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We study the description of Kadison-Schwarz type quantum quadratic operators (q.q.o.) acting fromM
2
(C) intoM

2
(C) ⊗ M

2
(C).

Note that such kind of operators is a generalization of quantum convolution. Bymeans of such a description we provide an example
of q.q.o. which is not a Kadison-Schwartz operator. Moreover, we study dynamics of an associated nonlinear (i.e., quadratic)
operators acting on the state space ofM

2
(C).

1. Introduction

It is known that one of the main problems of quantum
information is the characterization of positive and completely
positivemaps on𝐶

∗-algebras.There aremany papers devoted
to this problem (see, e.g., [1–4]). In the literature the com-
pletely positive maps have proved to be of great importance
in the structure theory of 𝐶

∗-algebras. However, general
positive (order-preserving) linear maps are very intractable
[2, 5]. It is therefore of interest to study conditions stronger
than positivity, but weaker than complete positivity. Such a
condition is called Kadison-Schwarz property, that is, amap 𝜙

satisfies the Kadison-Schwarz property if 𝜙(𝑎)∗𝜙(𝑎) ≤ 𝜙(𝑎
∗
𝑎)

holds for every 𝑎. Note that every unital completely positive
map satisfies this inequality, and a famous result of Kadison
states that any positive unital map satisfies the inequality for
self-adjoint elements 𝑎. In [6] relations between 𝑛-positivity
of a map 𝜙 and the Kadison-Schwarz property of certain map
is established. Certain relations between complete positiv-
ity, positive, and the Kadison-Schwarz property have been
considered in [7–9]. Some spectral and ergodic properties of
Kadison-Schwarz maps were investigated in [10–12].

In [13] we have studied quantum quadratic operators
(q.q.o.), that is, maps fromM

2
(C) intoM

2
(C) ⊗ M

2
(C), with

the Kadison-Schwarz property. Some necessary conditions
for the trace-preserving quadratic operators are found to

be the Kadison-Schwarz ones. Since trace-preserving maps
arise naturally in quantum information theory (see, e.g.,
[14]) and other situations in which one wishes to restrict
attention to a quantum system that should properly be
considered a subsystem of a larger system with which it
interacts. Note that in [15, 16] quantum quadratic operators
acting on a von Neumann algebra were defined and studied.
Certain ergodic properties of such operators were studied
in [17, 18] (see for review [19]). In the present paper we
continue our investigation; that is, we are going to study
further properties of q.q.o. with Kadison-Schwarz property.
We will provide an example of q.q.o. which is not a Kadison-
Schwarz operator and study its dynamics. We should stress
that q.q.o. is a generalization of quantum convolution (see
[20]). Some dynamical properties of quantum convolutions
were investigated in [21].

Note that a description of bistochastic Kadison-Schwarz
mappings fromM

2
(C) intoM

2
(C) has been provided in [22].

2. Preliminaries

In what follows, by M
2
(C) we denote an algebra of 2 × 2

matrices over complex filed C. By M
2
(C) ⊗ M

2
(C) we mean

tensor product of M
2
(C) into itself. We note that such a

product can be considered as an algebra of 4 × 4 matrices
M
4
(C) over C. In the sequel 1means an identity matrix, that
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is, 1 = (
1 0

0 1
). By 𝑆(M

2
(C)) we denote the set of all states (i.e.,

linear positive functionals which take value 1 at 1) defined on
M
2
(C).

Definition 1. A linear operatorΔ : M
2
(C) → M

2
(C)⊗M

2
(C)

is said to be

(a) a quantum quadratic operator (q.q.o.) if it satisfies the
following conditions:

(i) unital, that is, Δ1 = 1 ⊗ 1;
(ii) Δ is positive, that is, Δ𝑥 ≥ 0 whenever 𝑥 ≥ 0;

(b) a Kadison-Schwarz operator (KS) if it satisfies

Δ (𝑥
∗
𝑥) ≥ Δ (𝑥

∗
) Δ (𝑥) , ∀𝑥 ∈ M

2
(C) . (1)

One can see that if Δ is unital and KS operator, then it is a
q.q.o. A state ℎ ∈ 𝑆(M

2
(C)) is called a Haar state for a q.q.o.

Δ if for every 𝑥 ∈ M
2
(C) one has

(ℎ ⊗ id) ∘ Δ (𝑥) = (id ⊗ ℎ) ∘ Δ (𝑥) = ℎ (𝑥) 1. (2)

Remark 2. Note that if a quantum convolution Δ on M
2
(C)

becomes a ∗-homomorphic map with a condition

Lin ((1 ⊗M
2
(C)) Δ (M

2
(C)))

= Lin ((M
2
(C) ⊗ 1) Δ (M

2
(C))) = M

2
(C) ⊗M

2
(C) ,

(3)

then a pair (M
2
(C), Δ) is called a compact quantum group

[20]. It is known [20] that for any given compact quantum
group there exists a unique Haar state w.r.t. Δ.

Remark 3. Let 𝑈 : M
2
(C) ⊗ M

2
(C) → M

2
(C) ⊗ M

2
(C) be a

linear operator such that𝑈(𝑥⊗𝑦) = 𝑦⊗𝑥 for all𝑥, 𝑦 ∈ M
2
(C).

If a q.q.o. Δ satisfies 𝑈Δ = Δ, then Δ is called a quantum
quadratic stochastic operator. Such a kind of operators was
studied and investigated in [17].

Each q.q.o. Δ defines a conjugate operator Δ∗ : (M
2
(C) ⊗

M
2
(C))
∗

→ M
2
(C)
∗ by

Δ
∗
(𝑓) (𝑥) = 𝑓 (Δ𝑥) , 𝑓 ∈ (M

2
(C) ⊗M

2
(C))
∗

,

𝑥 ∈ M
2
(C) .

(4)

One can define an operator 𝑉
Δ
by

𝑉
Δ
(𝜑) = Δ

∗
(𝜑 ⊗ 𝜑) , 𝜑 ∈ 𝑆 (M

2
(C)) , (5)

which is called a quadratic operator (q.c.). Thanks to condi-
tions (a) (i), (ii) of Definition 1 the operator 𝑉

Δ
maps

𝑆(M
2
(C)) to 𝑆(M

2
(C)).

3. Quantum Quadratic Operators with
Kadison-Schwarz Property on M

2
(C)

In this section we are going to describe quantum quadratic
operators on M

2
(C) and find necessary conditions for such

operators to satisfy the Kadison-Schwarz property.

Recall [23] that the identity and Pauli matrices {1, 𝜎
1
,

𝜎
2
, 𝜎
3
} form a basis forM

2
(C), where

𝜎
1
= (

0 1

1 0
) , 𝜎

2
= (

0 −𝑖

𝑖 0
) , 𝜎

3
= (

1 0

0 −1
) . (6)

In this basis every matrix 𝑥 ∈ M
2
(C) can be written as

𝑥 = 𝑤
0
1 + w𝜎 with 𝑤

0
∈ C, w = (𝑤

1
, 𝑤
2
, 𝑤
3
) ∈ C3, here

w𝜎 = 𝑤
1
𝜎
1
+ 𝑤
2
𝜎
2
+ 𝑤
3
𝜎
3
.

Lemma 4 (see [3]). The following assertions hold true:

(a) 𝑥 is self-adjoint if and only if 𝑤
0
, w are reals;

(b) Tr(𝑥) = 1 if and only if 𝑤
0
= 0.5; here Tr is the trace of

a matrix 𝑥;
(c) 𝑥 > 0 if and only if ‖w‖ ≤ 𝑤

0
, where ‖w‖ =

√|𝑤
1
|
2
+ |𝑤
2
|
2
+ |𝑤
3
|
2.

Note that any state 𝜑 ∈ 𝑆(M
2
(C)) can be represented by

𝜑 (𝑤
0
1 + w𝜎) = 𝑤

0
+ ⟨w, f⟩, (7)

where f = (𝑓
1
, 𝑓
2
, 𝑓
3
) ∈ R3 with ‖ f ‖≤ 1. Here as before ⟨⋅, ⋅⟩

stands for the scalar product in C3. Therefore, in the sequel
we will identify a state 𝜑 with a vector f ∈ R3.

In what follows by 𝜏we denote a normalized trace, that is,
𝜏(𝑥) = (1/2) Tr(𝑥), 𝑥 ∈ M

2
(C).

Let Δ : M
2
(C) → M

2
(C) ⊗M

2
(C) be a q.q.o. with a Haar

state 𝜏. Then one has

𝜏 ⊗ 𝜏 (Δ𝑥) = 𝜏 (𝜏 ⊗ 𝑖𝑑) (Δ (𝑥))

= 𝜏 (𝑥) 𝜏 (1) = 𝜏 (𝑥) , 𝑥 ∈ M
2
(C) ,

(8)

which means that 𝜏 is an invariant state for Δ.
Let us write the operator Δ in terms of a basis inM

2
(C) ⊗

M
2
(C) formed by the Pauli matrices, namely,

Δ1 = 1 ⊗ 1,

Δ (𝜎
𝑖
) = 𝑏
𝑖
(1 ⊗ 1) +

3

∑

𝑗=1

𝑏
(1)

𝑗𝑖
(1 ⊗ 𝜎

𝑗
)

+

3

∑

𝑗=1

𝑏
(2)

𝑗𝑖
(𝜎
𝑗
⊗ 1) +

3

∑

𝑚,𝑙=1

𝑏
𝑚𝑙,𝑖

(𝜎
𝑚

⊗ 𝜎
𝑙
) , 𝑖 = 1, 2, 3,

(9)

where 𝑏
𝑖
, 𝑏
(1)

𝑖𝑗
, 𝑏
(2)

𝑖𝑗
, 𝑏
𝑖𝑗𝑘

∈ C (𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}).
One can prove the following.

Theorem 5 (see [13, Proposition 3.2]). Let Δ : M
2
(C) →

M
2
(C) ⊗ M

2
(C) be a q.q.o. with a Haar state 𝜏, then it has

the following form:

Δ (𝑥) = 𝑤
0
1 ⊗ 1 +

3

∑

𝑚,𝑙=1

⟨b
𝑚𝑙
,w⟩𝜎
𝑚

⊗ 𝜎
𝑙
, (10)

where 𝑥 = 𝑤
0
+ w𝜎, b

𝑚𝑙
= (𝑏
𝑚𝑙,1

, 𝑏
𝑚𝑙,2

, 𝑏
𝑚𝑙,3

) ∈ R3, 𝑚, 𝑛, 𝑘 ∈

{1, 2, 3}.
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Let us turn to the positivity of Δ. Given vector f = (𝑓
1
,

𝑓
2
, 𝑓
3
) ∈ R3 put

𝛽(f)
𝑖𝑗
=

3

∑

𝑘=1

𝑏
𝑘𝑖,𝑗

𝑓
𝑘
. (11)

Define a matrix B(f) = (𝛽(f)
𝑖𝑗
)
3

𝑖𝑗=1
.

By ‖B(f)‖we denote a norm of the matrixB(f) associated
with Euclidean norm in C3. Put

𝑆 = {p = (𝑝
1
, 𝑝
2
, 𝑝
3
) ∈ R
3
: 𝑝
2

1
+ 𝑝
2

2
+ 𝑝
2

3
≤ 1} (12)

and denote

|‖B‖| = sup
f∈𝑆

‖B (f)‖ . (13)

Proposition 6 (see [13, Proposition 3.3]). Let Δ be a q.q.o.
with a Haar state 𝜏, then |‖B‖| ≤ 1.

Let Δ : M
2
(C) → M

2
(C) ⊗ M

2
(C) be a liner operator

with a Haar state 𝜏. Then due to Theorem 5 Δ has the form
(10). Take arbitrary states 𝜑, 𝜓 ∈ 𝑆(M

2
(C)) and let f , p ∈ 𝑆 be

the corresponding vectors (see (7)). Then one finds that

Δ
∗
(𝜑 ⊗ 𝜓) (𝜎

𝑘
) =

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,𝑘

𝑓
𝑖
𝑝
𝑗
, 𝑘 = 1, 2, 3. (14)

Thanks to Lemma 4 the functional Δ∗(𝜑 ⊗ 𝜓) is a state if
and only if the vector

f
Δ
∗
(𝜑,𝜓)

= (

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,1

𝑓
𝑖
𝑝
𝑗
,

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,2

𝑓
𝑖
𝑝
𝑗
,

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,3

𝑓
𝑖
𝑝
𝑗
) (15)

satisfies ‖ f
Δ
∗
(𝜑,𝜓)

‖≤ 1.
So, we have the following.

Proposition 7 (see [13, Proposition 4.1]). Let Δ : M
2
(C) →

M
2
(C) ⊗ M

2
(C) be a liner operator with a Haar state 𝜏. Then

Δ
∗
(𝜑 ⊗ 𝜓) ∈ 𝑆(M

2
(C)) for any 𝜑, 𝜓 ∈ 𝑆(M

2
(C)) if and only if

the following holds:

3

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,𝑘

𝑓
𝑖
𝑝
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 1, ∀f , p ∈ 𝑆. (16)

From the proof of Proposition 6 and the last proposition
we conclude that |‖B‖| ≤ 1 holds if and only if (16) is satisfied.

Remark 8. Note that characterizations of positive maps
defined on M

2
(C) were considered in [24] (see also [25]).

Characterization of completely positive mappings from
M
2
(C) into itself with invariant state 𝜏 was established in [3]

(see also [26]).

Next we would like to recall (see [13]) some conditions for
q.q.o. to be the Kadison-Schwarz ones.

Let Δ : M
2
(C) → M

2
(C) ⊗ M

2
(C) be a linear operator

with aHaar state 𝜏; then it has the form (10). Nowwe are going

to find some conditions to the coefficients {𝑏
𝑚𝑙,𝑘

} when Δ is
a Kadison-Schwarz operator. Given 𝑥 = 𝑤

0
+ w𝜎 and state

𝜑 ∈ 𝑆(M
2
(C)), let us denote

x
𝑚

= (⟨b
𝑚1

,w⟩, ⟨b
𝑚2

,w⟩, ⟨b
𝑚3

,w⟩) , 𝑓
𝑚

= 𝜑 (𝜎
𝑚
) ,

(17)

𝛼
𝑚𝑙

= ⟨x
𝑚
, x
𝑙
⟩ − ⟨x

𝑙
, x
𝑚
⟩, 𝛾

𝑚𝑙
= [x
𝑚
, x
𝑙
] + [x

𝑚
, x
𝑙
] ,

(18)

where 𝑚, 𝑙 = 1, 2, 3. Here and in what follows [⋅, ⋅] stands for
the usual cross-product inC3. Note that here the numbers𝛼

𝑚𝑙

are skew symmetric, that is, 𝛼
𝑚𝑙

= −𝛼
𝑚𝑙
. By 𝜋 we will denote

mapping {1, 2, 3, 4} to {1, 2, 3} defined by 𝜋(1) = 2, 𝜋(2) =

3, 𝜋(3) = 1, 𝜋(4) = 𝜋(1).
Denote

q (f ,w) = (⟨𝛽(f)
1
, [w,w]⟩, ⟨𝛽(f)2, [w,w]⟩, ⟨𝛽(f)3, [w,w]⟩) ,

(19)

where 𝛽(f)
𝑚

= (𝛽(f)
𝑚1

, 𝛽(f)
𝑚2

, 𝛽(f)
𝑚3

) (see (11)).

Theorem 9 (see [13, Theorem 3.6]). Let Δ : M
2
(C) →

M
2
(C) ⊗ M

2
(C) be a Kadison-Schwarz operator with a Haar

state 𝜏; then it has the form (10) and the coefficients {𝑏
𝑚𝑙,𝑘

}

satisfy the following conditions:

‖w‖
2
≥ 𝑖

3

∑

𝑚=1

𝑓
𝑚
𝛼
𝜋(𝑚),𝜋(𝑚+1)

+

3

∑

𝑚=1

󵄩󵄩󵄩󵄩x𝑚
󵄩󵄩󵄩󵄩

2

, (20)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

q (f ,w) − 𝑖

3

∑

𝑚=1

𝑓
𝑚
𝛾
𝜋(𝑚),𝜋(𝑚+1)

− [x
𝑚
, x
𝑚
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ‖w‖
2
− 𝑖

3

∑

𝑘=1

𝑓
𝑘
𝛼
𝜋(𝑘),𝜋(𝑘+1)

−

3

∑

𝑚=1

󵄩󵄩󵄩󵄩x𝑚
󵄩󵄩󵄩󵄩

2

(21)

for all f ∈ 𝑆, w ∈ C3. Here as before x
𝑚

= (⟨b
𝑚1

,w⟩,

⟨b
𝑚2

,w⟩, ⟨b
𝑚3

,w⟩); b
𝑚𝑙

= (𝑏
𝑚𝑙,1

, 𝑏
𝑚𝑙,2

, 𝑏
𝑚𝑙,3

), and q(f ,w), 𝛼
𝑚𝑙
,

and 𝛾
𝑚𝑙

are defined in (19), (17), and (18), respectively.

Remark 10. The provided characterization with [2, 3] allows
us to construct examples of positive or Kadison-Schwarz
operators which are not completely positive (see next sec-
tion).

Now we are going to give a general characterization of
KS operators. Let us first give some notations. For a given
mapping Δ : M

2
(C) → M

2
(C) ⊗ M

2
(C), by Δ(𝜎) we denote

the vector (Δ(𝜎
1
), Δ(𝜎

2
), Δ(𝜎

3
)), and by wΔ(𝜎) we mean the

following:

wΔ (𝜎) = 𝑤
1
Δ (𝜎
1
) + 𝑤
2
Δ (𝜎
2
) + 𝑤
3
Δ (𝜎
3
) , (22)

where w ∈ C3. Note that the last equality (22), due to the
linearity of Δ, can also be written as wΔ(𝜎) = Δ(w𝜎).

Theorem 11. Let Δ : M
2
(C) → M

2
(C) ⊗ M

2
(C) be a unital

∗-preserving linear mapping. Then Δ is a KS operator if and
only if one has

𝑖 [w,w] Δ (𝜎) + (wΔ (𝜎)) (wΔ (𝜎)) ≤ 1 ⊗ 1, (23)

for all w ∈ C3 with ‖w‖ = 1.
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Proof. Let 𝑥 ∈ 𝑀
2
(C) be an arbitrary element, that is, 𝑥 =

𝑤
0
1 + w𝜎. Then 𝑥

∗
= 𝑤
0
1 + w𝜎. Therefore

𝑥
∗
𝑥 = (

󵄨󵄨󵄨󵄨𝑤0
󵄨󵄨󵄨󵄨

2

+ ‖w‖
2
) 1 + (𝑤

0
w + 𝑤

0
w − 𝑖 [w,w]) 𝜎. (24)

Consequently, we have

Δ (𝑥) = 𝑤
0
1 ⊗ 1 + wΔ (𝜎) ,

Δ (𝑥
∗
) = 𝑤
0
1 ⊗ 1 + wΔ (𝜎) ,

(25)

Δ (𝑥
∗
𝑥) = (

󵄨󵄨󵄨󵄨𝑤0
󵄨󵄨󵄨󵄨

2

+ ‖w‖
2
) 1 ⊗ 1

+ (𝑤
0
w + 𝑤

0
w − 𝑖 [w,w]) Δ (𝜎) ,

(26)

Δ(𝑥)
∗
Δ (𝑥) =

󵄨󵄨󵄨󵄨𝑤0
󵄨󵄨󵄨󵄨

2

1 ⊗ 1 + (𝑤
0
w + 𝑤

0
w) Δ (𝜎)

+ (wΔ (𝜎)) (wΔ (𝜎)) .

(27)

From (26) and (27) one gets

Δ (𝑥
∗
𝑥) − Δ(𝑥)

∗
Δ (𝑥)

= ‖w‖
2
1 ⊗ 1 − 𝑖 [w,w] Δ (𝜎) − (wΔ (𝜎)) (wΔ (𝜎)) .

(28)

So, the positivity of the last equality implies that

‖w‖
2
1 ⊗ 1 − 𝑖 [w,w] Δ (𝜎) − (wΔ (𝜎)) (wΔ (𝜎)) ≥ 0. (29)

Now dividing both sides by ‖w‖
2 we get the required inequal-

ity. Hence, this completes the proof.

4. An Example of Q.Q.O. Which Is Not
Kadison-Schwarz One

In this section we are going to study dynamics of (57) for a
special class of quadratic operators. Such class operators are
associated with the following matrix {𝑏

𝑖𝑗,𝑘
} given by

𝑏
11,1

= 𝜀, 𝑏
11,2

= 0, 𝑏
11,3

= 0,

𝑏
12,1

= 0, 𝑏
12,2

= 0, 𝑏
12,3

= 𝜀,

𝑏
13,1

= 0, 𝑏
13,2

= 𝜀, 𝑏
13,3

= 0,

𝑏
22,1

= 0, 𝑏
22,2

= 𝜀, 𝑏
22,3

= 0,

𝑏
23,1

= 𝜀, 𝑏
23,2

= 0, 𝑏
23,3

= 0,

𝑏
33,1

= 0, 𝑏
33,2

= 0, 𝑏
33,3

= 𝜀,

(30)

and 𝑏
𝑖𝑗,𝑘

= 𝑏
𝑗𝑖,𝑘

.
Via (10)we define a liner operatorΔ

𝜀
, forwhich 𝜏 is aHaar

state. In the sequel we would like to find some conditions to
𝜀 which ensures positivity of Δ

𝜀
.

It is easy that for given {𝑏
𝑖𝑗𝑘

} one can find a form of Δ
𝜀
as

follows.
Δ
𝜀
(𝑥) = 𝑤

0
1 ⊗ 1 + 𝜀𝜔

1
𝜎
1
⊗ 𝜎
1
+ 𝜀𝜔
3
𝜎
1
⊗ 𝜎
2

+ 𝜀𝜔
2
𝜎
1
⊗ 𝜎
3
+ 𝜀𝜔
3
𝜎
2
⊗ 𝜎
1
+ 𝜀𝜔
2
𝜎
2
⊗ 𝜎
2

+ 𝜀𝜔
1
𝜎
2
⊗ 𝜎
3
+ 𝜀𝜔
2
𝜎
3
⊗ 𝜎
1
+ 𝜀𝜔
1
𝜎
3
⊗ 𝜎
2

+ 𝜀𝜔
3
𝜎
3
⊗ 𝜎
3
,

(31)

where, as before, 𝑥 = 𝑤
0
1 + w𝜎.

Theorem 12. A linear operator Δ
𝜀
given by (31) is a q.q.o. if

and only if |𝜀| ≤ 1/3.

Proof. Let 𝑥 = 𝑤
0
1 + w𝜎 be a positive element from M

2
(C).

Let us show positivity of thematrixΔ
𝜀
(𝑥). To do it, we rewrite

(31) as follows: Δ
𝜀
(𝑥) = 𝑤

0
1 + 𝜀B; here

B = (

𝜔
3

𝜔
2
− 𝑖𝜔
1

𝜔
2
− 𝑖𝜔
1

𝜔
1
− 2𝑖𝜔

3
− 𝜔
2

𝜔
2
+ 𝑖𝜔
1

−𝜔
3

𝜔
1
+ 𝜔
2

−𝜔
2
+ 𝑖𝜔
1

𝜔
2
+ 𝑖𝜔
1

𝜔
1
+ 𝜔
2

−𝜔
3

−𝜔
2
+ 𝑖𝜔
1

𝜔
1
+ 2𝑖𝜔

3
− 𝜔
2

−𝜔
2
− 𝑖𝜔
1

−𝜔
2
− 𝑖𝜔
1

𝜔
3

),

(32)

where positivity of 𝑥 yields that 𝑤
0
,𝜔
1
,𝜔
2
,𝜔
3
are real num-

bers. In what follows, without loss of generality, we may
assume that 𝑤

0
= 1, and therefore ‖w‖ ≤ 1. It is known

that positivity of Δ
𝜀
(𝑥) is equivalent to positivity of the

eigenvalues of Δ
𝜀
(𝑥).

Let us first examine eigenvalues of B. Simple algebra
shows us that all eigenvalues of B can be written as follows:

𝜆
1
(w) = 𝜔

1
+ 𝜔
2
+ 𝜔
3

+ 2√𝜔
2

1
+ 𝜔
2

2
+ 𝜔
2

3
− 𝜔
1
𝜔
2
− 𝜔
1
𝜔
3
− 𝜔
2
𝜔
3
,

𝜆
2
(w) = 𝜔

1
+ 𝜔
2
+ 𝜔
3

− 2√𝜔
2

1
+ 𝜔
2

2
+ 𝜔
2

3
− 𝜔
1
𝜔
2
− 𝜔
1
𝜔
3
− 𝜔
2
𝜔
3
,

𝜆
3
(w) = 𝜆

4
(w) = −𝜔

1
− 𝜔
2
− 𝜔
3
.

(33)

Now examine maximum and minimum values of the func-
tions 𝜆

1
(w), 𝜆

2
(w), 𝜆

3
(w), 𝜆

4
(w) on the ball ‖w‖ ≤ 1.

One can see that

󵄨󵄨󵄨󵄨𝜆3 (w)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜆4 (w)
󵄨󵄨󵄨󵄨 ≤

3

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜔𝑘
󵄨󵄨󵄨󵄨 ≤

√3

3

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜔𝑘
󵄨󵄨󵄨󵄨

2

≤ √3.

(34)

Note that the functions 𝜆
3
, 𝜆
4
can reach values ±√3 at

±(1/√3, 1/√3, 1/√3).
Now let us rewrite 𝜆

1
(w) and 𝜆

2
(w) as follows:

𝜆
1
(w) = 𝜔

1
+ 𝜔
2
+ 𝜔
3

+
2

√2

√3 (𝜔
2

1
+ 𝜔
2

2
+ 𝜔
2

3
) − (𝜔

1
+ 𝜔
2
+ 𝜔
3
)
2

,

(35)

𝜆
2
(w) = 𝜔

1
+ 𝜔
2
+ 𝜔
3

−
2

√2

√3 (𝜔
2

1
+ 𝜔
2

2
+ 𝜔
2

3
) − (𝜔

1
+ 𝜔
2
+ 𝜔
3
)
2

.

(36)

One can see that

𝜆
𝑘
(ℎ𝜔
1
, ℎ𝜔
2
, ℎ𝜔
3
) = ℎ𝜆

𝑘
(𝜔
1
, 𝜔
2
, 𝑤
3
) , if ℎ ≥ 0, (37)

𝜆
1
(ℎ𝜔
1
, ℎ𝜔
2
, ℎ𝜔
3
) = ℎ𝜆

2
(𝜔
1
, 𝜔
2
, 𝑤
3
) , if ℎ ≤ 0. (38)

where 𝑘 = 1, 2. Therefore, the functions 𝜆
𝑘
(w), 𝑘 = 1, 2 reach

their maximum andminimum on the sphere𝜔2
1
+𝜔
2

2
+𝜔
2

3
= 1
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(i.e., ‖w‖ = 1). Hence, denoting 𝑡 = 𝜔
1
+ 𝜔
2
+ 𝜔
3
from (37)

and (36) we introduce the following functions:

𝑔
1
(𝑡) = 𝑡 +

2

√2

√3 − 𝑡
2
, 𝑔

2
(𝑡) = 𝑡 −

2

√2

√3 − 𝑡
2
, (39)

where |𝑡| ≤ √3.
One can find that the critical values of 𝑔

1
are 𝑡 = ±1,

and the critical value of 𝑔
2
is 𝑡 = −1. Consequently, extremal

values of 𝑔
1
and 𝑔

2
on |𝑡| ≤ √3 are the following:

min
|𝑡|≤√3

𝑔
1
(𝑡) = −√3, max

|𝑡|≤√3

𝑔
1
(𝑡) = 3,

min
|𝑡|≤√3

𝑔
2
(𝑡) = −3, max

|𝑡|≤√3

𝑔
2
(𝑡) = √3.

(40)

Therefore, from (37) and (38) we conclude that

−3 ≤ 𝜆
𝑘
(w) ≤ 3, for any ‖w‖ ≤ 1, 𝑘 = 1, 2. (41)

It is known that for the spectrum of 1 + 𝜀B one has

𝑆𝑝 (1 + 𝜀B) = 1 + 𝜀𝑆𝑝 (B) . (42)

Therefore,

𝑆𝑝 (1 + 𝜀B) = {1 + 𝜀𝜆
𝑘
(w) : 𝑘 = 1, 4} . (43)

So, if

|𝜀| ≤
1

max
‖w‖≤1

󵄨󵄨󵄨󵄨𝜆𝑘 (w)
󵄨󵄨󵄨󵄨

, 𝑘 = 1, 4, (44)

then one can see 1 + 𝜀𝜆
𝑘
(w) ≥ 0 for all ‖w‖ ≤ 1, 𝑘 = 1, 4.

This implies that the matrix 1 + 𝜀B is positive for all w with
‖w‖ ≤ 1.

Now assume that Δ
𝜀
is positive. Then Δ

𝜀
(𝑥) is positive

whenever 𝑥 is positive. This means that 1 + 𝜀𝜆
𝑘
(w) ≥ 0 for

all ‖w‖ ≤ 1(𝑘 = 1, 4). From (34) and (41) we conclude that
|𝜀| ≤ 1/3. This completes the proof.

Theorem 13. Let 𝜀 = 1/3 then the corresponding q.q.o. Δ
𝜀
is

not KS operator.

Proof. It is enough to show the dissatisfaction of (21) at some
values of w (‖w‖ ≤ 1) and f = (𝑓

1
, 𝑓
1
, 𝑓
2
).

Assume that f = (1, 0, 0); then a little algebra shows that
(21) reduces to the following one:

√𝐴 + 𝐵 + 𝐶 ≤ 𝐷, (45)

where

𝐴 =
󵄨󵄨󵄨󵄨󵄨
𝜀 (𝜔
2
𝜔
3
− 𝜔
3
𝜔
2
) − 𝑖𝜀
2
(2𝜔
2
𝜔
3
− 2

󵄨󵄨󵄨󵄨𝜔1
󵄨󵄨󵄨󵄨

2

− 𝜔
2
𝜔
1

+𝜔
1
𝜔
2
− 𝜔
1
𝜔
3
+ 𝜔
3
𝜔
1
)
󵄨󵄨󵄨󵄨

2

,

𝐵 =
󵄨󵄨󵄨󵄨󵄨
𝜀 (𝜔
1
𝜔
2
− 𝜔
2
𝜔
1
) − 𝑖𝜀
2
(2𝜔
1
𝜔
2
− 2

󵄨󵄨󵄨󵄨𝜔3
󵄨󵄨󵄨󵄨

2

− 𝜔
1
𝜔
3

+𝜔
3
𝜔
1
− 𝜔
3
𝜔
2
+ 𝜔
2
𝜔
3
)
󵄨󵄨󵄨󵄨

2

,

𝐶 =
󵄨󵄨󵄨󵄨󵄨
𝜀 (𝜔
3
𝜔
1
− 𝜔
1
𝜔
3
) − 𝑖𝜀
2
(2𝜔
3
𝜔
1
− 2

󵄨󵄨󵄨󵄨𝜔2
󵄨󵄨󵄨󵄨

2

− 𝜔
3
𝜔
2

+𝜔
2
𝜔
3
− 𝜔
2
𝜔
1
+ 𝜔
1
𝜔
2
)
󵄨󵄨󵄨󵄨

2

,

𝐷 = (1 − 3|𝜀|
2
) (

󵄨󵄨󵄨󵄨𝜔1
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜔2

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜔3

󵄨󵄨󵄨󵄨

2

)

− 𝑖𝜀
2
(𝜔
3
𝑤
2
− 𝜔
2
𝜔
3
+ 𝜔
2
𝜔
1
− 𝜔
1
𝜔
2
+ 𝜔
1
𝜔
3
− 𝜔
3
𝜔
1
) .

(46)

Now choose w as follows:

𝜔
1
= −

1

9
, 𝜔

2
=

5

36
, 𝜔

3
=

5𝑖

27
. (47)

Then calculations show that

𝐴 =
9594

19131876
, 𝐵 =

19625

86093442
,

𝐶 =
1625

3779136
, 𝐷 =

589

17496
.

(48)

Hence, we find

√
9594

19131876
+

19625

86093442
+

1625

3779136
>

589

17496
, (49)

which means that (45) is not satisfied. Hence, Δ
𝜀
is not a KS

operator at 𝜀 = 1/3.

Recall that a linear operator 𝑇 : M
𝑘
(C) → M

𝑚
(C)

is completely positive if for any positive matrix (𝑎
𝑖𝑗
)
𝑛

𝑖,𝑗=1
∈

M
𝑘
(M
𝑛
(C)) the matrix (𝑇(𝑎

𝑖𝑗
))
𝑛

𝑖,𝑗=1
is positive for all 𝑛 ∈ N.

Now we are interested when the operator Δ
𝜀
is completely

positive. It is known [1] that the complete positivity of Δ
𝜀
is

equivalent to the positivity of the following matrix:

Δ̂
𝜀
= (

Δ
𝜀
(𝑒
11
) Δ
𝜀
(𝑒
12
)

Δ
𝜀
(𝑒
21
) Δ
𝜀
(𝑒
22
)
) , (50)

here 𝑒
𝑖𝑗
(𝑖, 𝑗 = 1, 2) are the standard matrix units inM

2
(C).

From (31) one can calculate that

Δ
𝜀
(𝑒
11
) =

1

2
1 ⊗ 1 + 𝜀𝐵

11
, Δ

𝜀
(𝑒
22
) =

1

2
1 ⊗ 1 − 𝜀𝐵

11
,

Δ
𝜀
(𝑒
12
) = 𝜀𝐵

12
, Δ

𝜀
(𝑒
21
) = 𝜀𝐵

∗

12
,

(51)
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where

𝐵
11

=

(
(
(
(

(

1

2
0 0 −𝑖

0 −
1

2
0 0

0 0 −
1

2
0

𝑖 0 0
1

2

)
)
)
)

)

,

𝐵
12

=

(
(
(
(
(

(

0 0 0
1 − 𝑖

2

𝑖 0
1 + 𝑖

2
0

𝑖
1 + 𝑖

2
0 0

1 − 𝑖

2
−𝑖 −𝑖 0

)
)
)
)
)

)

.

(52)

Hence, we find that

2Δ̂
𝜀
= 1
8
+ 𝜀B, (53)

where 1
8
is the unit matrix inM

8
(C) and

B =

(
(
(
(

(

1 0 0 −2𝑖 0 0 0 1 − 𝑖

0 −1 0 0 2𝑖 0 1 + 𝑖 0

0 0 −1 0 2𝑖 1 + 𝑖 0 0

2𝑖 0 0 1 1 − 𝑖 −2𝑖 −2𝑖 0

0 −2𝑖 −2𝑖 1 + 𝑖 −1 0 0 2𝑖

0 0 1 − 𝑖 2𝑖 0 1 0 0

0 1 − 𝑖 0 2𝑖 0 0 1 0

1 + 𝑖 0 0 0 −2𝑖 0 0 −1

)
)
)
)

)

.

(54)

So, the matrix Δ̂
𝜀
is positive if and only if

|𝜀| ≤
1

𝜆max (B)
, (55)

where 𝜆max(B) = max
𝜆∈𝑆𝑝(B)|𝜆|.

One can easily calculate that 𝜆max(B) = 3√3. Therefore,
we have the following.

Theorem 14. Let Δ
𝜀
: M
2
(C) → M

2
(C) ⊗M

2
(C) be given by

(31). Then Δ
𝜀
is completely positive if and only if |𝜀| ≤ 1/3√3.

5. Dynamics of Δ
𝜀

LetΔ be a q.q.o. onM
2
(C). Let us consider the corresponding

quadratic operator defined by 𝑉
Δ
(𝜑) = Δ

∗
(𝜑 ⊗ 𝜑), 𝜑 ∈

𝑆(M
2
(C)). From Theorem 5 one can see that the defined

operator𝑉
Δ
maps 𝑆(M

2
(C)) into itself if and only if |‖B‖| ≤ 1

or equivalently (16) holds. From (14) we find that

𝑉
Δ
(𝜑) (𝜎

𝑘
) =

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,𝑘

𝑓
𝑖
𝑓
𝑗
, f ∈ 𝑆. (56)

Here, as before, 𝑆 = {f = (𝑓
1
, 𝑓
2
𝑓𝑝
3
) ∈ R3 : 𝑓2

1
+𝑓
2

2
+𝑓
2

3
≤ 1}.

So, (56) suggests that we consider the following nonlinear
operator 𝑉 : 𝑆 → 𝑆 defined by

𝑉(f)
𝑘
=

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,𝑘

𝑓
𝑖
𝑓
𝑗
, 𝑘 = 1, 2, 3, (57)

where f = (𝑓
1
, 𝑓
2
, 𝑓
3
) ∈ 𝑆.

It is worth to mention that uniqueness of the fixed point
(i.e., (0, 0, 0)) of the operator given by (57) was investigated in
[13, Theorem 4.4].

In this section, we are going to study dynamics of the
quadratic operator 𝑉

𝜀
corresponding to Δ

𝜀
(see (31)), which

has the following form

𝑉
𝜀
(𝑓)
1
= 𝜀 (𝑓

2

1
+ 2𝑓
2
𝑓
3
) ,

𝑉
𝜀
(𝑓)
2
= 𝜀 (𝑓

2

2
+ 2𝑓
1
𝑓
3
) ,

𝑉
𝜀
(𝑓)
3
= 𝜀 (𝑓

2

3
+ 2𝑓
1
𝑓
2
) .

(58)

Let us first find some condition on 𝜀 which ensures (16).

Lemma 15. Let 𝑉
𝜀
be given by (58). Then 𝑉

𝜀
maps 𝑆 into itself

if and only if |𝜀| ≤ 1/√3 is satisfied.

Proof. “If ” Part. Assume that 𝑉
𝜀
maps 𝑆 into itself. Then (16)

is satisfied. Take f = (1/√3, 1/√3, 1/√3), p = f . Then from
(16) one finds that

3

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,𝑘

𝑓
𝑖
𝑝
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 3𝜀
2
≤ 1 (59)

which yields |𝜀| ≤ 1/√3.
“Only If ” Part. Assume that |𝜀| ≤ 1/√3. Take any f =

(𝑓
1
, 𝑓
2
, 𝑓
3
), p = (𝑝

1
, 𝑝
2
, 𝑝
3
) ∈ 𝑆. Then one finds that

3

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3

∑

𝑖,𝑗=1

𝑏
𝑖𝑗,𝑘

𝑓
𝑖
𝑝
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 𝜀
2
(
󵄨󵄨󵄨󵄨𝑓1𝑝1 + 𝑓

3
𝑝
2
+ 𝑓
2
𝑝
3

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑓3𝑝1 + 𝑓

2
𝑝
2
+ 𝑓
1
𝑝
3

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑓2𝑝1 + 𝑓

1
𝑝
2
+ 𝑓
3
𝑝
3

󵄨󵄨󵄨󵄨

2

)

≤ 𝜀
2
((𝑓
2

1
+ 𝑓
2

2
+ 𝑓
2

3
) (𝑝
2

1
+ 𝑝
2

2
+ 𝑝
2

3
)

+ (𝑓
2

3
+ 𝑓
2

2
+ 𝑓
2

1
) (𝑝
2

1
+ 𝑝
2

2
+ 𝑝
2

3
)

+ (𝑝
2

1
+ 𝑝
2

2
+ 𝑝
2

3
) (𝑓
2

2
+ 𝑓
2

1
+ 𝑓
2

3
))

≤ 𝜀
2
(1 + 1 + 1) = 3𝜀

2
≤ 1.

(60)

This completes the proof.

Remark 16. We stress that condition (16) is necessary for
Δ to be a positive operator. Namely, from Theorem 12 and
Lemma 15 we conclude that if 𝜀 ∈ (1/3, 1/√3] then the
operator Δ

𝜀
is not positive, while (16) is satisfied.
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In what follows, to study dynamics of 𝑉
𝜀
we assume |𝜀| ≤

1/√3. Recall that a vector f ∈ 𝑆 is a fixed point of𝑉
𝜀
if𝑉
𝜀
(f) =

f . Clearly (0, 0, 0) is a fixed point of 𝑉
𝜀
. Let us find others. To

do it, we need to solve the following equation:

𝜀 (𝑓
2

1
+ 2𝑓
2
𝑓
3
) = 𝑓
1
,

𝜀 (𝑓
2

2
+ 2𝑓
1
𝑓
3
) = 𝑓
2
,

𝜀 (𝑓
2

3
+ 2𝑓
1
𝑓
2
) = 𝑓
3
.

(61)

We have the following.

Proposition 17. If |𝜀| < 1/√3 then𝑉
𝜀
has a unique fixed point

(0, 0, 0) in 𝑆. If |𝜀| = 1/√3 then 𝑉
𝜀
has the following fixed

points: (0, 0, 0) and (±1/√3, ±1/√3, ±1/√3) in 𝑆.

Proof. It is clear that (0, 0, 0) is a fixed point of 𝑉
𝜀
. If 𝑓
𝑘
= 0,

for some 𝑘 ∈ {1, 2, 3} then due to |𝜀| ≤ 1/√3, one can see that
the only solution of (61) belonging to 𝑆 is 𝑓

1
= 𝑓
2
= 𝑓
3
= 0.

Therefore, we assume that 𝑓
𝑘

̸= 0 (𝑘 = 1, 2, 3). So, from (61)
one finds

𝑓
2

1
+ 2𝑓
2
𝑓
3

𝑓
2

2
+ 2𝑓
1
𝑓
3

=
𝑓
1

𝑓
2

,

𝑓
2

1
+ 2𝑓
2
𝑓
3

𝑓
2

3
+ 2𝑓
1
𝑓
2

=
𝑓
1

𝑓
3

,

𝑓
2

2
+ 2𝑓
1
𝑓
3

𝑓
2

3
+ 2𝑓
1
𝑓
2

=
𝑓
2

𝑓
3

.

(62)

Denoting

𝑥 =
𝑓
1

𝑓
2

, 𝑦 =
𝑓
1

𝑓
3

, 𝑧 =
𝑓
2

𝑓
3

. (63)

From (62) it follows that

𝑥(
𝑥 (1 + 2/𝑥𝑦)

1 + 2𝑥/𝑧
− 1) = 0,

𝑦(
𝑦 (1 + 2/𝑥𝑦)

1 + 2𝑦𝑧
− 1) = 0,

𝑧 (
𝑧 (1 + 2𝑥/𝑧)

1 + 2𝑦𝑧
− 1) = 0.

(64)

According to our assumption 𝑥, 𝑦, 𝑧 are nonzero, so from
(64) one gets

𝑥 (1 + 2/𝑥𝑦)

1 + 2𝑥/𝑧
= 1,

𝑦 (1 + 2/𝑥𝑦)

1 + 2𝑦𝑧
= 1,

𝑧 (1 + 2𝑥/𝑧)

1 + 2𝑦𝑧
= 1,

(65)

where 2𝑥 ̸= − 𝑧 and 2𝑦𝑧 ̸= − 1.

Dividing the second equality of (65) to the first one of (65)
we find that

𝑦 (1 + 2𝑥/𝑧)

𝑥 (1 + 2𝑦𝑧)
= 1, (66)

which with 𝑥𝑧 = 𝑦 yields

𝑦 + 2𝑥
2
= 𝑥 + 2𝑦

2
. (67)

Simplifying the last equality one gets

(𝑦 − 𝑥) (1 − 2 (𝑦 + 𝑥)) = 0. (68)

This means that either 𝑦 = 𝑥 or 𝑥 + 𝑦 = 1/2.
Assume that 𝑥 = 𝑦. Then from 𝑥𝑧 = 𝑦, one finds 𝑧 = 1.

Moreover, from the second equality of (65) we have 𝑦+2/𝑦 =

1 + 2𝑦. So, 𝑦2 + 𝑦 − 2 = 0; therefore, the solutions of the last
one are 𝑦

1
= 1,𝑦

2
= −2. Hence, 𝑥

1
= 1,𝑥

2
= −2.

Now suppose that 𝑥+𝑦 = 1/2; then 𝑥 = 1/2 −𝑦. We note
that 𝑦 ̸= 1/2, since 𝑥 ̸= 0. So, from the second equality of (65)
we find

𝑦 +
4

1 − 2𝑦
= 1 +

4𝑦
2

1 − 2𝑦
. (69)

So, 2𝑦2 −𝑦−1 = 0which yields the solutions 𝑦
3
= −1/2, 𝑦

4
=

1. Therefore, we obtain 𝑥
3

= 1, 𝑧
3

= −1/2 and 𝑥
4

= −1/2,
𝑧
4
= −2.
Consequently, solutions of (65) are the following ones:

(1,1,1) , (1,−
1

2
,−

1

2
) , (−

1

2
,1,−2) , (−2,−2,1) .

(70)

Now owing to (63) we need to solve the following equa-
tions:

𝑓
1

𝑓
2

= 𝑥
𝑘
,

𝑓
2

𝑓
3

= 𝑧
𝑘
.

𝑘 = 1, 4, (71)

According to our assumption 𝑓
𝑘

̸= 0, we consider cases when
𝑥
𝑘
𝑧
𝑘

̸= 0.
Now let us start to consider several cases.

Case 1 . Let 𝑥
2
= 1, 𝑧

2
= 1. Then from (71) one gets 𝑓

1
= 𝑓
2
=

𝑓
3
. So, from (61) we find 3𝜀𝑓

2

1
= 𝑓
1
, that is, 𝑓

1
= 1/3𝜀. Now

taking into account𝑓2
1
+𝑓
2

2
+𝑓
2

3
≤ 1 one gets 1/3𝜀2 ≤ 1. From

the last inequality we have |𝜀| ≥ 1/√3. Due to Lemma 15
the operator 𝑉

𝜀
is well defined if and only if |𝜀| ≤ 1/√3;

therefore, one gets |𝜀| = 1/√3. Hence, in this case a solution
is (±1/√3; ±1/√3; ±1/√3).

Case 2 . Let 𝑥
2

= 1, 𝑧
2

= −1/2. Then from (71) one finds
𝑓
1
= 𝑓
2
, 2𝑓
2
= −𝑓
3
. Substituting the last ones to (61) we get

𝑓
1
+ 3𝑓
2

1
𝜀 = 0. Then, we have 𝑓

1
= −1/3𝜀, 𝑓

2
= −1/3𝜀, 𝑓

3
=

2/3𝜀. Taking into account 𝑓2
1
+ 𝑓
2

2
+ 𝑓
2

3
≤ 1 we find 1/9𝜀

2
+

4/9𝜀
2
+ 1/9𝜀

2
≤ 1. This means |𝜀| ≥ √2/3; due to Lemma 15
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in this case the operator 𝑉
𝜀
is not well defined; therefore, we

conclude that there is no fixed point of 𝑉
𝜀
belonging to 𝑆.

Using the same argument for the rest of the cases we
conclude the absence of solutions. This shows that if |𝜀| <

1/√3 the operator 𝑉
𝜀
has unique fixed point in 𝑆. If |𝜀| =

1/√3, then 𝑉
𝜀
has three fixed points belonging to 𝑆. This

completes the proof.

Now we are going to study dynamics of operator 𝑉
𝜀
.

Theorem 18. Let𝑉
𝜀
be given by (58). Then the following asser-

tions hold true:

(i) if |𝜀| < 1/√3, then for any f ∈ 𝑆 one has 𝑉
𝑛

𝜀
(f) →

(0, 0, 0) as 𝑛 → ∞.

(ii) if |𝜀| = 1/√3, then for any f ∈ 𝑆 with f ∉ {(±1/√3,

±1/√3, ±1/√3)} one has 𝑉
𝑛

𝜀
(f) → (0, 0, 0) as 𝑛 →

∞.

Proof. Let us consider the following function 𝜌(f) = 𝑓
2

1
+𝑓
2

2
+

𝑓
2

3
. Then we have

𝜌 (𝑉
𝜀
(f)) = 𝜀

2
((𝑓
2

1
+ 2𝑓
2
𝑓
3
)
2

+ (𝑓
2

2
+ 2𝑓
1
𝑓
3
)
2

+(𝑓
2

3
+ 2𝑓
1
𝑓
2
)
2

)

≤ 𝜀
2
(𝑓
2

1
+ 2

󵄨󵄨󵄨󵄨𝑓2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓3
󵄨󵄨󵄨󵄨 + 𝑓
2

2
+ 2

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓3
󵄨󵄨󵄨󵄨

+𝑓
2

3
+ 2

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓2
󵄨󵄨󵄨󵄨)

≤ 𝜀
2
(𝑓
2

1
+ 𝑓
2

2
+ 𝑓
2

3
+ 𝑓
2

2
+ 𝑓
2

1
+ 𝑓
2

3

+𝑓
2

3
+ 𝑓
2

1
+ 𝑓
2

2
)

= 3𝜀
2
(𝑓
2

1
+ 𝑓
2

2
+ 𝑓
2

3
) = 3𝜀

2
𝜌 (f) .

(72)

This means

𝜌 (𝑉
𝜀
(f)) ≤ 3𝜀

2
𝜌 (f) . (73)

Due to 𝜀
2
≤ 1/3 from (73) one finds that

𝜌 (𝑉
𝑛+1

𝜀
(f)) ≤ 𝜌 (𝑉

𝑛

𝜀
(f)) , (74)

which yields that the sequence {𝜌(𝑉𝑛
𝜀
(f))} is convergent. Next

we would like to find the limit of {𝜌(𝑉𝑛
𝜀
(f))}.

(i) First we assume that |𝜀| < 1/√3; then from (73) we
obtain

𝜌 (𝑉
𝑛

𝜀
(f)) ≤ 3𝜀

2
𝜌 (𝑉
𝑛−1

𝜀
(f)) ≤ ⋅ ⋅ ⋅ ≤ (3𝜀

2
)
𝑛

𝜌 (f) . (75)

This yields that 𝜌(𝑉𝑛
𝜀
(f)) → 0 as 𝑛 → ∞, for all

f ∈ 𝑆.

(ii) Now let |𝜀| = 1/√3. Then consider two distinct sub-
cases.

Case A. Let 𝑓2
1
+ 𝑓
2

2
+ 𝑓
2

3
< 1 and denote 𝑑 = 𝑓

2

1
+ 𝑓
2

2
+ 𝑓
2

3
.

Then one gets

𝜌 (𝑉
𝜀
(f)) ≤ 𝜀

2
((𝑓
2

1
+ 2

󵄨󵄨󵄨󵄨𝑓2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓3
󵄨󵄨󵄨󵄨)
2

+ (𝑓
2

2
+ 2|𝑓
1
||𝑓
3
|)
2

+(𝑓
2

3
+ 2

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓2
󵄨󵄨󵄨󵄨)
2

)

≤ 𝜀
2
((𝑓
2

1
+ 𝑓
2

2
+ 𝑓
2

3
)
2

+ (𝑓
2

2
+ 𝑓
2

1
+ 𝑓
2

3
)
2

+ (𝑓
2

3
+ 𝑓
2

1
+ 𝑓
2

2
)
2

)

= 3𝜀
2
𝑑
2
= 𝑑𝑑 = 𝑑𝜌 (f) .

(76)

Hence, we have 𝜌(𝑉
𝜀
(f)) ≤ 𝑑𝜌(f). This means 𝜌(𝑉

𝑛

𝜀
(f)) ≤

𝑑
𝑛
𝜌(f) → 0. Hence, 𝑉𝑛

𝜀
(f) → 0 as 𝑛 → ∞.

Case B. Now take 𝑓
2

1
+ 𝑓
2

2
+ 𝑓
2

3
= 1 and assume that f is not

a fixed point. Therefore, we may assume that 𝑓
𝑖

̸= 𝑓
𝑗
for some

𝑖 ̸= 𝑗, otherwise from Proposition 17 one concludes that f is a
fixed point. Hence, from (58) one finds

𝑉
𝜀
(f)
1
= 𝜀 (𝑓

2

1
+ 2𝑓
2
𝑓
3
) = 𝜀 (1 − 𝑓

2

2
− 𝑓
2

3
+ 2𝑓
2
𝑓
3
)

= 𝜀 (1 − (𝑓
2
− 𝑓
3
)
2

) .

(77)

Similarly, one gets

𝑉
𝜀
(f)
2
= 𝜀 (1 − (𝑓

1
− 𝑓
3
)
2

) ,

𝑉
𝜀
(f)
3
= 𝜀 (1 − (𝑓

1
− 𝑓
2
)
2

) .

(78)

It is clear that |𝑉
𝜀
(f)
𝑘
| ≤ |𝜀| (𝑘 = 1, 2, 3). According to our

assumption 𝑓
𝑖

̸= 𝑓
𝑗
(𝑖 ̸= 𝑗) we conclude that one of |𝑉

𝜀
(f)
𝑘
| is

strictly less than 1/√3; this means𝑉
𝜀
(f)2
1
+𝑉
𝜀
(f)2
2
+𝑉
𝜀
(f)2
3
< 1.

Therefore, from Case A, one gets that 𝑉𝑛
𝜀
(f) → 0 as 𝑛 →

∞.
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