐴) = 𝑃(𝑡, 𝑥, 𝑠, 𝐴).

Now, we investigate conditions for which the solution of
(1) is a diffusion process. For this we must find an additional
estimate.

Lemma 5. Let 𝑥𝑡,𝑥(𝑠) be a solution of (2) such that 𝑥𝑡,𝑥(𝑡) =
𝑥, 𝑥 ∈ 𝑅

𝑑. If conditions of Theorem 2 are satisfied and 𝐺𝑡(𝑡, 𝑥)
is continuous for 𝑡 ≥ 𝑡0, 𝑥 ∈ 𝑅𝑑, then an inequality

𝐸
󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑠) − 𝑥

󵄨󵄨󵄨󵄨
4
≤ 𝐻(𝑠 − 𝑡)

2
(1 + |𝑥|

4
) (28)

holds. Here 𝐻 > 0 is a constant dependent only on 𝐶, 𝐿1, 𝐿,
and 𝐺𝑡(𝑡, 𝑥).

Proof. Denote by 𝜘𝑁(𝑠) the indicator of the set

{𝜔 : sup
𝑢∈[𝑡,𝑠]

󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑢) − 𝑥
󵄨󵄨󵄨󵄨 ≤ 𝑁} . (29)

Similarly to finding estimation (24), we have

𝐸 (𝜘𝑁 (𝑠)
󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑠) − 𝑥

󵄨󵄨󵄨󵄨
4
)

≤ 27𝐸 (𝜘𝑁 (𝑠) (𝐺 (𝑠, 𝑥𝑡,𝑥 (𝑠)) − 𝐺 (𝑠, 𝑥)

+𝐺 (𝑠, 𝑥) − 𝐺 (𝑡, 𝑥) )
4
)

+ 27𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

𝑡

𝜘𝑁 (𝑢) 𝑎 (𝑢, 𝑥𝑡,𝑠 (𝑢)) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

+ 27𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

𝑡

𝜘𝑁 (𝑢) 𝜎 (𝑢, 𝑥𝑡,𝑥 (𝑢)) 𝑑𝑊 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

≤ 6
3
𝐿
4

1
𝐸 (𝜘𝑁 (𝑠)

󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑠) − 𝑥
󵄨󵄨󵄨󵄨
4
)

+ 6
3 󵄨󵄨󵄨󵄨󵄨
𝐺
4

𝑡
(𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨
(𝑠 − 𝑡)

4
+ 𝑜𝑥(𝑡 − 𝑠)

4

+ 27(𝑠 − 𝑡)
3
∫

𝑠

𝑡

𝐸𝜘𝑁 (𝑢)
󵄨󵄨󵄨󵄨𝑎 (𝑢, 𝑥𝑡,𝑥 (𝑢))

󵄨󵄨󵄨󵄨
4
𝑑𝑢

+ (27) (36) (𝑠 − 𝑡) ∫

𝑠

𝑡

𝐸𝜘𝑁 (𝑢)
󵄨󵄨󵄨󵄨𝜎 (𝑢, 𝑥𝑡,𝑥 (𝑢))

󵄨󵄨󵄨󵄨
4
𝑑𝑢,

(30)

where 𝑜𝑥 points dependence on 𝑥.
The last estimate follows from Hölder’s inequality and

properties of stochastic integral. From inequality (30) and
condition for 𝐿1, we have

(1 − 6
3
𝐿
4

1
) 𝐸 (𝜘𝑁 (𝑠)

󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑠) − 𝑥
󵄨󵄨󵄨󵄨
4
)

≤ 6
3󵄨󵄨󵄨󵄨𝐺𝑡 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
4
(𝑠 − 𝑡)

4
+ 𝑜𝑥(𝑡 − 𝑠)

4

+ (27) (8) (𝑠 − 𝑡)
3
∫

𝑠

𝑡

𝐿
4
𝐸 (𝜘𝑁 (𝑢)

󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑢) − 𝑥
󵄨󵄨󵄨󵄨
4
) 𝑑𝑢

+ (27) (8) (𝑠 − 𝑡)
3
∫

𝑠

𝑡

|𝑎 (𝑢, 𝑥)|
4
𝑑𝑢

+ (27) (36) (8) (𝑠 − 𝑡) ∫

𝑠

𝑡

|𝜎 (𝑢, 𝑥)|
4
𝑑𝑢

+ (27) (36) (8) (𝑠 − 𝑡) 𝐿
4
∫

𝑠

𝑡

𝐸 (𝜘𝑁 (𝑢)
󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑢) − 𝑥

󵄨󵄨󵄨󵄨
4
) 𝑑𝑢

≤ 6
3󵄨󵄨󵄨󵄨𝐺𝑡 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨
4
(𝑠 − 𝑡)

4
+ 𝑜𝑥(𝑠 − 𝑡)

4

+ 6
3
(𝑠 − 𝑡)

4
𝐶2 (1 + |𝑥|

4
) + 6
5
(𝑠 − 𝑡)

2
𝐶2 (1 + |𝑥|

4
)

+ 6
5
(𝑠 − 𝑡) 𝐿

4
∫

𝑠

𝑡

𝐸 (𝜘𝑁 (𝑢)
󵄨󵄨󵄨󵄨𝑥𝑡,𝑠 (𝑢) − 𝑥

󵄨󵄨󵄨󵄨
4
) 𝑑𝑢,

(31)

where 𝐶2 depends only on 𝐶.
Further, the right-hand side of (31) can be estimated by

(1 + |𝑥|
4
) 𝑅(𝑠 − 𝑡)

2
+ 𝑅1 ∫

𝑠

𝑡

𝐸 (𝜘𝑁 (𝑢)
󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑢) − 𝑥

󵄨󵄨󵄨󵄨
4
) 𝑑𝑢,

(32)

where 𝑅 = 63|𝐺𝑡(𝑡, 𝑥)|
4
+6
3
𝐶2 +6

5
𝐶2 +1 and 𝑅1 = 6

5
𝐿
4
, 𝑡 ≤

𝑠 ≤ 𝑡 + 1.
Using the lemma from [11, p.38], we obtain

𝐸𝜘𝑁 (𝑢)
󵄨󵄨󵄨󵄨𝑥𝑡,𝑥 (𝑢) − 𝑥

󵄨󵄨󵄨󵄨
4
≤ 𝐻(𝑠 − 𝑡)

2
(1 + |𝑥|

4
) , (33)

where𝐻 > 0 depends only on 𝐶2, 𝐿, and 𝐺𝑡(𝑡, 𝑥).
Now, assume that𝑁 → ∞ andobtain estimate (28).This

completes the proof of the Lemma.
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Theorem 6. If conditions (1)-(2) of Theorem 2 are satisfied
and functions 𝑎(𝑡, 𝑥), 𝜎(𝑡, 𝑥), 𝐺(𝑡, 𝑥), 𝐺𝑡(𝑡, 𝑥), 𝐺𝑥𝑖(𝑡, 𝑥), and
𝐺𝑥𝑖𝑥𝑗

(𝑡, 𝑥), 𝑖, 𝑗 = 1, 𝑑, are continuous for 𝑡 ⩾ 𝑡0, 𝑥 ∈ 𝑅
𝑑.

Functions 𝐺𝑡(𝑡, 𝑥), 𝐺𝑥𝑖(𝑡, 𝑥), and 𝐺𝑥𝑖𝑥𝑗(𝑡, 𝑥) satisfy Lipschitz
conditionwith respect to𝑥 in neighborhood of every point (𝑡, 𝑥).
Then the solution of (1) is diffusion process with

𝑎 (𝑡, 𝑥) = (𝐼 − 𝐺𝑥 (𝑡, 𝑥))
−1

× [𝐺𝑡 (𝑡, 𝑥)+𝑎 (𝑡, 𝑥)+
1

2
𝐺𝑥𝑥 (𝑡, 𝑥) (𝐼−𝐺𝑥 (𝑡, 𝑥))

−1

×𝜎 (𝑡, 𝑥) 𝜎
𝑇
(𝑡, 𝑥) ((𝐼 − 𝐺𝑥 (𝑡, 𝑥))

𝑇
)
−1

]

(34)

and diffusion matrix with

𝜎 (𝑡, 𝑥)=(𝐼−𝐺𝑥 (𝑡, 𝑥))
−1
𝜎 (𝑡, 𝑥) 𝜎

𝑇
(𝑡, 𝑥) ((𝐼−𝐺𝑥 (𝑡, 𝑥))

𝑇
)
−1

.

(35)

Proof. Take any point (𝑡, 𝑥) from a region 𝑡 ⩾ 𝑡0, 𝑥 ∈ 𝑅
𝑑.

Consider a stochastic ITO equation in a closed neighborhood
of this point

𝑑𝑦 = (𝐼 − 𝐺𝑥 (𝑠, 𝑦))
−1

× [𝐺𝑡 (𝑠, 𝑦) + 𝑎 (𝑠, 𝑦) +
1

2
𝐺𝑥𝑥 (𝑠, 𝑦) (𝐼 − 𝐺𝑥 (𝑠, 𝑦))

−1

× 𝜎 (𝑠, 𝑦) 𝜎
𝑇
(𝑠, 𝑦) ((𝐼 − 𝐺𝑥 (𝑠, 𝑦))

𝑇
)
−1

] 𝑑𝑠

+ (𝐼 − 𝐺𝑥 (𝑠, 𝑦))
−1
𝜎 (𝑠, 𝑦) 𝑑𝑊 (𝑠) .

(36)

From the conditions of the theorem, it follows that there
exists a closed neighborhood of the point (𝑡, 𝑥), such that
coefficients of the equation are Lipschitz with respect to 𝑥.
Fix this neighborhood. Extend these coefficients on the all
region 𝑡 ≥ 𝑡0, 𝑥 ∈ 𝑅

𝑑 such that they remain continuous by
both variables, Lipschitz and linear with respect to 𝑥.

Then the equation

𝑑𝑦 = 𝑎1 (𝑠, 𝑦) 𝑑𝑠 + 𝜎1 (𝑠, 𝑦) 𝑑𝑊 (𝑠) (37)

with these extended coefficients has a unique solution of the
IVP 𝑦(𝑡) = 𝑥 for 𝑠 > 𝑡.

From ITO formula and coincidence of coefficients of
(36) and (37) in this neighborhood of the point (𝑡, 𝑥),
one can show that processes 𝑥𝑡,𝑥 and 𝑦(𝑠) coincide in this
neighborhood.

It is known that under these assumptions the process 𝑦(𝑠)
is diffusion. Its diffusion coefficients in the point (𝑡, 𝑥) are
defined by coefficients of (36).

Next, show that 𝑥(𝑠) has the same diffusion coefficients.
To do this it is sufficient to estimate the following limits and
use estimation (28)

lim
𝑠→ 𝑡

1

𝑠 − 𝑡
∫
|𝑦−𝑥|≤𝜀0

(𝑦 − 𝑥) 𝑃 (𝑡, 𝑥, 𝑠, 𝑑𝑦) ,

lim
𝑠→ 𝑡

1

𝑠 − 𝑡
∫
|𝑦−𝑥|≤𝜀0

(𝑧, 𝑦 − 𝑥)
2
𝑃 (𝑡, 𝑥, 𝑠, 𝑑𝑦) ,

(38)

where 𝜀0 is chosen such that the point (𝑠, 𝑦) is laying in this
neighborhood.

We get

lim
𝑠→ 𝑡

1

𝑠 − 𝑡
∫
|𝑦−𝑥|≤𝜀0

(𝑦 − 𝑥) 𝑃 (𝑡, 𝑥, 𝑠, 𝑑𝑦)

= lim
𝑠→ 𝑡

1

𝑠 − 𝑡
∫
{𝑤:|𝑥𝑡,𝑥(𝑠)−𝑥|≤𝜀0}

(𝑥𝑡,𝑥 (𝑠) − 𝑥) 𝑃 (𝑑𝑤)

= lim
𝑠→ 𝑡

1

𝑠 − 𝑡
∫
{𝑤:|𝑦(𝑠)−𝑥|≤𝜀0}

(𝑦 (𝑠) − 𝑥) 𝑃 (𝑑𝑤)

= (𝐼 − 𝐺𝑥 (𝑡, 𝑥))
−1
[𝐺𝑡 (𝑡, 𝑥) + 𝑎 (𝑡, 𝑥) +

1

2
𝐺𝑥𝑥 (𝑡, 𝑥)

× (𝐼 − 𝐺𝑥 (𝑡, 𝑥))
−1
𝜎 (𝑡, 𝑥)

×𝜎
𝑇
(𝑡, 𝑥) ((𝐼 − 𝐺𝑥 (𝑡, 𝑥))

𝑇
)
−1

] .

(39)

Similarly, obtain the second limit in (38):

lim
𝑠→ 𝑡

1

𝑠 − 𝑡
∫
|𝑦−𝑥|≤𝜀0

(𝑧, 𝑦 − 𝑥)
2
𝑃 (𝑡, 𝑥, 𝑠, 𝑑𝑦)

= ( (𝐼 − 𝐺𝑥 (𝑡, 𝑥))
−1
𝜎 (𝑡, 𝑥) 𝜎

𝑇
(𝑡, 𝑥)

× ((𝐼 − 𝐺𝑥 (𝑡, 𝑥))
𝑇
)
−1

𝑧, 𝑧) .

(40)

So, the existence of limits in (38) is proved for every point
(𝑡, 𝑥) and fixed 𝜀0, chosen for this point. It is clear that
from (28), these limits exist for every 𝜀 > 0 and they
are independent of 𝜀. From the above and the definition
of diffusion process [12, p.67] we can finish the proof. The
theorem is proved.
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