Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2013, Article ID 348326, 12 pages
http://dx.doi.org/10.1155/2013/348326

Research Article

Hindawi

Best Possible Bounds for Neuman-Sandor Mean by the Identric,
Quadratic and Contraharmonic Means

Tie-Hong Zhao,' Yu-Ming Chu,’ Yun-Liang Jiang,” and Yong-Min Li*

! Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China

2 School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, China
% School of Information & Engineering, Huzhou Teachers College, Huzhou 313000, China

*School of Automation, Southeast University, Nanjing 210096, China

Correspondence should be addressed to Yu-Ming Chu; chuyuming2005@yahoo.com.cn

Received 19 January 2013; Accepted 1 February 2013

Academic Editor: Khalil Ezzinbi

Copyright © 2013 Tie-Hong Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We prove that the double inequalities 1% (a, b)Q" ™ (a,b) < M(a,b) < P1(a,)Q P (a, b), I2(a, b)C ™ (a,b) < M(a,b) <
1P (a,b)C* P (a, b) hold for all a,b > 0 with a#b if and onlyifa; > 1/2, B, < log[\/flog(l +V2)]/( - log V2), &, > 5/7, and
B, < log[2log(1++/2)], where I(a, b), M(a, b), Q(a, b),and C(a, b) are the identric, Neuman-Sandor, quadratic, and contraharmonic

means of a and b, respectively.

1. Introduction

For p € Rand a,b > 0 with a #b, the identric mean I(a, b),
Neuman-Sdndor mean M(a,b) [1], quadratic mean Q(a, b),
contraharmonic mean C(a, b), and pth power mean M P(a, b)

are defined by
b\ 1/(b-a)
1 (a, b) = l ( b_ ) >
e

aﬂ

M (a,b) = a”b
"7 2sinh ! [(a-b) /(@ +b)]

a’ + b
Q(a,b):\] 5 >

a +b’ @)
a+b’

af +bP\ P
M, (a,b) = < 2 ) L Pre
Vab, p=0,

C(a,b) =

respectively, where sinh™(x) = log(x+ V1 + x?) is the inverse
hyperbolic sine function.

Recently, the identric, Neuman-Sandor, quadratic, and
contraharmonic means have attracted the interest of numer-
ous eminent mathematicians. In particular, many remarkable
inequalities for these means can be found in the literature [1-
18].

Let H(a,b) = 2ab/(a + b), G(a,b) = Vab, L(a,b) =
(b —a)/(logb —loga), P(a,b) = (a — b)/(4 arctan \a/b - ),
A(a,b) = (a+b)/2,and T(a,b) = (a-b)/[2 arctan((a—b)/(a+
b))] be the harmonic, geometric, logarithmic, first Seiffert,
arithmetic, and second Seiffert means of two distinct positive
numbers a and b, respectively. Then it is well known that the
inequalities

H(a,b) = M_, (a,b) < G(a,b) = M, (a,b) < L(a,b)
<P(a,b) <I(a,b)< A(a,b) <M, (ab)
<M (a,b) < T (a,b) < Q(a,b) = M, (a,b)
<C(a,b)

hold for all a,b > 0 with a #b.



Neuman and Sandor [1, 8] established that

A(a,b) < M(a,b) < _A@b

log(l + \/E)’
gT(a,b) <M(a,b) <T(ab),
A? (a,b)
P(a,b)’
VA (a,b)T (a,b) < M (a, b)

. \jAZ (a,b) + T (a, b)
2

2A (a,b) + Q(a,b)
3

M (a,b) <

(3)

>

M (a,b) <

foralla,b > 0 witha +b.
Let0 < a,b < 1/2witha#b,a' =1-a,andb’ = 1-10.
Then the Ky Fan inequalities

G (a,b) L(a,b) P(a,b) A(a,b)
G(a',b') L(a'\b') P(d,V) A(d,V)
4
< M (a,b) T (a,b) @
M(a',b')  T(a',b')

were presented in [1].

Li et al. [19] found the best possible bounds for the
Neuman-Sdndor mean in terms of the generalized logarith-
mic mean L,(a,b). Neuman [20] and Zhao et al. [21] proved
that the inequalities

aQ(a,b)+ (1 —«a)A(a,b)
<M (a,b) < fQ(a,b) + (1 - B) A(a,b),
AC (a,b) + (1 = A) A(a,b)

<M (a,b) < uC(a,b) + (1 - u) A(a,b),

€)
o H (a,b) + (1 - a;)Q(a,b)

< M(asb) < BIH(a’b)+ (1 _ﬁl)Q(a>b)>
,C(a,b) + (1 - a,) Q(a,b)

<M (a,b) < f,C(a,b)+(1-p,)Q(a,b)
hold for all a,b > 0 with a# b if and only if & < [1 — log(1 +
V2)I/[(V2 = 1)log(1 + V2)], B = 1/3, A < [1 - log(l +
V2)1/log(1 + V2), > 1/6, 0 > 2/9, By < 1 - 1/[V2log(1 +
V2)l, &, = 1/3,and B, < 1 - 1/[V2log(1 + V2)].

In [22], Chu and Long gave the best possible constants
p>g>a, and B such that the double inequalities M,(a,b) <
M(a,b) < M,(a, b) and al(a,b) < M(a,b) < BI(a,b) hold
foralla,b > 0 witha+b.

The ratio of identric means leads to the weighted geomet-
ric mean

I(az,bz)

[ apb 1/(a+b) 6
—I(a,b) —(ab) , (6)
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which has been investigated in [23-25]. Alzer [26] proved that
the inequalities

VA (a,b) G (a,b) < VI (a,b) L(a,b)

< I(a,b)+ L(a,b) B A(a,b) + G(a,b)
2 2

7)

hold for all a,b > 0 with a #b.

The following sharp bounds for I, (IL)l/ 2 and (I + L)/2
in terms of the power mean and the convex combination of
arithmetic and geometric means are given in [27] as

M,; (a,b) <I(a,b) < Miog5 (a, b),

M, (a,b) < VI (a,b) L(a,b) < My, (a,b),
Mlog 2/(1+log2) (a’ b)

B I(a,b)+ L(a,b)

P < M1/2 ((1, b) > (8)

%A (a,b) + %G (a,b)

<I(@b) < 2A@b)+ (1 - z)G(a,la)
e e

foralla,b > 0 witha #b.
Chu et al. [28] presented the optimal constants «,, 3, «,,
and f3, such that the double inequalities

,Q(a,b) + (1 -a;) A(a,b)

2 /2
<= J Va2cos?0 + b2sin’0do

T Jo
<BQ(a,b)+(1-pB,)A(ab),
Q™ (a,b) A'™ (a,b)

2 /2
<= J Va2cos20 + b2sin’0d0
7T Jo

)

< QP (a,b) AP (a,b)

hold for alla,b > 0 with a #b.
The aim of this paper is to find the best possible constants
&y, B>, and 3, such that the double inequalities

I (a,b) Q"™ (a,b) < M (a,b) < I*' (a,b) Q" (a,b),

1 (a,b) C"™™ (a,b) < M (a,b) < I** (a,b) C'P* (a,b)
(10)

hold for all a,b > 0 with a #b. All numerical computations
are carried out using MATHEMATICA software.

2. Lemmas

In order to prove our main results, we need several lemmas,
which we present in this section.
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Lemma 1. The double inequality

3 5 3 5 7
2 _ 2 8
x+ 2 -2 o1+ x%inh 1(x)<x+x——i+i
3 15 3 15 105
(11)
holds for x € (0, 1).

Proof. To prove Lemma 1, it suffices to prove that

3 5
n (x) = V1 + x2sinh ™! (x) — (x+ i 2i> >0, (12)

3 5 7
1, (x) = \/1+x2sinh“(x)—<x+x__2i+8i> <0

3 15 105
(13)
for x € (0,1).
From the expressions of #, (x) and #,(x), we get
M (0) = P (0) =0,

;o (%) N O )

1y (x) = = 1, (x) = >

V1 +x V1 + x?

where

3

1} (x) = sinh™ (x) - (x— 2%) V1 + x2,

’ ° 15
1, (x):sinh_l(x)—(x—%+81i5>m, (15)

7, (0) =n, (0)=0,

’ 8x*
(x) = ——— >0, (16)
h 3VI + 2
' 16x°
, (x)=-———F—=<0, (17)
T 5vV1 + X2
for x € (0,1).
Therefore, inequality (12) follows from (14)-(16), and
inequality (13) follows from (14)-(17). O

Lemma 2. Let

1+x
L(x) = log [%] ~2x-xlog(1-%%).  (18)
Then
3 5 7
L) > 25 22, 2 19)
3 5 7

for x € (0,1), and

2x° 2x° 2x
Lix)< 2 422 28 L) (20)
3 5 7

for x € (0,3/4).

Proof. To prove inequalities (19) and (20), it suffices to show
that
L (x)

1+x
:=log [&] —2x—xlog(1 —xz)

(1-x)'~ (21)
<2x3 2x° 2x7)
- =—=—+—=—+=1]>0
3 5 7
for x € (0,1), and
) (x)
(1 + x)1+x :| )
=log| ———— | -2x—xlog(1-x
g[u — s(1-5) )
3 5 7
_(zi+2i+2i+x9><0
3 5 7
for x € (0,3/4).
From (21) and (22), one has
L (07) =4 (0") =0, (23)
' 2x8
Iy (x) = 1_—x2 >0 (24)
for x € (0,1), and
9x® 7
t;(x):—l_x2 (;—x2><0 (25)

for x € (0,3/4).
Therefore, inequality (21) follows from (23) and (24), and
inequality (22) follows from (23) and (25). O

Lemma 3. Let
1 1

D, (x) = - . 26
! V1 +x2%sinh™ (x)  x(1+x?%) (26)
Then the double inequality
2x  34x° X 2x  34x°  4x°
—x—3x+x—<<I>1(x)<—x—3x+i (27)
3 45 2 3 45 5

holds for x € (0,0.7).

Proof. To prove inequality (27), it suffices to show that
¢, (x) = xV1 + x2 — sinh™" (x)
- 2x  34x° X
—x(1+x2)sinh1(x) XX L) 29
3 45 2
> 0,

¢, (x) = xV1 + x? — sinh ™" (x)

_ 2 4x°  4x°
—x(l+x2)sinh1(x)<—x—3x i)

+
3 45 5
<0
(29)
for x € (0,0.7).



First, we prove inequality (28). From the expression of
¢, (x), we have

¢, (0) =0, ¢, (0.7) =0.0033 - -, (30)
’ _ x¢; (x) 3
¢1 (x) —90 —1 — N (31)

where
¢; (x) = 120x + 8x° +23x° — 45x7
-2(60 - 16x" - 69x* + 180x°)  (32)
x V1 + x2sinh ™" (x).
Equation (32) leads to

¢, (0.6) =3.017---, ¢, (0.7) = =3.551 -,

) (33)

2

¢ (x) =

1+x
where

¢:F (x) = —56x — 309x° +422x° + 675x7

+2(28 - 324x” +735x* +1260x°)  (34)

x V1 + x%sinh™ (x).
Note that
60 — 16x* — 69x* + 180x° > 0 (35)

for x € (0,0.6], and
28 — 324x% + 735x* + 1260x° > 0 (36)

for x € [0.6,0.7).
It follows from (32) and (34)-(36) together with Lemma 1
that

¢; (x) > 120x + 8x” +23x° — 45x

3
~2(60 - 16x* - 69x" + 180x°) (x + %)

X 2 4
=5 (515 -1077x* - 360x") (37)
x° 9 81
> [515—1077>< — —360 x —]
3 25 625
10078x°
=" 50
375
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for x € (0,0.6], and
¢i" (x) > —56x — 309x" + 422x° + 675x

+2(28 - 324x” + 735x" + 1260x°)

% (-14075+25028x” +56571x" + 9660x° —5040x" )

3
> ’1‘—5 [-14075 + 25028 x (0.6)” + 56571 x (0.6)"]
1416676x°

9375
(38)

for x € [0.6,0.7).

From (33), (37), and (38), we clearly see that there exists
x; € (0.6,0.7) such that ¢; (x) > 0 for x € (0, x,) and ¢, (x) <
0 for x € (x,,0.7). Then (31) leads to the conclusion that
¢, (x) is strictly increasing on (0, x;] and strictly decreasing
on [x,,0.7).

Therefore, inequality (28) follows from (30) and the
piecewise monotonicity of ¢, (x).

Next, we prove inequality (29). From the expression of
¢, (x), we get

(/)2 (0) = 0’
by 2xy (%) (39)
L PN
where
¢, (x) =x (18)66 +xt-2x% - 30)
+2(15 - 4x” + 3x" + 72x°) (40)

x V1 + x2sinh ™" (x).
It follows from Lemma 1 and (40) that

¢, (x) > 96(18x6 +xt—2x? - 30)
3 5
2 4 6 X 2x
+2(15 4x” + 3x +72x)<x+? 1—5) (41)

5
= T (5+2476x% + 708x" - 288x°) > 0
15

for x € (0,0.7).
Therefore, inequality (29) follows from (39) together with
(41). O

Lemma 4. Let

1 1-x2

() = - .
2 (%) V1+aZsinh™ (x)  x(1+x?)

(42)
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Then the double inequality

3 5 3 5
11
S P 1 <d>2(x)<5—x—79x L2 43)
3 45 10 3 45 5
holds for x € (0,3/4).
Proof. To prove Lemma 4, it suffices to prove that
@ (%) == xV1+x% - (1 - x2) sinh™* (x)
- 5x 79x° 11X
—x(1+x2)sinh Y(x) XX X ) 0,
3 45 10
(44)

@ (x) = xV1 +x2 - (1 - xz) sinh™ (x)

- 5x  79x°  9x°
—x(1+x2)sinh1(x) x X +i <0
3 45 5

(45)
for x € (0,3/4).

We first prove inequality (44). From the expression of
@, (x), we obtain

@ (0)=0, o (Z) =0.008457--- >0,  (46)
, x@; (x)
(x) = —/—, (47)
& 90V1 + x2

where

@7 (x) = 120x + 8x” + 59x° — 99x7 — 2

x (60 — 16x” — 177x" +396x°) V1 + x?sinh ™" (x).
(48)

Equation (48) leads to

. . (3
¢, (0.66) =6.02--- >0, 1o (4—) =-19.299--- <0,

(49)
sl x(/)r* (X) (

- 50)

o1 (%) 1+ x2

where
@1 (x) = —56x — 705x° + 836x° + 1485x7

+14(4-108x” +213x" +396x°)  (51)

x V1 + x2sinh™" (x).

Note that

60 — 16x* — 177x" + 396x°
2 4
> 60 — 16 x (0.66)* — 177 x (0.66) (52)

=19.4451 >0

5
for x € (0,0.66), and
4 - 108x% + 213x" + 396x°
332 4
>4 -108 x <Z> +213 x (0.66) (53)

+396 x (0.66)° = 16.3972 > 0

for x € [0.66,3/4).
It follows from Lemma 1, (48), and (51)-(53) that

¢; (%)

> 120x + 8x° + 59x° — 99x’

-2(60 - 16x* — 177x" + 396x°)

5

X (46165 — 82573x> — 32420
105

+7584x° + 6336x° (1 - x7)]

Vv

5
<oz 46165 - 82573 x (0.66)° -~ 32420 x (0.66)']

x5
—— x4044.5917--- >0
105

(54)
for x € (0,0.66), and

@1 (x) > —56x — 705x° + 836x” + 1485x7

3 5

2
+ 14 (4 - 108x%+ 213x"+ 396x°) ( x+ 5 - ==
315

w

% [-32975 + 49598x” + 123369x"

+10668x° + 11088x° (1 - xz)]

=
w

> [-32975 + 49598 x(0.66)” +123369 x (0.66)" ]

e
— x12038.83--- >0
15

(55)

for x € [0.66,3/4).

From (50) and (55), we know that ¢(x) is
strictly decreasing on [0.66,3/4), and this in con-
junction with (49) and (54) leads to the conclusion that
there exists x; € (0.66,3/4) such that ¢/(x) > 0 for
x € (0,x;) and ¢, (x) < 0for x € (x;,3/4). Then (47)
implies that ¢, (x) is strictly increasing on (0, x,] and strictly
decreasing on [x,,3/4). Therefore, inequality (44) follows
from (46) and the piecewise monotonicity of ¢, (x).



Abstract and Applied Analysis

Next, we prove inequality (45). From the expression of _ 23x° <E 3 x2> 50
¢,(x) one has 35(1+x%) \23 ’

4x  4x>  8x°
¢, (0) =0, Yl(‘x)_<?_?+7>
* 56)
! x¢; (x) ( 3 5 7
(x) = ———, 1 [(2x° 2x° 2x 9
N 2\ s T
3 5
where P 4_x_4i+81
1+x2 3 5 7
foN_ 43 5 7
¢, (x) = —60x —4x” +2x° +81x S (1 B xz)
= "<
+4(15 - 4x” + 3x" + 162x°) (57) 2(1 + x2)
(61)
x V1 + x2sinh™ (x).
for x € (0,0.7).
Therefore, L 5 foll ily f 61). O
It follows from Lemma 1 and (52) that erefore, Lemma 5 follows easily from (61)
Lemma 6. Let L(x) be defined as in Lemma 2 and
by (x) > —60x — 4x° +2x° + 81x L(x) 2x
Y, (x) = —-+ ——. (62)
) . . 228 2x2 1+«
+4(15 - 4x" + 3x" + 162x )(x+ = - —)
315 Then the double inequality
5 3 5 3 5
= T (10 + 11027x + 3216x" - 1296x°) > 0 TX XTI v < X Y ()
15 3 5 5 7 305 7
(58)
holds for x € (0,3/4).
for x € (0,3/4). Proof. It follows from Lemma 2 that
Therefore, inequality (45) follows from (56) together with
58). U 3 >
Lemma 5. Let L(x) be defined as in Lemma 2 and
1 (Zx3 N 2x° 2x7>
L 2x2\ 3 5 7
Y= 2, X (59) x
2xr 142 s 5
2x 7x  9x°  T7x
e \3 75 s
Then the double inequality X
44x° (13
3 5 3 5 - 2 (_ - x2> >0,
dx  4x°  4x 4x  4x°  8x 35(1+x%) \22
— -+ — <Y ()<= - — + — (60) (64)
3 5 5 3 5 7 3 5
7x  9x 15x
R
holds for x € (0,0.7).
p F L 2 h < ! 2xS+2xs+2x7+x9
roof. From Lemma 2, one has 2\ 3 5 7
Y 4x  4x°  4x° 2x_ _ 7_x_9_x3+15x5
-5t 1+x2 \3 5 7
1 [(2x® 2x° 2x’ X x’ (3 - xz)
— | = +—=—+—= =-——-<0
2x2\ 3 5 7 1+x? 2(1+x?)
dx  4x°  4x° for x € (0,3/4).
\3 75 5 Therefore, Lemma 6 follows from (64). O
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Lemma 7. The inequality

3

\/% > [sinh_1 (x)]3 (65)
+x
holds for x € (0, 1).
Proof. Let
3
{(x) = \/% - [sinh_1 (x)]3. (66)
+x
Then
¢(0) =0,
/ _ G (x) (67)
{ (%)= m,
where

() = X (3+2x%) - 3[\/1 + x2sinh ™" (x)]z. (68)

It follows from Lemma 1 and (68) that

C1 (x)
3 5 7\ 2
>x2(3+2x2)—3 x+x——2i+8i
3 15 105
o[ 37 (208 36x° 64x° (69)
=x|—=+| —+—+
525 525 175 3675
6
X (1—x2)+ 32 >0
735
for x € (0,1).
Therefore, Lemma 7 follows from (67) together with (69).
O
Lemma 8. Let
o () = 1+3x° 1
1 - 2 2
(x+x°) 1+ x2)[sinh™* (x
(1+x2) [sinh™" ()] o)
B x
(1+x2)sinh ™! (x)
Then p,(x) < 0.2 for x € [0.7, 1).
Proof. Let
1 1
N F e p———
X [sinh™ (0]’
(71)
x
w, (x) = - .
2 () 1+x2 sinh™(x)
Then
w; (x) w, (x)
w(x)= =5 +— (72)

1+x? (1+ xz)3/2'

Lemma 7 and x > sinh ™' (x) give w, (x) < 0 and
g 1

3
w; (x) = 2 3 [ * =~ (sinhf1 (x))3 >0
x3 [sinh_1 (x)] I+x
(73)
for x € (0, 1). This in turn implies that
w, (x) ! w{ (x) (1 + x2) - 2xw, (x)
>l = 5 >0 (74)
1+x (1+x2)

for x € (0,1).
On the other hand, from the expression of w,(x), we get

w, (1) = 0.2796 - -+ > 0,

oy o2 W} (%) (75)
? (1+x2)"? [sinh™" (x)]z,
where
w) (x) = X _sinh™ (x),
N
2
s/ X
w, (X) = —m <
for x € (0,1).

From (75)-(76), we clearly see that w;(x) < 0and w,(x) >
0 for x € (0, 1). This in turn implies that

]
(1 +x2)3/2
W, () (14 22)7 =3 VTH P, () 77
) (1 +x2)3
<0
for x € (0,1).

Equation (72) together with inequalities (74) and (77) lead
to the conclusion that

p (x)
w; (1) w, (0.7)

< + 78
2 [1+77])" 78

=0.167---<0.2
for x € [0.7,1). O

Lemma 9. Let
M(x)_1+4x2—x4 1
2 - 2 2
(x+x3) 1+ x2) [sinh™

(1+x?) [sm (x)] 79)

x
(1+x2)*sinh™" (x)

Then p,(x) < 0.51 for x € [0.65,1).




Proof. Let
1 1

nx)=5-——""""7F=mwmx),
: [sinhf1 (x)]2 H

X2
(80)
3—x? X

Vit sinh(x)

7, (x) =

then

7, (%) ‘
(1+x2)""

7y (x)
1+ x?

1223 (x) =

From (74), we clearly see that

1] [0 &

1+ x? 1+ x?

for x € (0,1).
On the other hand, from the expression of 7,(x) together
with Lemma 1, we get

7, (1) =0.2796--- > 0,

1 xT, (x)

sinh™ (x) - (1+ 362)3/2[sinh71 (x)]2 )

Té (x) =-

7, (x) = (5 + xz) [sinh_1 (x)]2 - (1 + xz) , -
7, (0.65) = 0.6033 - - -,

7' (x) = 2x[sinh’1 (x)]2

5+ x* _
+2[1 a V1+ax%sinh™ (x) - x| >0
+

x2

for x € (0,1).
From (83), we clearly see that Té(x) < 0and 7,(x) > 0 for
x € [0.65,1). This in turn implies that

[ 7, (x) ]’ T (x)(l+x2)3/2—3x\/1+x2‘r2 (%) 0
= <
(1+x2)? (1+x2)°

(84)
for x € [0.65,1).

Equation (81) together with inequalities (82) and (84) lead
to the conclusion that

7, (1) 7, (0.65)
w, (x) < + = 0503 < 0.51 (g5
2 1+ 065" (85)
for x € [0.65,1). O

Lemma 10. Let L(x) be defined as in Lemma 2 and

_ 2(1+x4) _L(x)
(1-x2)(1+x2) *

Then v,(x) > 1.2 for x € [0.7, 1).

vy (%) (86)

Abstract and Applied Analysis

Proof. Differentiating v, (x) yields

3L(x) 2+8x” —20x" - 6x°

x* x(1-x2)(1+x2)

v (x) = (87)

It follows from (19) and (87) that
v} (x)

1 2 2xr 2xt\ 2+ 8x%-20x! - 648
x 3 5 7 (1-x2)*(1+x2)

2x (-84 + 316x° — 97x* + 68x° + 26x° + 36x' + 15x'?)

35(1 - x2)°(1 + x2)°
2x . [784 1316 % (0.7) - °2
2) 5

> 2
35(1-x2)"(1+x
2
+68x" (xz - 7)]
5
2x

> v e 0
35(1 = x2)°(1 + x?)
(88)

for x € [0.7,1).
Therefore, v,(x) > 7,(0.7) = 1.214--- > 12 for x €
[0.7,1) follows from (88). O

Lemma 11. Let L(x) be defined as in Lemma 2 and

3-2x% +3x* B L(x)

(l—xz)(1+xz)2 X

v, (x) = (89)

Then v,(x) > 1.38 for x € [0.65, 1).
Proof. Differentiating v,(x) yields
2(1+7x - 17x* + 5x° - 4x%)

' (x) = - . (90
0= A= 21+ %) o0

It follows from (19) and (90) together with the mono-
tonicity of the function 561x% — 272x* on [0.65, 1) that

v (x)

>

1 [3(2 2x2 2x4> 2(1+7x% = 17x* + 5x° - 4x®)
L2 2 2.
3.5 7 (1-x2)*(1+x2)
2x (~189 + 561x% — 272x* + 103x° + 26x° + 36x'" + 15x'%)
35(1 - x2)*(1 + x2)°

2x [~189 + 561 x (0.65)” — 272 x (0.65)* + 103 x (0.65)°]
35(1 - x2)°(1 + #2)°

2XX 7230
35(1 - x2)2(1 + x2)°

o

for x € [0.65,1).
Equation (91) leads to the conclusion that »,(x) =
7,(0.65) = 1.389--- > 1.38 for x € [0.65, 1). O
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Lemma 12. Let ®,(x) and Y,(x) be defined, respectively, as
in Lemmas 3 and 5, and ©,(x; p) = O,(x) — pY,(x). Then
O, (x; p) is strictly decreasing on [0.7,1) if p > 1/6.

Proof. Differentiating ®, (x; p) with respect to x and making
use of Lemmas 8 and 10, we get

do, (x; p)

T = L) =Yy (0 = 4 () = pry (%)

(92)
1
<02--x12=0
6

forx € [0.7,1) and p > 1/6. This in turn implies that ©, (x; p)
is strictly decreasing on [0.7,1) if p > 1/6. O

Lemma 13. Let ®,(x) and Y,(x) be defined, respectively, as
in Lemmas 4 and 6, and ©,(x;q) = ©,(x) — qY,(x). Then
©,(x; q) is strictly decreasing on [0.65, 1) if ¢ > 2/5.

Proof. Differentiating ®,(x; q) with respect to x and making
use of Lemmas 9 and 11, we have

de, (x; Q)

dx = Q); (x) - qur (x) = Uy (x) —qv, (x)

(93)
2
<0.51-2x138=-0042<0

for x € [0.65,1) and g > 2/5. This in turn implies that
0,(x; q) is strictly decreasing on [0.65, 1) if ¢ > 2/5. O

3. Main Results

Theorem 14. The double inequality

I (a,b) Q'™ (a,b) < M (a,b) < I’ (a,b) Q"' (a,b)
(94)

holds for all a,b > 0 with a+0b if and only if B, <
log[V2log(1 + V2)]/(1 - log V2) = 0.337 -+ and &; > 1/2.

Proof. Since I(a,b), M(a,b), and Q(a, b) are symmetric and
homogeneous of degree one, then without loss of generality,

we assume thata > b. Let p € (0,1), x = (a - b)/(a + b), and
A= log[\/ilog(l +V2)]1/(1 - log V2). Then x € (0,1), and

I@b) 1[0+ x)“x]”“

- 1-x
Aa,b) e|(1-x) (95)

M (a,b) X
A(a,b)  sinh™ (x)

log [Q (a,b)] — log [M (a,b)]
log [Q (a,b)] —log I (a, b)]
log V1 + x? —log x + log [sinh_1 (x)]

T log VI+ a2 —log[(1+ ) /(1 - )]/ 2x) +1
(96)

S Gy

A(a,b)

i log V1 + x? —log x + log [sinh_1 (x)]
im
x—=0"log V1 + x? — log [(1 + ) - x)l_x] /(2x) + 1

1
2 bl

(97)
i log V1 + x> —log x + log [sinh_1 (x)]
im

x> log VI +x2 —log [(1+x)"™/(1 - x)' ™| / 2x) + 1

=1,
(98)

The difference between the convex combination of
log[I(a,b)],log[Q(a, b)] and log[M(a, b)] is as follows:

plog[I(a,b)] + (1 - p)log[Q(a,b)] —log[M (a,b)]
1+x
_ P log[(1+x) ]_p

- a (1_x)1—x

+(1 —p)log\/1+x2—log|:L:| =D, (x).

sinh™ (x)
(99)
Equation (99) leads to
D,(0%) =0,
D,(17) = log[\/zlog(l + \/5)] —p(l —log \/5),
D, (17) =0,
(100)
) 1+ px’ 1 L(x)
D - _ _
) x+ X3 ! V1 +x%sinh™! (x)  2x2 (101)

=@, (x) - pY; (x) = O, (x;p),

where L(x),®,(x),Y,(x), and O,(x; p) are defined as in
Lemmas 2, 3, 5, and 12, respectively.
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It follows from (101) together with Lemmas 3 and 5 that

4x B 453 N 4x°
3 5 5 (102)

D} 12 (%)

for x € (0,0.7). Moreover, we see clearly, from Lemma 12,
that Di P (x) is strictly decreasing on [0.7, 1) and so Di 1 (x) <

D} ,(0.7) = -0.109--- < 0 for x € [0.7,1). This in
conjunction with (100) and (102) implies that

D1/2 (x)<0 (103)
for x € (0,1).

On the other hand, (101) and Lemmas 3 and 5 together
with the monotonicity of the function —2(17 — 18)L1)x2 /45 +
(7 - 16/\1)x4/14 on (0,0.7) lead to

D) (x)
x° 4x  4x°  8x°
+=—-Ml=—-—+—
2 3 5 7

[2(1—2A1) 2(17-181,) , 7-16A, 4]
=x - X+ X
3 45 14

2x  34x°

3 45

x (0.7)%

[2(1 -21;) 2(17-18A,)
> X -
3 45

7-16A,

+ x (0.7)*

(74969 - 218832 x
N 180000

(104)

for x € (0,0.7).
It follows from Lemma 12 that D;h (x) is strictly decreas-
ing on [0.7, 1). Note that

(105)

From (104) and (105) together with the monotonicity of
th (x) on [0.7,1), we clearly see that there exists ¢; € (0.7, 1)
such that D, (x) is strictly increasing on (0, ¢;] and strictly
decreasing on [¢;, 1). This in conjunction with (100) implies
that

D) (0.7) =0.0229--->0, D) (17) = —oo.

D), (x)>0 (106)

for x € (0,1).
Equation (99) together with inequalities (103) and (106)
gives rise to

M (a,b) > 1'% (a,b) Q'* (a,b),
(107)
M (a,b) < I" (a,b) Q"™ (a,b).

Therefore, Theorem 14 follows from (107) together with
the following statements.

Abstract and Applied Analysis

(i) If a; < 1/2, then (96) and (97) imply that there exists
8, € (0,1) such that M(a, b) < I“(a,b)Q" " (a, b) for
alla,b > 0 with (a — b)/(a + b) € (0,8)).

(ii) If B; > A,, then (96) and (98) imply that there exists
8, € (0,1) such that M(a, b) > I*'(a, b)Q' ! (a, b) for

all a,b > 0 with (a - b)/(a + b) € (1 -5, 1).
O

Theorem 15. The double inequality

1 (a,b) C"™™ (a,b) < M (a,b) < I* (a,b) C'P* (a,b)
(108)

holds for all a,b > 0 with a+b if and only if «, > 5/7 and
B, < log[2log(1 + V2)] = 0.566 - -.

Proof. We will follow the same idea in the proof of
Theorem 14. Since I(a, b), M(a, b), and C(a, b) are symmetric
and homogeneous of degree one. Without loss of generality,
we assume thata > b. Let g € (0, 1), A, = log[2log(1 + \2)1,
and x = (a—b)/(a+b). Then x € (0,1).

Making use of (95) together with C(a, b)/A(a,b) = 1+ X2
gives

log [C (a,b)] —log [M (a,b)]
log [C (a,b)] —log I (a,b)]

log (1 + x2) —log x + log [sinh_1 (x)]

B log (1 + x?) — log [(1 +x)(1 - x)H] /(2x)+1
(109)

i log (1 + xz) —log x + log [sinh_1 (x)]
o0 log (1 +x?) —log [(1+x)"™/(1-x)"] / (2x) + 1

>

>
7

(110)
log (1 + xz) —logx + log [sinh_1 (x)]

lim
x=1"log (1 +x?) - log [(1 + )1 - x)l_x] /(2x) +1

=1,
(111)

The difference between the convex combination of
log[I(a,b)],10g[C(a, b)] and log[M(a, b)] is as follows:

qlog[I (a,b)] + (1 - q)log [C (a,b)] - log [M (a, b)]

1 1+x
= %lo [%] —q+(1—q)log(l+x2)

X
—lOg [m] = Eq(x).
112)
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Equation (112) leads to

E (07)=0, E,(17)=log [21og (1+V2)] - g,
(113)
E,, (17)=0,

Ey (x)

2 2
:_l—x +2gx . 1 _L®) (114)

x+x° V1 + x%sinh ™! (x) 2x2
=D, (x) - qY, (x) = 0, (x;9)

where L(x), ®,(x),Y,(x), and ©,(x;q) are defined as in
Lemmas 2, 4, 6, and 13, respectively.

It follows from Lemmas 4, 6, and 13 together with (114)
that

E. /7 (%)

55 79x° 9x°\ 5 (7x 9x* 7x°
<\ —=- +—]-=-{—-—+—
3 45 5 7\3 5 5

(115)

for x € (0,0.65) and E;/7 (x) is strictly decreasing on [0.65, 1).

Thus, we have E;/7(x) < E;/7(0.65) = —0.117--- for x €
[0.65, 1). This in conjunction with (113) and (115) implies that

Es)7 (x) <0 (116)

for x € (0,1).
On the other hand, Lemmas 4, 6, and 13 together with
(114) lead to

E) (x)

\%

55 79x°  11x° 7x  9x°  15x°
— - + -l =-—+
3 45 10 3 5 7
5-7A, 79-81A, , 150A,-77 4
=X - X" - X
3 45 70

5-71, 79-8IA
> x[ 2 _ 2 % (0.65)*
3 45
1504, — 77
-2 Ty (0.65)4]

113027173 - 1970989501,
a 100800000

(117)

for x € (0,0.65) and E;z (x) is strictly decreasing on [0.65, 1).

Note that
E) (0.65)=0.0609---,  Ej (17)=-oo. (118)

From (117) and (118) together with the monotonicity of E;z (x)
on [0.65,1), we clearly see that there exists ¢, € (0.65,1)

1

such that E, (x) is strictly increasing on (0, c,] and strictly
decreasing on [c,, 1). This in conjunction with (113) implies
that

E), (x) >0 (119)

for x € (0,1).
Equation (112) together with inequalities (116) and (119)
lead to the conclusion that

M (a,b) > I’ (a,b) C¥7 (a, ),
(120)
M (a,b) < I (a,b) C*™ (a,b).

Therefore, Theorem 15 follows from (120) together with
the following statements.

(i) Ifor, < 5/7,then (109) and (110) imply that there exists
8, € (0,1) such that M(a, b) < I*(a, b)C'"*(a, b) for
alla,b > 0 with (a — b)/(a + b) € (0,35;).

(ii) If B, > A,, then (109) and (111) imply that there exists
8, € (0,1) such that M(a, b) > I*(a,b)C' P (a, b) for
alla,b > 0with (a-b)/(a+b) € (1-6,,1).

]
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