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The main aim of this paper is to prove fixed point theorems in quasi-cone metric spaces which extend the Banach contraction
mapping and others. This is achieved by introducing different kinds of Cauchy sequences in quasi-cone metric spaces.

1. Introduction and Preliminaries

The Banach contraction principle is a fundamental result in
fixedpoint theory.Due to its importance, several authors have
obtained many interesting extensions and generalizations
(see, e.g., [1–12]).

A quasi-metric is a distance function which satisfies the
triangle inequality but is not symmetric: it can be regarded
as an “asymmetric metric.” In fact, quasi-metric space is
more comprehensive than metric space. As metric space is
important and has numerous applications, Huang and Zhang
[13] have announced the concept of the cone metric spaces,
replacing the set of real numbers by an ordered Banach space.
They have proved some fixed point theorems for contractive-
type mappings on cone metric spaces, whereas Rezapour and
Hamlbarani [14] omitted the assumption of normality in cone
metric spa ces, which is a milestone in developing fixed point
theory in cone metric spaces. Since then, numerous authors
have started to generalize fixed point theorems in conemetric
spaces in many various directions. For some recent results
(see, e.g., [15–25]) and for a current survey of the latest results
in cone metric spaces, see Janković et al. [26].

Very recently, some authors generalized the contractive
conditions in the literature by replacing the constants with
functions. Using these generalizations, they have proved
the existence and uniqueness of the fixed point in cone
metric spaces; for more details see [27, 28]. Because quasi-
metric space is more general than metric space and is a
subject of intensive research in the context of topology and

theoretical computer science, Abdeljawad andKarapinar [29]
and Sonmez [30] have given a definition of quasi-conemetric
space which extends the quasi-metric space.

In this paper, we also introduce the concept of a quasi-
cone metric space which is somewhat different from that
of Abdeljawad and Karapinar [29] and Sonmez [30]. Then
we establish four kinds of Cauchy sequences in this space
according to Reilly et al. [31]. Furthermore, we extend and
generalize the Banach contraction principle and some results
in the literature to this space. We support our results by
examples. In this paper we do not impose the normality
condition for the cones, and the only assumption is that the
cone 𝑃 is, solid; that is int𝑃 ̸= 0. Now we recall some known
notions, definitions, and results which will be used in this
work.

Definition 1. Let 𝐸 be a real Banach space and 𝑃 be a subset
of 𝐸. 𝑃 is called a cone if and only if

(i) 𝑃 is closed, 𝑃 ̸= 0, 𝑃 ̸= {0};

(ii) for all 𝑥, 𝑦 ∈ 𝑃 ⇒ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑃, where 𝛼, 𝛽 ∈ R+;

(iii) 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 ⇒ 𝑥 = 0.

For a given cone 𝑃 ⊂ 𝐸, we define a partial ordering ⪯
with respect to 𝑃 by the following: for 𝑥, 𝑦 ∈ 𝐸, we say that
𝑥 ⪯ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. Also, we write 𝑥 ≪ 𝑦 for
𝑦 − 𝑥 ∈ int𝑃, where int𝑃 denotes the interior of 𝑃. The cone
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𝑃 is called normal if there is a number𝐾 > 0 such that for all
𝑥, 𝑦 ∈ 𝐸

0 ⪯ 𝑥 ⪯ 𝑦 󳨐⇒ ‖𝑥‖ ≤ 𝐾
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 . (1)

The least positive number 𝐾 satisfying this is called the
normal constant of 𝑃. The cone 𝑃 is called regular if every
increasing sequence which is bounded above is convergent;
that is, if 𝑥

𝑛
is a sequence such that

𝑥
1
⪯ 𝑥
2
⪯ ⋅ ⋅ ⋅ ⪯ 𝑥

𝑛
⪯ ⋅ ⋅ ⋅ ⪯ 𝑦 (2)

for some 𝑦 ∈ 𝐸, then there is 𝑥 ∈ 𝐸 such that ‖ 𝑥
𝑛
− 𝑥 ‖

→ 0 as 𝑛 → ∞. Equivalently, the cone 𝑃 is regular if every
decreasing sequence which is bounded below is convergent
(for details, see [13]). In this paper, we always suppose that 𝐸
is a real Banach space, 𝑃 is a cone in 𝐸 with int𝑃 ̸= 0, and ⪯ is
a partial ordering with respect to 𝑃.

Definition 2 (see [13]). Let𝑋 be a nonempty set. Suppose the
mapping 𝑑 : 𝑋 × 𝑋 → 𝐸 satisfies

(d1) 0 ⪯ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, and 𝑑(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦;

(d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(d3) 𝑑(𝑥, 𝑦) ⪯ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑑 is called a cone metric on 𝑋, and (𝑋, 𝑑) is called a
cone metric space.

Now, we state our definition which is more general than
cone metric space.

Definition 3. Let𝑋 be a nonempty set. Suppose the mapping
𝑞 : 𝑋 × 𝑋 → 𝐸 satisfies

(q1) 0 ⪯ 𝑞(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋;
(q2) 𝑞(𝑥, 𝑦) = 0 = 𝑞(𝑦, 𝑥) if and only if 𝑥 = 𝑦;
(q3) 𝑞(𝑥, 𝑦) ⪯ 𝑞(𝑥, 𝑧) + 𝑞(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑞 is called a quasi-conemetric on𝑋, and (𝑋, 𝑞) is called
a quasi-cone metric space.

Remark 4. Note that in [30] Sonmez defined the quasi-cone
metric space as follows.

A quasi-conemetric space on a nonempty𝑋 is a function
𝑞 : 𝑋 × 𝑋 → 𝐸 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋;

(1) 𝑞(𝑥, 𝑦) = 𝑞(𝑦, 𝑥) = 0 ⇔ 𝑥 = 𝑦,
(2) 𝑞(𝑥, 𝑦) ⪯ 𝑞(𝑥, 𝑧) + 𝑞(𝑧, 𝑦).

A quasi-cone metric space is a pair (𝑋, 𝑞) such that 𝑋 is a
nonempty set and 𝑞 is a quasi-cone metric on𝑋.

In fact, it has not mentioned that 𝑞 takes value in 𝑃, but
in this paper we require this condition.

Remark 5. Abdeljawad and Karapinar’s definition of quasi-
cone metric space [29] is as follows.

Let 𝑋 be a nonempty set. Suppose that the mapping 𝑞 :
𝑋 × 𝑋 → 𝐸 satisfies the following:

(q1) 0 ⪯ 𝑞(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋;
(q2) 𝑞(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦;
(q3) 𝑞(𝑥, 𝑦) ⪯ 𝑞(𝑥, 𝑧) + 𝑞(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is said to be a quasi-cone metric on 𝑋, and the pair
(𝑋, 𝑞) is called a quasi-cone metric space.

The following example indicates that our definition is
more general than the one given in [29].

Example 6. Let 𝑋 = (0,∞), 𝐸 = R2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸 : 𝑥, 𝑦 ≥
0}, and 𝑞 : 𝑋 × 𝑋 → 𝐸 defined by

𝑞 (𝑥, 𝑦) =

{

{

{

(
1

𝑦
−
1

𝑥
, 𝑥) , if 𝑦 < 𝑥,

(0, 0) , if 𝑦 ≥ 𝑥.
(3)

Then (𝑋, 𝑞) satisfies our definition of a quasi-cone metric
space but not the definition in [29] because if 𝑞(𝑥, 𝑦) = 0
then 𝑥 = 𝑦 or 𝑦 > 𝑥.

Remark 7. Note that any cone metric space is a quasi-cone
metric space.

2. Necessary Facts and Statements

By considering the established notions in metric spaces [31],
we introduce the appropriate generalization in cone metric
spaces.

Definition 8. Let (𝑋, 𝑞) be a quasi-cone metric space. A
sequence {𝑥

𝑛
} in𝑋 is said to be

(a) 𝑄-Cauchy or bi-Cauchy if for each 𝑐 ∈ int𝑃, there is
𝑛
0
∈ N such that 𝑞(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑐 for all 𝑛, 𝑚 ≥ 𝑛

0
;

(b) left (right) Cauchy if for any 𝑐 ∈ int𝑃, there is 𝑛
0
∈ N

such that 𝑞(𝑥
𝑚
, 𝑥
𝑛
) ≪ 𝑐 (𝑞(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑐, resp.) for all

𝑛 ≥ 𝑚 ≥ 𝑛
0
;

(c) weakly left (right) Cauchy if for each 𝑐 ∈ int𝑃, there is
𝑛
0
∈ N such that 𝑞(𝑥

𝑛0
, 𝑥
𝑛
) ≪ 𝑐 (𝑞(𝑥

𝑛
, 𝑥
𝑛0
) ≪ 𝑐, resp.)

for all 𝑛 ≥ 𝑛
0
;

(d) left (right) 𝑞-Cauchy if for every 𝑐 ∈ int𝑃, there exist
𝑥 ∈ 𝑋 and 𝑛

0
∈ N such that 𝑞(𝑥, 𝑥

𝑛
) ≪ 𝑐 (𝑞(𝑥

𝑛
, 𝑥) ≪

𝑐, resp.) for all 𝑛 ≥ 𝑛
0
.

Remark 9. These notions in quasi-cone metric space are
related in the following way:

(i) 𝑄-Cauchy⇒ left (right) Cauchy⇒weakly left (right)
Cauchy⇒ left (right) 𝑞-Cauchy;

(ii) a sequence is𝑄-Cauchy if and only if it is both left and
right Cauchy.

In this paper, we use the notion of left Cauchy.

Definition 10. Let (𝑋, 𝑞) be a quasi-cone metric space. Let
{𝑥
𝑛
}
𝑛≥1

be a sequence in 𝑋. We say that the sequence {𝑥
𝑛
}
𝑛≥1

left converges to 𝑥 ∈ 𝑋 if 𝑞(𝑥
𝑛
, 𝑥) → 0. One denotes this by

lim
𝑛→∞

𝑥
𝑛
= 𝑥 or 𝑥

𝑛
󳨀→ 𝑥. (4)
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We will utilize the word converges instead of left con-
verges for simplicity.

Example 11. Let 𝑋 = [0, 1], 𝐸 = R2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸 : 𝑥, 𝑦 ≥
0}, and 𝑞 : 𝑋 × 𝑋 → 𝐸 defined by

𝑞 (𝑥, 𝑦) = {
(𝑥 − 𝑦, 𝛼 (𝑥 − 𝑦)) , if 𝑥 ≥ 𝑦,
(𝛼, 1) , if 𝑥 < 𝑦,

(5)

where 0 ≤ 𝛼 < 1. 𝑞 is a quasi-cone metric on 𝑋. Considering
a sequence 𝑥

𝑛
= 1/𝑛, then {𝑥

𝑛
}
𝑛≥1

is left Cauchy and is
convergent to {0} due to

𝑞 (𝑥
𝑛
, 𝑥) = 𝑞 (

1

𝑛
, 0) = (

1

𝑛
,
𝛼

𝑛
) 󳨀→ (0, 0) . (6)

On the other hand, it is not right Cauchy.

Definition 12. A quasi-cone metric space (𝑋, 𝑞) is called left
complete if every left Cauchy sequence in𝑋 converges.

Definition 13. Let (𝑋, 𝑞) be a quasi-cone metric space. A
function 𝑓 : 𝑋 → 𝑋 is called

(1) continuous if for any convergent sequence {𝑥
𝑛
}
𝑛≥1

in
𝑋 with lim

𝑛→∞
𝑥
𝑛
= 𝑥, the sequence {𝑓(𝑥

𝑛
)}
𝑛≥1

is
convergent and lim

𝑛→∞
𝑓(𝑥
𝑛
) = 𝑓(𝑥);

(2) contractive if there exists some 0 ≤ 𝜅 < 1 such that

𝑞 (𝑓 (𝑥) , 𝑓 (𝑦)) ⪯ 𝜅𝑞 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋, (7)

and if 𝜅 = 1, then 𝑓 is nonexpansive.

The following example shows that there exists a con-
tractive function in quasi-cone metric space which is not
continuous.

Example 14. Let𝑋 = {0, 1, 2, . . .}∪{∞},𝐸 = R2,𝑃 = {(𝑥, 𝑦) ∈
𝐸 : 𝑥, 𝑦 ≥ 0}, and 𝑞 : 𝑋 × 𝑋 → 𝐸 defined by

𝑞 (𝑥, 𝑦) =

{{

{{

{

(0, 0) , if 𝑥 ≥ 𝑦,

((
1

2
) 𝑦, 𝑦) , if 𝑥 < 𝑦,

(8)

and 𝑓 : X → 𝑋 defined by

𝑓 (𝑥) = {
0, if 𝑥 ≥ 0,
1, if 𝑥 = ∞.

(9)

Then (𝑋, 𝑞) is a quasi-conemetric space and𝑓 is a contractive
map but not continuous due to lim

𝑥→∞
𝑓(𝑥) ̸= 𝑓(∞).

3. Fixed Point Theorems

In this section, we prove some fixed point results in quasi-
cone metric space. Also, we generalize the contractive con-
ditions in the literature by replacing the constants with
functions. First, we state the following useful lemma.

Lemma15. Let (𝑋, 𝑞) be a quasi-conemetric space and {𝑥
𝑛
}
𝑛≥1

a sequence in𝑋. Suppose there exist a sequence of nonnegative
real numbers {𝜆

𝑛
}
𝑛≥1

such that ∑∞
𝑛=1
𝜆
𝑛
< ∞, in which

𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) ⪯ 𝜆
𝑛
𝑀, (10)

for some𝑀 ∈ 𝑃, and for all 𝑛 ∈ N. Then the sequence {𝑥
𝑛
}
𝑛≥1

is left Cauchy sequence in (𝑋, 𝑞).

Proof. For 𝑛 > 𝑚, we get

𝑞 (𝑥
𝑚
, 𝑥
𝑛
) ⪯ 𝑞 (𝑥

𝑚
, 𝑥
𝑚+1
) + 𝑞 (𝑥

𝑚+1
, 𝑥
𝑚+2
)

+ ⋅ ⋅ ⋅ + 𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) ⪯ 𝑀

∞

∑

𝑖=𝑚

𝜆
𝑖
.

(11)

Let 𝑐 ∈ int𝑃 and choose 𝛿 > 0 such that 𝑐 +𝑁
𝛿
(0) ⊂ 𝑃 where

𝑁
𝛿
(0) = {𝑦 ∈ 𝐸 :‖ 𝑦 ‖< 𝛿}. Since ∑∞

𝑛=1
𝜆
𝑛
< ∞, there exists

a natural number 𝑛
0
such that for all 𝑚 ≥ 𝑛

0
𝑀∑
∞

𝑖=𝑚
𝜆
𝑖
∈

𝑁
𝛿
(0), also −𝑀∑∞

𝑖=𝑚
𝜆
𝑖
∈ 𝑁
𝛿
(0). Since 𝑐 + 𝑁

𝛿
(0) is open,

therefore 𝑐 + 𝑁
𝛿
(0) ∈ int𝑃; that is 𝑐 − 𝑀∑∞

𝑖=𝑚
𝜆
𝑖
∈ int𝑃.

Thus,𝑀∑∞
𝑖=𝑚
𝜆
𝑖
≪ 𝑐 for𝑚 ≥ 𝑛

0
and so

𝑞 (𝑥
𝑚
, 𝑥
𝑛
) ≪ 𝑐 for 𝑛 > 𝑚 ≥ 𝑛

0
. (12)

Thus, {𝑥
𝑛
}
𝑛≥1

is a left Cauchy sequence.

We are now in a position to state the main fixed point
theorem in the context of quasi-cone metric spaces. We will
need the notion of Hausdorff in quasi-cone metric space. A
quasi-cone metric space (𝑋, 𝑑) is Hausdorff if for each pair
𝑥
1
, 𝑥
2
of distinct points of 𝑋, there exist neighborhoods 𝑈

1

and 𝑈
2
of 𝑥
1
and 𝑥

2
, respectively, that are disjoint.

Theorem 16. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space and let𝑓 : 𝑋 → 𝑋 be a continuous function.
Suppose that there exist functions 𝜂, 𝜆, 𝜁, 𝜇, 𝜉 : 𝑋 → [0, 1)

which satisfy the following for 𝑥, 𝑦 ∈ 𝑋:

(1) 𝜂(𝑓(𝑥)) ≤ 𝜂(𝑥), 𝜆(𝑓(𝑥)) ≤ 𝜆(𝑥), 𝜁(𝑓(𝑥)) ≤

𝜁(𝑥), 𝜇(𝑓(𝑥)) ≤ 𝜇(𝑥) and 𝜉(𝑓(𝑥)) ≤ 𝜉(𝑥);
(2) 𝜂(𝑥) + 𝜆(𝑥) + 𝜁(𝑥) + 𝜇(𝑥) + 2𝜉(𝑥) < 1;
(3) 𝑞(𝑓(𝑥), 𝑓(𝑦)) ⪯ 𝜂(𝑥)𝑞(𝑥, 𝑦) + 𝜆(𝑥)𝑞(𝑥, 𝑓(𝑥)) +

𝜁(𝑥)𝑞(𝑦, 𝑓(𝑦)) + 𝜇(𝑥)𝑞(𝑓(𝑥), 𝑦) + 𝜉(𝑥)𝑞(𝑥, 𝑓(𝑦)).

Then, 𝑓 has a unique fixed point.

Proof. Let 𝑥
0
∈ 𝑋 be arbitrary and fixed, and we consider the

sequence 𝑥
𝑛
= 𝑓(𝑥

𝑛−1
) for all 𝑛 ∈ N. If we take 𝑥 = 𝑥

𝑛−1
and

𝑦 = 𝑥
𝑛
in (3) we have

𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
)

= 𝑞 (𝑓 (𝑥
𝑛−1
) , 𝑓 (𝑥

𝑛
))

⪯ 𝜂 (𝑥
𝑛−1
) 𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝜆 (𝑥

𝑛−1
) 𝑞 (𝑥
𝑛−1
, 𝑓 (𝑥
𝑛−1
))

+ 𝜁 (𝑥
𝑛−1
) 𝑞 (𝑥
𝑛
, 𝑓 (𝑥
𝑛
)) + 𝜇 (𝑥

𝑛−1
) 𝑞 (𝑓 (𝑥

𝑛−1
) , 𝑥
𝑛
)

+ 𝜉 (𝑥
𝑛−1
) 𝑞 (𝑥
𝑛−1
, 𝑓 (𝑥
𝑛
))
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= 𝜂 (𝑓 (𝑥
𝑛−2
)) 𝑞 (𝑥

𝑛−1
, 𝑥
𝑛
) + 𝜆 (𝑓 (𝑥

𝑛−2
)) 𝑞 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝜁 (𝑓 (𝑥
𝑛−2
)) 𝑞 (𝑥

𝑛
, 𝑥
𝑛+1
) + 𝜇 (𝑓 (𝑥

𝑛−2
)) 𝑞 (𝑥

𝑛
, 𝑥
𝑛
)

+ 𝜉 (𝑓 (𝑥
𝑛−2
)) 𝑞 (𝑥

𝑛−1
, 𝑥
𝑛+1
)

⪯ 𝜂 (𝑥
𝑛−2
) 𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝜆 (𝑥

𝑛−2
) 𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
)

+ 𝜁 (𝑥
𝑛−2
) 𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝜉 (𝑥

𝑛−2
)

× (𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑞 (𝑥

𝑛
, 𝑥
𝑛+1
))

...

⪯ 𝜂 (𝑥
0
) 𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝜆 (𝑥

0
) 𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
)

+ 𝜁 (𝑥
0
) 𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝜉 (𝑥

0
)

× (𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑞 (𝑥

𝑛
, 𝑥
𝑛+1
)) .

(13)

So,

𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
)

⪯ (
𝜂 (𝑥
0
) + 𝜆 (𝑥

0
) + 𝜉 (𝑥

0
)

1 − 𝜁 (𝑥
0
) − 𝜉 (𝑥

0
)
) 𝑞 (𝑥

𝑛−1
, 𝑥
𝑛
)

= ℎ𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
)

⪯ ℎ
2

𝑞 (𝑥
𝑛−2
, 𝑥
𝑛−1
)

...

⪯ ℎ
𝑛

𝑞 (𝑥
0
, 𝑥
1
) ,

(14)

where ℎ = (𝜂(𝑥
0
) + 𝜆(𝑥

0
) + 𝜉(𝑥

0
)/1 − 𝜁(𝑥

0
) − 𝜉(𝑥

0
)).

Thus, by Lemma 15, {𝑥
𝑛
}
𝑛≥1

is left Cauchy in 𝑋. Because of
completeness of 𝑋 and continuity of 𝑓, there exists 𝑥∗ ∈ 𝑋
such that 𝑥

𝑛
→ 𝑥
∗ and 𝑥

𝑛+1
= 𝑓(𝑥

𝑛
) → 𝑓(𝑥

∗
). Since 𝑋 is

Hausdorff, 𝑓(𝑥∗) = 𝑥∗.

Uniqueness. Let 𝑦∗ be another fixed point of 𝑓, then

𝑞 (𝑥
∗

, 𝑦
∗

)

= 𝑞 (𝑓 (𝑥
∗

) , 𝑓 (𝑦
∗

))

⪯ 𝜂 (𝑥
∗

) 𝑞 (𝑥
∗

, 𝑦
∗

) + 𝜆 (𝑥
∗

) 𝑞 (𝑥
∗

, 𝑓 (𝑥
∗

))

+ 𝜁 (𝑥
∗

) 𝑞 (𝑦
∗

, 𝑓 (𝑦
∗

)) + 𝜇 (𝑥
∗

) 𝑞 (𝑓 (𝑥
∗

) , 𝑦
∗

)

+ 𝜉 (𝑥
∗

) 𝑞 (𝑥
∗

, 𝑓 (𝑦
∗

))

= 𝜂 (𝑥
∗

) 𝑞 (𝑥
∗

, 𝑦
∗

) + 𝜇 (𝑥
∗

) 𝑞 (𝑥
∗

, 𝑦
∗

)

+ 𝜉 (𝑥
∗

) 𝑞 (𝑥
∗

, 𝑦
∗

)

= (𝜂 (𝑥
∗

) + 𝜇 (𝑥
∗

) + 𝜉 (𝑥
∗

)) 𝑞 (𝑥
∗

, 𝑦
∗

) .

(15)

Therefore, 𝑞(𝑥∗, 𝑦∗) = 0 due to 𝜂(𝑥∗) + 𝜇(𝑥∗) + 𝜉(𝑥∗) < 1.
Similarly, 𝑞(𝑦∗, 𝑥∗) = 0. Hence, 𝑥∗ = 𝑦∗.

Corollary 17. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space and let𝑓 : 𝑋 → 𝑋 be a continuous function.
Suppose that there exist functions 𝜂, 𝜆, 𝜇 : 𝑋 → [0, 1) which
satisfy the following for 𝑥, 𝑦 ∈ 𝑋:

(1) 𝜂(𝑓(𝑥)) ≤ 𝜂(𝑥), 𝜆(𝑓(𝑥)) ≤ 𝜆(𝑥) and 𝜇(𝑓(𝑥)) ≤ 𝜇(𝑥);
(2) 𝜂(𝑥) + 2𝜆(𝑥) + 2𝜇(𝑥) < 1;
(3) 𝑞(𝑓(𝑥), 𝑓(𝑦)) ⪯ 𝜂(𝑥)𝑞(𝑥, 𝑦) + 𝜆(𝑥)(𝑞(𝑥, 𝑓(𝑥)) +

𝑞(𝑦, 𝑓(𝑦))) + 𝜇(𝑥)(𝑞(𝑓(𝑥), 𝑦) + 𝑞(𝑥, 𝑓(𝑦))).

Then, 𝑓 has a unique fixed point.

Proof. We can prove this result by applying Theorem 16 to
𝜆(𝑥) = 𝜁(𝑥) and 𝜇(𝑥) = 𝜉(𝑥).

Corollary 18. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space, and let𝑓 : 𝑋 → 𝑋 be a continuous function
and

𝑞 (𝑓 (𝑥) , 𝑓 (𝑦)) ⪯ 𝛼𝑞 (𝑥, 𝑦) + 𝛽𝑞 (𝑥, 𝑓 (𝑥)) + 𝛾𝑞 (𝑦, 𝑓 (𝑦))

+ 𝑘𝑞 (𝑓 (𝑥) , 𝑦) + ℓ𝑞 (𝑥, 𝑓 (𝑦))

(16)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽, 𝛾, 𝑘, ℓ ≥ 0with 𝛼+𝛽+𝛾+𝑘+2ℓ < 1.
Then, 𝑓 has a unique fixed point.

Proof. We can prove this result by applying Theorem 16 to
𝜂(𝑥) = 𝛼, 𝜆(𝑥) = 𝛽, 𝜁(𝑥) = 𝛾, 𝜇(𝑥) = 𝑘 and 𝜉(𝑥) = ℓ.

The following corollaries generalize some results of [14]
in cone metric spaces to quasi-cone metric spaces.

Corollary 19. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space, and let𝑓 : 𝑋 → 𝑋 be a continuous function
and

𝑞 (𝑓 (𝑥) , 𝑓 (𝑦)) ⪯ 𝛼 (𝑞 (𝑥, 𝑓 (𝑥)) + 𝑞 (𝑦, 𝑓 (𝑦))) (17)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ [0, 1/2). Then, 𝑓 has a unique fixed
point.

Corollary 20. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space, and let𝑓 : 𝑋 → 𝑋 be a continuous function
and

𝑞 (𝑓 (𝑥) , 𝑓 (𝑦)) ⪯ 𝛾 (𝑞 (𝑓 (𝑥) , 𝑦) + 𝑞 (𝑥, 𝑓 (𝑦))) (18)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛾 ∈ [0, 1/2). Then, 𝑓 has a unique fixed
point.

Corollary 21. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space, and let𝑓 : 𝑋 → 𝑋 be a continuous function
and

𝑞 (𝑓 (𝑥) , 𝑓 (𝑦)) ⪯ 𝛼𝑞 (𝑥, 𝑦) + 𝛽𝑞 (𝑓 (𝑥) , 𝑦) , (19)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 ∈ [0, 1) with 𝛼 + 𝛽 < 1. Then, 𝑓 has
a unique fixed point.

The next corollary is a generalization of Banach contrac-
tion principle.
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Corollary 22. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space, and let𝑓 : 𝑋 → 𝑋 be a continuous function
and

𝑞 (𝑓 (𝑥) , 𝑓 (𝑦)) ⪯ 𝛼𝑞 (𝑥, 𝑦) , (20)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ [0, 1). Then, 𝑓 has a unique fixed
point.

The example in [31] shows that the Hausdorff condition
is necessary for quasi-metric spaces and is so for quasi-cone
metric spaces. Now, we present two examples. The first one
fulfillsTheorem 16in which 𝑃 is normal. The second example
satisfies Corollary 18 without normality of 𝑃.

Example 23. Let 𝑋 = [0, 1], 𝐸 = R2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸 : 𝑥, 𝑦 ≥
0}, and 𝑞 : 𝑋 × 𝑋 → 𝐸 such that

𝑞 (𝑥, 𝑦) = {
(𝑥 − 𝑦, 𝛾 (𝑥 − 𝑦)) , if 𝑥 ≥ 𝑦,
(0, 0) , if 𝑥 < 𝑦,

(21)

where 𝛾 ∈ [0, 1]. Suppose 𝑓(𝑥) = 𝑥/4, 𝜂(𝑥) = 𝑥/8, 𝜆(𝑥) =
1/3 + 𝑥/24, 𝜁(𝑥) = (𝑥 + 𝑥

2
)/6, 𝜇(𝑥) = 1/24 and 𝜉(𝑥) = 0.

Then for all 𝑥, 𝑦 ∈ 𝑋, we have the following.

(1) 𝜂(𝑓(𝑥)) = 𝑥/32 ≤ 𝑥/8 = 𝜂(𝑥), 𝜆(𝑓(𝑥)) = 1/3 +
𝑥/96 ≤ 1/3 + 𝑥/24 = 𝜆(𝑥), 𝜁(𝑓(𝑥)) = (𝑥/4 +

𝑥
2
/16)/6 ≤ (𝑥+𝑥

2
)/6 = 𝜁(𝑥), 𝜇(𝑓(𝑥)) = 𝜇(𝑥) = 1/24,

and 𝜉(𝑓(𝑥)) = 𝜉(𝑥) = 0.
(2) 𝑥/8 + (1/3 + 𝑥/24) + (𝑥 + 𝑥2)/6 + 1/24 < 1.
(3) Condition (3) of Theorem 16 is satisfied. For 𝑥 ≥ 𝑦,

we have

𝑞 (𝑓 (𝑥) , 𝑓 (𝑦))

≤ 𝜂 (𝑥) 𝑞 (𝑥, 𝑦)

+ 𝜆 (𝑥) 𝑞 (𝑥, 𝑓 (𝑥)) + 𝜁 (𝑥) 𝑞 (𝑦, 𝑓 (𝑦))

+ 𝜇 (𝑥) 𝑞 (𝑓 (𝑥) , 𝑦) + 𝜉 (𝑥) 𝑞 (𝑥, 𝑓 (𝑦))

(22)

due to

(
𝑥

4
−
𝑦

4
, 𝑟 (

𝑥

4
−
𝑦

4
))

≤ (
25𝑥

96
−
𝑦

24
+
𝑥
2
𝑦

8

+
5𝑥
2

32
, 𝑟 (

25𝑥

96
−
𝑦

24
+
𝑥
2
𝑦

8
+
5𝑥
2

32
))

(23)

and for 𝑥 < 𝑦 it is trivial.
Therefore, {0} is a fixed point.

Example 24. Let 𝑋 = [0,∞), 𝐸 = 𝐶1R[0, 1] × 𝐶
1

R[0, 1], 𝑃 =
{(𝜙, 𝜑) ∈ 𝐸 : 𝜙(𝑡) and 𝜑(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}, and 𝑞 : 𝑋 × 𝑋 →
𝐸 defined by

𝑞 (𝑥, 𝑦) = {
((𝑥
2
− 𝑦
2
) 𝜙, (𝑥

2
− 𝑦
2
) 𝜙) , if 𝑥 ≥ 𝑦,

(0, 0) , if 𝑥 ≤ 𝑦,
(24)

where 𝜙(𝑡) = 𝑒𝑡. Suppose 𝑓(𝑥) = (1/8)𝑥. If we take 𝛼 =
1/16, 𝛽 = 1/3, 𝛾 = 1/4, 𝑘 = 1/6, and ℓ = 1/16, then all
the assumptions of Corollary 18 are satisfied. Thus, {0} is a
fixed point.

Theorem 25. Let (𝑋, 𝑞) be a left complete Hausdorff quasi-
conemetric space, and let𝑓 : 𝑋 → 𝑋 be a continuous function
and for all 𝑥, 𝑦 ∈ 𝑋

𝛼𝑞 (𝑓 (𝑥) , 𝑓 (𝑦)) + 𝛽𝑞 (𝑥, 𝑓 (𝑥))

+ 𝛾𝑞 (𝑦, 𝑓 (𝑦)) + 𝑘𝑞 (𝑥, 𝑓 (𝑦)) + ℓ𝑞 (𝑦, 𝑓 (𝑥))

⪯ 𝑠𝑞 (𝑥, 𝑦) + 𝑡𝑞 (𝑥, 𝑓
2

(𝑥)) ,

(∗)

where 𝑠 ≥ 𝛽 ≥ ℓ, 𝛾 ≥ 𝑘 ≥ 𝑡, 𝛼+𝑘 > 0, and 0 ≤ (𝑠−ℓ)/(𝛼+𝑘) <
1. Then, 𝑓 has a unique fixed point.

Proof. Let 𝑥
0
∈ 𝑋 be arbitrary and fixed and 𝑥

𝑛
= 𝑓(𝑥

𝑛−1
) for

all 𝑛 ∈ N. If we take 𝑥 = 𝑥
𝑛−1

and 𝑦 = 𝑥
𝑛
in (∗), we have

𝛼𝑞 (𝑓 (𝑥
𝑛−1
) , 𝑓 (𝑥

𝑛
))

+ 𝛽𝑞 (𝑥
𝑛−1
, 𝑓 (𝑥
𝑛−1
)) + 𝛾𝑞 (𝑥

𝑛
, 𝑓 (𝑥
𝑛
))

+ 𝑘𝑞 (𝑥
𝑛−1
, 𝑓 (𝑥
𝑛
)) + ℓ𝑞 (𝑥

𝑛
, 𝑓 (𝑥
𝑛−1
))

⪯ 𝑠𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑡𝑞 (𝑥

𝑛−1
, 𝑓
2

(𝑥
𝑛−1
)) .

(25)

Rewriting this inequality as

𝛼𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝛽𝑞 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝛾𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑘𝑞 (𝑥

𝑛−1
, 𝑥
𝑛+1
) + ℓ𝑞 (𝑥

𝑛
, 𝑥
𝑛
)

⪯ 𝑠𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑡𝑞 (𝑥

𝑛−1
, 𝑥
𝑛+1
)

(26)

implies that

(𝛼 + 𝛾) 𝑞 (𝑥
𝑛
, 𝑥
+1
) + (𝑘 − 𝑡) 𝑞 (𝑥

𝑛−1
, 𝑥
𝑛+1
)

⪯ (𝑠 − 𝛽) 𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) .

(27)

Since 𝑘 ≥ 𝑡, we have

(𝛼 + 𝛾) 𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) ⪯ (𝑠 − 𝛽) 𝑞 (𝑥

𝑛−1
, 𝑥
𝑛
) . (28)

Therefore, we obtain

𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) ⪯

𝑠 − 𝛽

𝛼 + 𝛾
𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
) , (29)

due to 𝛽 ≥ ℓ, 𝛾 ≥ 𝑘, and 𝛼+𝛾 > 0, and we get (𝑠−𝛽)/(𝛼+𝛾) ≤
(𝑠 − ℓ)/(𝛼 + 𝑘). Therefore,

𝑞 (𝑥
𝑛
, 𝑥
𝑛+1
) ⪯

𝑠 − ℓ

𝛼 + 𝑘
𝑞 (𝑥
𝑛−1
, 𝑥
𝑛
)

⪯ (
𝑠 − ℓ

𝛼 + 𝑘
)

2

𝑞 (𝑥
𝑛−2
, 𝑥
𝑛−1
)

...

⪯ (
𝑠 − ℓ

𝛼 + 𝑘
)

𝑛

𝑞 (𝑥
0
, 𝑥
1
) .

(30)
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Thus, by Lemma 15, {𝑥
𝑛
}
𝑛≥1

is left Cauchy in 𝑋. Because of
completeness of 𝑋 and continuity of 𝑓, there exists 𝑥∗ ∈ 𝑋
such that 𝑥

𝑛
→ 𝑥
∗ and 𝑥

𝑛+1
= 𝑓(𝑥

𝑛
) → 𝑓(𝑥

∗
). Since 𝑋 is

Hausdorff, 𝑓(𝑥∗) = 𝑥∗.

Uniqueness. Let𝑦∗ be another fixed point. Putting 𝑥 = 𝑥∗ and
𝑦 = 𝑦

∗ in (∗), we obtain

𝛼𝑞 (𝑓 (𝑥
∗

) , 𝑓 (𝑦
∗

))

+ 𝛽𝑞 (𝑥
∗

, 𝑓 (𝑥
∗

)) + 𝛾𝑞 (𝑦
∗

, 𝑓 (𝑦
∗

))

+ 𝑘𝑞 (𝑥
∗

, 𝑓 (𝑦
∗

)) + ℓ𝑞 (𝑦
∗

, 𝑓 (𝑥
∗

))

⪯ 𝑠𝑞 (𝑥
∗

, 𝑦
∗

) + 𝑡𝑞 (𝑥
∗

, 𝑓
2

(𝑥
∗

)) .

(31)

Hence,

(𝛼 + 𝑘) 𝑞 (𝑥
∗

, 𝑦
∗

) + ℓ𝑞 (𝑦
∗

, 𝑥
∗

) ⪯ 𝑠𝑞 (𝑥
∗

, 𝑦
∗

) . (32)

Similarly, applying (∗) with 𝑥 = 𝑦∗ and 𝑦 = 𝑥∗, we have

(𝛼 + 𝑘) 𝑞 (𝑦
∗

, 𝑥
∗

) + ℓ𝑞 (𝑥
∗

, 𝑦
∗

) ⪯ 𝑠𝑞 (𝑦
∗

, 𝑥
∗

) . (33)

Adding up the above two inequalities, we get

(𝛼 + 𝑘) (𝑞 (𝑥
∗

, 𝑦
∗

) + 𝑞 (𝑦
∗

, 𝑥
∗

))

+ ℓ (𝑞 (𝑦
∗

, 𝑥
∗

) + 𝑞 (𝑥
∗

, 𝑦
∗

))

⪯ 𝑠 (𝑞 (𝑥
∗

, 𝑦
∗

) + 𝑞 (𝑦
∗

, 𝑥
∗

)) .

(34)

Subsequently, we obtain

(𝛼 + 𝑘) (𝑞 (𝑥
∗

, 𝑦
∗

) + 𝑞 (𝑦
∗

, 𝑥
∗

))

⪯ (𝑠 − ℓ) (𝑞 (𝑥
∗

, 𝑦
∗

) + 𝑞 (𝑦
∗

, 𝑥
∗

)) .

(35)

Thus,

𝑞 (𝑥
∗

, 𝑦
∗

) + 𝑞 (𝑦
∗

, 𝑥
∗

) ⪯
𝑠 − ℓ

𝛼 + 𝑘
(𝑞 (𝑥
∗

, 𝑦
∗

) + 𝑞 (𝑦
∗

, 𝑥
∗

)) .

(36)

Hence, 𝑞(𝑥∗, 𝑦∗)+𝑞(𝑦∗, 𝑥∗) = 0 due to 0 ≤ (𝑠−ℓ)/(𝛼+𝑘) < 1.
Therefore, 𝑞(𝑥∗, 𝑦∗) = 𝑞(𝑦∗, 𝑥∗) = 0 and 𝑥∗ = 𝑦∗.
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