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In this study some inverse problems for a boundary value problem generated with a quadratic pencil of Sturm-Liouville equations
with impulse on a finite interval are considered. Some useful integral representations for the linearly independent solutions of a
quadratic pencil of Sturm-Liouville equation have been derived and using these, important spectral properties of the boundary
value problem are investigated; the asymptotic formulas for eigenvalues, eigenfunctions, and normalizing numbers are obtained.
The uniqueness theorems for the inverse problems of reconstruction of the boundary value problem from theWeyl function, from
the spectral data, and from two spectra are proved.

1. Introduction

The theory of inverse problems for differential operators
occupies an important position in the current developments
of the spectral theory of linear operators. Inverse problems
of spectral analysis consist in the recovery of operators
from their spectral data. One takes for the main spectral
data, for instance, one, two, or more spectra, the spectral
function, the spectrum, and the normalizing constants, the
Weyl function. Different statements of inverse problems
are possible depending on the selected spectral data. The
already existing literature on the theory of inverse problems
of spectral analysis is abundant. The most comprehensive
account of the current state of this theory and its applications
can be found in the monographs of Marchenko [1], Levitan
[2], Beals et al. [3], and Yurko [4].

In the present work we consider some inverse problems
for the boundary value problem generated by the differential
equation

𝐿𝜆𝑦 := 𝑦
󸀠󸀠
+ [𝜆
2
− 2𝜆𝑝 (𝑥) − 𝑞 (𝑥)] 𝑦 = 0,

𝑥 ∈ [0, 𝑎) ∪ (𝑎, 𝜋]

(1)

with the boundary conditions

𝑈 (𝑦) := 𝑦
󸀠
(0) = 0, 𝑉 (𝑦) := 𝑦 (𝜋) = 0 (2)

and with the jump conditions

𝑦 (𝑎 + 0) = 𝛼𝑦 (𝑎 − 0) , 𝑦
󸀠
(𝑎 + 0) = 𝛼

−1
𝑦
󸀠
(𝑎 − 0) , (3)

where 𝜆 is the spectral parameter, 𝑝(𝑥) ∈ 𝑊
1

2
[0, 𝜋], 𝑞(𝑥) ∈

𝐿2[0, 𝜋] are real functions, 𝛼 is a real number, and 𝛼 >

0, 𝛼 ̸= 1, 𝑎 ∈ (𝜋/2, 𝜋). Here we denote by 𝑊
𝑚

2
[0, 𝜋] the

space of functions 𝑓(𝑥), 𝑥 ∈ [0, 𝜋], such that the derivatives
𝑓
(𝑚)

(𝑥)(𝑚 = 0, 𝑛 − 1) are absolutely continuous and𝑓
(𝑛)

(𝑥) ∈

𝐿2[0, 𝜋].
There exist many papers containing a fairly compre-

hensive analysis of direct and inverse problems of spectral
analysis of the Sturm-Liouville equation

𝑙𝑦 := −𝑦
󸀠󸀠
+ 𝑞 (𝑥) 𝑦 = 𝜆

2
𝑦, (4)

a special case (𝑝(𝑥) ≡ 0) of (1). For instance, inverse problems
for a regular Sturm-Liouville operator with separated bound-
ary conditions have been investigated in [5] (see also [1–4]).

Some versions of inverse problems for (1) which is a
natural generalization of the Sturm-Liouville equation were
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fully studied in [6–14]. Namely, the inverse problems for
a pencil 𝐿𝜆 on the half axis and the entire axis were
considered in [6–8], where the scattering data, the spec-
tral function, and the Weyl function, respectively, were
taken for the spectral data. The problem of the recovery
of (1) from the spectra of two boundary value problems
with certain separated boundary conditions was solved in
[9]. The analysis of inverse spectral problems for (1) with
other kinds of separated boundary conditions as well as
with periodic and antiperiodic boundary conditions was
the subject of [10] (see also [11]) where the correspond-
ing results of the monograph [1] were extended to the
case 𝑝(𝑥) ̸= 0. The inverse periodic problem for the pencil
𝐿𝜆 was solved in [12] using another approach. We also
point out the paper [14], in which the uniqueness of the
recovery of the pencil 𝐿𝜆 from three spectra was investi-
gated.

Boundary value problems with discontinuities inside
the interval often appear in mathematics, physics, and
other fields of natural sciences. The inverse problems of
reconstructing the material properties of a medium from
data collected outside of the medium give solutions to
many important problems in engineering and geosciences.
For example, in electronics, the problem of constructing
parameters of heterogeneous electronic lines is reduced
to a discontinuous inverse problem [15, 16]. The reduced
mathematical model exhibits the boundary value problem
for the equation of type (1) with given spectral informa-
tion which is described by the desirable amplitude and
phase characteristics. Note that the problem of recon-
structing the permittivity and conductivity profiles of a
one-dimensional discontinuous medium is also closed to
the spectral information [17, 18]. Geophysical models for
oscillations of the Earth are also reduced to boundary
value problems with discontinuity in an interior point [19].

Direct and inverse spectral problems for differential oper-
ators without discontinuities have been extensively studied
by many authors [20–25]. Some classes of direct and inverse
problems for discontinuous boundary value problems in
various statements have been considered in [18, 26–32] and
other works. Boundary value problems with singularity have
been studied in [33–37], and for further discussion see the
references therein. Note that the inverse spectral problem
for the boundary problem (1)–(3) has never been considered
before.

In what follows we denote the boundary value prob-
lem (1)–(3) by 𝐿(𝑎, 𝛼). In Section 2 we derive some
integral representations for the linearly independent solu-
tions of (1), and using these, we investigate important
spectral properties of the boundary value problem 𝐿(𝑎, 𝛼).
In Section 3 the asymptotic formulas for eigenvalues,
eigenfunctions, and normalizing numbers of 𝐿(𝑎, 𝛼) are
obtained. Finally, in Section 4 three inverse problems of
reconstructing the boundary value problem 𝐿(𝛼, 𝑎) from
the Weyl function, from the spectral data, and from two
spectra are considered and the uniqueness theorems are
proved.

2. Integral Representations of Solutions and
the Spectral Characteristics

Let 𝑓](𝑥, 𝜆) (] = 1, 2) be solution of (1) under the initial
condition

𝑓] (0, 𝜆) = 1, 𝑓
󸀠

] (0, 𝜆) = 𝜆𝑤] (5)

and discontinuity conditions (3), where 𝑤] = (−1)
]+1

𝑖.
It is obvious that the functions𝑓](𝑥, 𝜆) satisfy the integral

equations

𝑓] (𝑥, 𝜆)

= 𝑙
+
(𝑥) 𝑒
𝜆𝑤]𝑥 + 𝑙

−
(𝑥) 𝑒
𝜆𝑤](2𝑎−𝑥)

+ 𝑙
+
(𝑥) ∫

𝑎

0

sin 𝜆 (𝑥 − 𝑡)

𝜆
{𝑞 (𝑡)+2𝜆𝑝 (𝑡)} 𝑓] (𝑡, 𝜆) 𝑑𝑡

− 𝑙
−
(𝑥) ∫

𝑎

0

sin 𝜆 (𝑥 + 𝑡 − 2𝑎)

𝜆
{𝑞 (𝑡)+2𝜆𝑝 (𝑡)} 𝑓] (𝑡, 𝜆) 𝑑𝑡

+ ∫

𝑥

𝑎

sin 𝜆 (𝑥 − 𝑡)

𝜆
{𝑞 (𝑡) + 2𝜆𝑝 (𝑡)} 𝑓] (𝑡, 𝜆) 𝑑𝑡,

(6)

where 𝑙
±
(𝑥) = (1/2)(𝑙(𝑥) ± (1/𝑙(𝑥)) and

𝑙 (𝑥) = {
1, 0 ≤ 𝑥 < 𝑎

𝛼, 𝑎 < 𝑥 ≤ 𝜋.
(7)

Using the integral equations (6) and standard successive
approximation methods [7, 9, 11], the following theorem is
proved.

Theorem 1. If 𝑞(𝑥) ∈ 𝐿2 [−𝑏, 𝑏], 𝑝(𝑥) ∈ 𝑊
1

2
[−𝑏, 𝑏] (0 < 𝑏 <

𝜋), then the solution 𝑓](𝑥, 𝜆) has the form

𝑓] (𝑥, 𝜆) = 𝑓0] (𝑥, 𝜆) + ∫

𝑥

−𝑥

𝐴] (𝑥, 𝑡) 𝑒
𝜆𝑤]𝑡𝑑𝑡, (8)

where

𝑓0] (𝑥, 𝜆) = 𝑙
+
(𝑥) 𝑒
𝜆𝑤]𝑥𝑅
+

] (𝑥) + 𝑙
−
(𝑥) 𝑒
𝜆𝑤](2𝑎−𝑥)𝑅

−

] (𝑥) ,

𝑅
±

] (𝑥) = 𝑒
∓𝑤]𝛽

±
(𝑥)

, 𝛽
±
(𝑥) = ∫

𝑥

(𝑎∓𝑎)/2

𝑝 (𝑡) 𝑑𝑡,

(9)

and the function 𝐴](𝑥, 𝑡) satisfies the inequality

∫

𝑥

−𝑥

󵄨󵄨󵄨󵄨𝐴] (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝑒

𝑐𝜎(𝑥)
− 1 (10)

with

𝜎 (𝑥) = ∫

𝑥

0

[(𝑥 − 𝑡)
󵄨󵄨󵄨󵄨𝑞 (𝑡)

󵄨󵄨󵄨󵄨 + 2
󵄨󵄨󵄨󵄨𝑝 (𝑡)

󵄨󵄨󵄨󵄨] 𝑑𝑡,

𝑐 = 2 (𝛼
+
+

󵄨󵄨󵄨󵄨𝛼
−󵄨󵄨󵄨󵄨 + 1) , 𝛼

±
=

1

2
(𝛼 ±

1

𝛼
) .

(11)
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Let 𝜑(𝑥, 𝜆) be the solution of (1) that satisfies the initial
conditions

𝜑 (0, 𝜆) = 1, 𝜑
󸀠
(0, 𝜆) = 0, (12)

and the jump condition (3).
Then by usingTheorem 1, we can formulate the following

assertion.

Theorem 2. Let 𝑞(𝑥) ∈ 𝐿2[0, 𝜋], 𝑝(𝑥) ∈ 𝑊
1

2
[0, 𝜋]. Then

there are the functions𝐴(𝑥, 𝑡), 𝐵(𝑥, 𝑡)whose first order partial
derivatives are summable on [0, 𝜋] for each 𝑥 ∈ [0, 𝜋] such that
the representation

𝜑 (𝑥, 𝜆)=𝜑0 (𝑥, 𝜆)+∫

𝑥

0

𝐴 (𝑥, 𝑡) cos 𝜆𝑡 𝑑𝑡+∫

𝑥

0

𝐵 (𝑥, 𝑡) sin 𝜆𝑡 𝑑𝑡

(13)

is satisfied, where

𝜑0 (𝑥, 𝜆) = 𝑙
+
(𝑥) cos [𝜆𝑥 − 𝛽

+
(𝑥)]

+ 𝑙
−
(𝑥) cos [𝜆 (2𝑎 − 𝑥) − 𝛽

−
(𝑥)] .

(14)

Moreover, the relations

𝛼
+
𝛽
+
(𝑥) = 𝛼

+
𝑥𝑝 (0)

+2∫

𝑥

0

[𝐴 (𝜉, 𝜉) sin𝛽
+
(𝜉)−𝐵 (𝜉, 𝜉) cos𝛽+ (𝜉)] 𝑑𝜉,

2
𝑑

𝑑𝑥
[𝐴 (𝑥, 𝑥) cos𝛽+ (𝑥) + 𝐵 (𝑥, 𝑥) sin𝛽

+
(𝑥)]

= 𝛼
+
[𝑞 (𝑥) + 𝑝

2
(𝑥)] ,

2
𝑑

𝑑𝑥
[𝐴 (𝑥, 𝑡) cos𝛽− (𝑥) − 𝐵 (𝑥, 𝑡) sin𝛽

−
(𝑥)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡=2𝑎−𝑥+0

𝑡=2𝑎−𝑥−0

= 𝛼
−
[𝑞 (𝑥) + 𝑝

2
(𝑥)] ,

𝐴 𝑡 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨𝑡=0

= 𝐵 (𝑥, 0) = 0

(15)

are held.

If one additionally supposes that 𝑞(𝑥) ∈ 𝑊
1

2
[0, 𝜋], 𝑝(𝑥) ∈

𝑊
2

2
[0, 𝜋], then the functions 𝐴(𝑥, 𝑡) and 𝐵(𝑥, 𝑡) satisfy the

system of partial differential equations

𝐴𝑥𝑥 (𝑥, 𝑡) − 𝑞 (𝑥)𝐴 (𝑥, 𝑡) − 2𝑝 (𝑥) 𝐵𝑡 (𝑥, 𝑡) = 𝐴 𝑡𝑡 (𝑥, 𝑡) ,

𝐵𝑥𝑥 (𝑥, 𝑡) − 𝑞 (𝑥) 𝐵 (𝑥, 𝑡) + 2𝑝 (𝑥)𝐴 𝑡 (𝑥, 𝑡) = 𝐵𝑡𝑡 (𝑥, 𝑡) .

(16)

Conversely, if the second order derivatives of functions
𝐴(𝑥, 𝑡), 𝐵(𝑥, 𝑡) are summable on [0, 𝜋] for each 𝑥 ∈ [0, 𝜋]

and𝐴(𝑥, 𝑡), 𝐵(𝑥, 𝑡) satisfy equalities (16) and conditions (15),
then the function𝜑(𝑥, 𝜆)which is defined by (13) is a solution
of (1) satisfying initial conditions (12) and discontinuity
conditions (3).

One here supposes that the function 𝑞(𝑥) satisfies the
additional condition

∫

𝜋

0

{
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑞 (𝑥)
󵄨󵄨󵄨󵄨𝑦 (𝑥)

󵄨󵄨󵄨󵄨

2
} 𝑑𝑥 > 0 (17)

for all 𝑦(𝑥) ∈ 𝑊
2

2
[0, 𝑎) ∪ (𝑎, 𝜋] such that 𝑦(𝑥) ̸= 0 and

𝑦
󸀠
(0) 𝑦 (0) − 𝑦

󸀠
(𝜋) 𝑦 (𝜋) = 0. (18)

Definition 3. A complex number 𝜆0 is called an eigenvalue of
the boundary value problem 𝐿(𝛼, 𝑎) if (1) with 𝜆 = 𝜆0 has a
nontrivial solution 𝑦0(𝑥) satisfying the boundary conditions
(2) and the jump conditions (3). In this case 𝑦0(𝑥) is called
the eigenfunction of the problem𝐿(𝛼, 𝑎) corresponding to the
eigenvalue 𝜆0. The number of linearly independent solutions
of the problem 𝐿(𝛼, 𝑎) for a given eigenvalue 𝜆0 is called the
multiplicity of 𝜆0.

The following lemmas can be proved analogously to the
corresponding assertions in [11].

Lemma 4. The eigenvalues of the boundary value problem
𝐿(𝛼, 𝑎) are real, nonzero, and simple.

Proof. We define a linear operator 𝐿0 in the Hilbert space
𝐿2[0, 𝜋] as follows. The domain 𝐷 (𝐿0) consists of all func-
tions 𝑦(𝑥) ∈ 𝑊

2

2
[0, 𝜋] satisfying the boundary conditions

(2) and the jump conditions (3). For 𝑦 ∈ 𝐷(𝐿0), we set
𝐿0𝑦 = −𝑦

󸀠󸀠
+ 𝑞(𝑥)𝑦. Integration by part yields

(𝐿0𝑦, 𝑦) = ∫

𝜋

0

𝐿0𝑦𝑦 (𝑥) 𝑑𝑥

= ∫

𝜋

0

(
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑞 (𝑥)
󵄨󵄨󵄨󵄨𝑦 (𝑥)

󵄨󵄨󵄨󵄨

2
) 𝑑𝑥.

(19)

Since condition (17) holds, it follows that (𝐿0𝑦, 𝑦) > 0.
Let 𝜆0 be an eigenvalue of the boundary value problem

𝐿(𝛼, 𝑎) and 𝑦0(𝑥) an eigenfunction corresponding to this
eigenvalue and normalized by the condition (𝑦0, 𝑦0) = 1.
By taking the inner product of both sides of the relation
𝑦
󸀠󸀠

0
(𝑥) + [𝜆

2

0
− 2𝜆0𝑝(𝑥) − 𝑞(𝑥)]𝑦0(𝑥) = 0 by 𝑦0(𝑥), we obtain

𝜆
2

0
− 2𝜆0(𝑝𝑦0, 𝑦0) − (𝐿0𝑦0, 𝑦0) = 0 and hence

𝜆0 = (𝑝𝑦0, 𝑦0) ± √(𝑝𝑦0, 𝑦0)
2
+ (𝐿0𝑦0, 𝑦0).

(19󸀠)

The desired assertion follows from the last relation by
virtue of (𝐿0𝑦0, 𝑦0) > 0 with regard to the fact that 𝑝(𝑥) is
real.

Let us show that 𝜆0 is a simple eigenvalue. Assume that
this is not true. Suppose that 𝑦1(𝑥) and 𝑦2(𝑥) are linearly
independent eigenfunctions corresponding to the eigenvalue
𝜆0. Then for a given value of 𝜆0, each solution 𝑦0(𝑥) of (1)
will be given as linear combination of solutions 𝑦1(𝑥) and
𝑦2(𝑥). Moreover it will satisfy boundary conditions (2) and
discontinuity conditions (3). However, it is impossible.

Lemma 5. The problem (1)–(3) does not have associated
functions.

Proof. Let 𝑦0(𝑥) be an eigenfunction corresponding to eigen-
value 𝜆0 and normalized by the condition (𝑦0, 𝑦0) = 1 of the
problem (1)–(3). Suppose that 𝑦1(𝑥) is an associated function
of eigenfunction 𝑦0(𝑥), that is, the following equalities hold:

𝜆
2

0
𝑦0 − 2𝜆0𝑝 (𝑥) 𝑦0 − 𝐿0𝑦0 = 0,

𝜆
2

0
𝑦1 − 2𝜆0𝑝 (𝑥) 𝑦1 − 𝐿0𝑦1 + 2 (𝜆0 − 𝑝 (𝑥)) 𝑦0 = 0.

(20)
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If these equations are multiplied by 𝑦1(𝑥) and 𝑦0(𝑥),
respectively, as inner product, subtracting them side by side
and taking into our account that operator 𝐿0 is symmetric,
the function 𝑝(𝑥) and 𝜆0 are real, we get 𝜆0 = (𝑝𝑦0, 𝑦0). Due
to the condition (6), 𝜆0 = (𝑝𝑦0, 𝑦0) does not agree with (19󸀠).
Therefore, the assertion is not true.

Lemma 6. Eigenfunctions corresponding to different eigenval-
ues of the problem 𝐿(𝛼, 𝑎) are orthogonal in the sense of the
equality

(𝜆1 + 𝜆2) (𝑦1, 𝑦2) − 2 (𝑝𝑦1, 𝑦2) = 0, (21)

where (⋅, ⋅) denotes the inner product in 𝐿2[0, 𝜋].

Lemma 7. Let 𝑦(𝑥, 𝜆) be a solution of (1) satisfying the
condition (18) and the jump conditions (3). Then 𝜆 is real and
nonzero and

∫

𝜋

0

(𝜆 − 𝑝 (𝑥))
󵄨󵄨󵄨󵄨𝑦 (𝑥, 𝜆)

󵄨󵄨󵄨󵄨

2
𝑑𝑥 ̸= 0. (22)

Moreover, the sign of the left-hand side of (22) is similar to the
sign of 𝜆.

3. Properties of the Spectrum

In this section we investigate some spectral properties of the
boundary value problem 𝐿(𝛼, 𝑎).

Let 𝜓(𝑥, 𝜆) be a solution of (1) with the conditions
𝜓(𝜋, 𝜆) = 0, 𝜓

󸀠
(𝜋, 𝜆) = 1 and the jump conditions (3). It

is clear that function 𝜓(𝑥, 𝜆) is entire in 𝜆 for each fixed 𝑥.
Denote Δ(𝜆) = ⟨𝜓(𝑥, 𝜆), 𝜑(𝑥, 𝜆)⟩, where ⟨𝑦, 𝑧⟩ :=

𝑦
󸀠
𝑧 − 𝑦𝑧

󸀠. By virtue of Liouville’s formula, the Wronskian
⟨𝜓(𝑥, 𝜆), 𝜑(𝑥, 𝜆)⟩ does not depend on 𝑥. The function Δ(𝜆)

is called the characteristic function of 𝐿(𝛼, 𝑎). Obviously, the
function Δ(𝜆) is entire in 𝜆 and it has at most a countable set
of zeros {𝜆𝑛}.

Lemma 8. The zeros {𝜆𝑛} of the characteristic function Δ(𝜆)

coincide with the eigenvalues of the boundary value problem
𝐿(𝛼, 𝑎).The functions 𝜑(𝑥, 𝜆𝑛) and𝜓(𝑥, 𝜆𝑛) are eigenfunctions
corresponding to the eigenvalue 𝜆𝑛, and there exists a sequence
{𝛽𝑛} such that

𝜓 (𝑥, 𝜆n) = 𝛽𝑛𝜑 (𝑥, 𝜆𝑛) , 𝛽𝑛 ̸= 0. (23)

Proof. Let Δ(𝜆0) = 0. Then by virtue of ⟨𝜓(𝑥, 𝜆0), 𝜑(𝑥, 𝜆0)⟩ =

0, 𝜑(𝑥, 𝜆0) = 𝐶𝜓(𝑥, 𝜆0) for some constant 𝐶. Hence 𝜆0 is an
eigenvalue and 𝜑(𝑥, 𝜆0), 𝜓(𝑥, 𝜆0) are eigenfunctions related
to 𝜆0.

Conversely, let 𝜆0 be an eigenvalue of 𝐿(𝛼, 𝑎), show that
Δ(𝜆0) = 0. Assuming the converse suppose that Δ(𝜆0) ̸= 0.
In this case the functions 𝜑(𝑥, 𝜆0) and 𝜓(𝑥, 𝜆0) are linearly
independent. Then 𝑦 (𝑥, 𝜆0) = 𝑐1𝜑(𝑥, 𝜆0) + 𝑐2𝜓(𝑥, 𝜆0) is a
general solution of the problem 𝐿(𝛼, 𝑎). If 𝑐1 ̸= 0, we can write

𝜑 (𝑥, 𝜆0) =
1

𝑐1

𝑦 (𝑥, 𝜆0) −
𝑐2

𝑐1

𝜓 (𝑥, 𝜆0) . (24)

Then we have

⟨𝜑 (𝑥, 𝜆0) , 𝜓 (𝑥, 𝜆0)⟩

=
1

𝑐1

[𝑦
󸀠
(𝜋, 𝜆0) 𝜓 (𝜋, 𝜆0) − 𝑦 (𝜋, 𝜆0) 𝜓

󸀠
(𝜋, 𝜆0)]

= −
1

𝑐1

𝑦 (𝜋, 𝜆0)

= 0

(25)

which is a contradiction.

Note that we have also proved that for each eigenvalue
there exists only one eigenfunction (up to a multiplicative
constant). Therefore there exists sequence 𝛽𝑛 such that
𝜓(𝑥, 𝜆𝑛) = 𝛽𝑛𝜑(𝑥, 𝜆𝑛).

Let us denote

𝛼𝑛 := ∫

𝜋

0

𝜑
2
(𝑥, 𝜆𝑛) 𝑑𝑥 −

1

𝜆𝑛

∫

𝜋

0

𝑝 (𝑥) 𝜑
2
(𝑥, 𝜆𝑛) 𝑑𝑥. (26)

The numbers {𝛼𝑛} are called normalized numbers of the
boundary value problem 𝐿(𝛼, 𝑎).

Lemma 9. The equality Δ̇(𝜆𝑛) = −2𝜆𝑛𝛼𝑛𝛽𝑛 holds. Here
Δ̇(𝜆) = (𝑑/𝑑𝜆)Δ(𝜆).

Proof. If we differentiate the equalities

− 𝜑
󸀠󸀠
(𝑥, 𝜆) + [2𝜆𝑝 (𝑥) + 𝑞 (𝑥)] 𝜑 (𝑥, 𝜆) = 𝜆

2
𝜑 (𝑥, 𝜆) ,

− 𝜓
󸀠󸀠
(𝑥, 𝜆) + [2𝜆𝑝 (𝑥) + 𝑞 (𝑥)] 𝜓 (𝑥, 𝜆) = 𝜆

2
𝜓 (𝑥, 𝜆)

(27)

with respect to 𝜆, we get

− 𝜑̇
󸀠󸀠
(𝑥, 𝜆) + [2𝜆𝑝 (𝑥) + 𝑞 (𝑥)] 𝜑̇ (𝑥, 𝜆)

= 𝜆
2
𝜑̇ (𝑥, 𝜆) + 2 [𝜆 − 𝑝 (𝑥)] 𝜑 (𝑥, 𝜆) ,

− 𝜓̇
󸀠󸀠
(𝑥, 𝜆) + [2𝜆𝑝 (𝑥) + 𝑞 (𝑥)] 𝜓̇ (𝑥, 𝜆)

= 𝜆
2
𝜓̇ (𝑥, 𝜆) + 2 [𝜆 − 𝑝 (𝑥)] 𝜓 (𝑥, 𝜆) .

(28)

By virtue of these equalities we have

𝑑

𝑑𝑥
{𝜑 (𝑥, 𝜆) 𝜓̇

󸀠
(𝑥, 𝜆) − 𝜑

󸀠
(𝑥, 𝜆) 𝜓̇ (𝑥, 𝜆)}

= 2 [𝜆 − 𝑝 (𝑥)] 𝜑 (𝑥, 𝜆) 𝜓 (𝑥, 𝜆) ,

𝑑

𝑑𝑥
{𝜑̇ (𝑥, 𝜆) 𝜓

󸀠
(𝑥, 𝜆) − 𝜑̇

󸀠
(𝑥, 𝜆) 𝜓 (𝑥, 𝜆)}

= 2 [𝜆 − 𝑝 (𝑥)] 𝜑 (𝑥, 𝜆) 𝜓 (𝑥, 𝜆) .

(29)
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If the last equations are integrated from 𝑥 to 𝜋 and from
0 to 𝑥, respectively, by the discontinuity conditions we obtain

(𝜑 (𝜉, 𝜆) 𝜓̇
󸀠
(𝜉, 𝜆) − 𝜑

󸀠
(𝜉, 𝜆) 𝜓̇ (𝜉, 𝜆))

󵄨󵄨󵄨󵄨󵄨

𝜋

𝑥

= −2∫

𝜋

𝑥

(𝜆 − 𝑝 (𝜉)) 𝜑 (𝜉, 𝜆) 𝜓 (𝜉, 𝜆) 𝑑𝜉,

(𝜑̇ (𝜉, 𝜆) 𝜓
󸀠
(𝜉, 𝜆) − 𝜑̇

󸀠
(𝜉, 𝜆) 𝜓 (𝜉, 𝜆))

󵄨󵄨󵄨󵄨󵄨

𝑥

0

= −2∫

𝑥

0

(𝜆 − 𝑝 (𝜉)) 𝜑 (𝜉, 𝜆) 𝜓 (𝜉, 𝜆) 𝑑𝜉.

(30)

If we add the last equalities side by side, we get

𝑊[𝜑̇ (𝜉, 𝜆) , 𝜓 (𝜉, 𝜆)] + 𝑊 [𝜑 (𝜉, 𝜆) , 𝜓̇ (𝜉, 𝜆)]

= −2∫

𝜋

0

(𝜆 − 𝑝 (𝜉)) 𝜑 (𝜉, 𝜆) 𝜓 (𝜉, 𝜆) 𝑑𝜉

(31)

or

Δ̇ (𝜆) = −2∫

𝜋

0

(𝜆 − 𝑝 (𝜉)) 𝜑 (𝜉, 𝜆) 𝜓 (𝜉, 𝜆) 𝑑𝜉. (32)

For 𝜆 → 𝜆𝑛, this yields

Δ̇ (𝜆𝑛) = −2∫

𝜋

0

(𝜆𝑛 − 𝑝 (𝜉)) 𝜑 (𝜉, 𝜆𝑛) 𝜓 (𝜉, 𝜆𝑛) 𝑑𝜉

= −2𝛽𝑛 ∫

𝜋

0

(𝜆𝑛 − 𝑝 (𝜉)) 𝜑
2
(𝜉, 𝜆𝑛) 𝑑𝜉

= −2𝜆𝑛𝛽𝑛 [∫

𝜋

0

𝜑
2
(𝜉, 𝜆𝑛) 𝑑𝜉

−
1

𝜆𝑛

∫

𝜋

0

𝑝 (𝜉) 𝜑
2
(𝜉, 𝜆𝑛) 𝑑𝜉]

= −2𝜆𝑛𝛽𝑛𝛼𝑛.

(33)

The lemma is proved.

LetΔ 0(𝜆) = 𝛼
+ cos[𝜆𝜋−𝛽

+
(𝜋)]+𝛼

− cos[𝜆(2𝑎−𝜋)+𝛽
−
(𝜋)]

and {𝜆
0

𝑛
} are zeros of Δ 0(𝜆).

Lemma 10. The roots of the characteristic equation Δ 0(𝜆) = 0

are separate, that is

inf
𝑛 ̸=𝑚

󵄨󵄨󵄨󵄨󵄨
𝜆
0

𝑛
− 𝜆
0

𝑚

󵄨󵄨󵄨󵄨󵄨
= 𝛽 > 0. (34)

Proof. Let 𝜆𝜋−𝛽
+
(𝜋) = 𝑥. Then, 𝜆(2𝑎 − 𝜋) + 𝛽

−
(𝜋) = 𝑘𝑥 + 𝑏,

where 𝑘 = (2𝑎 − 𝜋)/𝜋, 𝑏 = 𝛽
+
(𝜋)((2𝑎 − 𝜋)/𝜋) + 𝛽

−
(𝜋). Since

𝑎 ∈ (𝜋/2, 𝜋), then 𝑘 ∈ (0, 1). Using these notations we can
rewrite the equation Δ 0(𝜆) = 0 in the following form:

𝐴 cos𝑥 = cos (𝑘𝑥 + 𝑏) . (35)

Here𝐴 = −(𝛼
+
/𝛼
−
) which implies that |𝐴| > 1. Preliminarily

show that there are no multiple roots of (35). Assuming the
converse we suppose 𝑥0 to be a multiple root of (35). Then

𝐴 sin𝑥0 = 𝑘 sin (𝑘𝑥0 + 𝑏) (36)

holds. Now (35) and (36) imply that𝐴2 = 1−(1−𝑘
2
)sin2(𝑘𝑥0+

𝑏) ≤ 1 which is a contradiction. Therefore, (35) has no
multiple roots.

Further assuming (34) not to be true let {𝑥󸀠
𝑝
} and {𝑥

󸀠󸀠

𝑝
} be

increasing sequences of roots of (35) such that 𝑥󸀠
𝑝

̸= 𝑥
󸀠󸀠

𝑝
and

lim
𝑝→∞

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

𝑝
− 𝑥
󸀠󸀠

𝑝

󵄨󵄨󵄨󵄨󵄨
= 0. (37)

If we assume that 𝑥󸀠
𝑝

= 2𝑛𝑝𝜋 + 𝑟
󸀠

𝑝
, where 𝑛 ∈ N and {𝑟

󸀠

𝑝
} is

a bounded sequence (0 < 𝑟
󸀠

𝑝
< 2𝜋), then from (37) we find

that 𝑥󸀠󸀠
𝑝

= 2𝑛𝑝𝜋 + 𝑟
󸀠󸀠

𝑝
, where {𝑟

󸀠󸀠

𝑝
} is a bounded sequence such

that lim𝑝→∞|𝑟
󸀠

𝑝
− 𝑟
󸀠󸀠

𝑝
| = 0. It is obvious that 𝑘𝑥󸀠

𝑝
= 2𝜋[𝑘𝑛𝑝] +

𝑠
󸀠

𝑝
, 𝑘𝑥
󸀠󸀠

𝑝
= 2𝜋[𝑘𝑛𝑝] + 𝑠

󸀠󸀠

𝑝
, where 𝑠

󸀠

𝑝
= 2𝜋{𝑘𝑛𝑝} + 𝑟

󸀠

𝑝
𝑘, 𝑠
󸀠󸀠

𝑝
=

2𝜋{𝑘𝑛𝑝}+𝑟
󸀠󸀠

𝑝
𝑘 and lim𝑝→∞|𝑠

󸀠

𝑝
−𝑠
󸀠󸀠

𝑝
| = 0. Here [⋅] and {⋅}denote

the integer and fractional parts of a real number, respectively.
Since sequences {𝑟

󸀠

𝑝
}
𝑝≥1

, {𝑟
󸀠󸀠

𝑝
}
𝑝≥1

, {𝑠
󸀠

𝑝
}
𝑝≥1

and {𝑠
󸀠󸀠

𝑝
}
𝑝≥1

will be
bounded, without loss of generality we can assume that these
sequences are convergent. Then let

lim
𝑝→∞

𝑟
󸀠

𝑝
= lim
𝑝→∞

𝑟
󸀠󸀠

𝑝
= 𝑥0, (38)

lim
𝑝→∞

𝑠
󸀠

𝑝
= lim
𝑝→∞

𝑠
󸀠󸀠

𝑝
= 𝑦0. (39)

Therefore, we can write the equality 𝐴 cos𝑥󸀠
𝑝

= cos(𝑘𝑥󸀠
𝑝
+ 𝑏)

as

𝐴 cos 𝑟󸀠
𝑝
= cos (𝑠󸀠

𝑝
+ 𝑏) . (40)

Then by virtue of (38) and (39), from (40) we get

𝐴 cos𝑥0 = cos (𝑦0 + 𝑏) . (41)

Similarly we can obtain

𝐴 cos 𝑟󸀠󸀠
𝑝

= cos (𝑠󸀠󸀠
𝑝
+ 𝑏) . (42)

Further, from (40) and (42), we have

𝐴 sin
𝑟
󸀠

𝑝
+ 𝑟
󸀠󸀠

𝑝

2
sin

𝑟
󸀠

𝑝
− 𝑟
󸀠󸀠

𝑝

2
= sin(

𝑠
󸀠

𝑝
+ 𝑠
󸀠󸀠

𝑝

2
+ 𝑏) sin

𝑠
󸀠

𝑝
− 𝑠
󸀠󸀠

𝑝

2
.

(43)

Let us write this equality as

𝐴 sin
𝑟
󸀠

𝑝
+ 𝑟
󸀠󸀠

𝑝

2
sin

𝑟
󸀠

𝑝
− 𝑟
󸀠󸀠

𝑝

2

= sin(

𝑠
󸀠

𝑝
+ 𝑠
󸀠󸀠

𝑝

2
+ 𝑏) sin

𝑘 (𝑟
󸀠

𝑝
− 𝑟
󸀠󸀠

𝑝
)

2
.

(44)

Now dividing both sides of equality (44) by (𝑟
󸀠

𝑝
− 𝑟
󸀠󸀠

𝑝
)/2 ̸= 0

and taking limit as 𝑝 → ∞, by virtue of (3) and (39), we
obtain

𝐴 sin𝑥0 = 𝑘 sin (𝑦0 + 𝑏) . (45)

Finally, from (41) and (45), we conclude that 𝐴2 = 1 − (1 −

𝑘
2
)sin2(𝑦0 + 𝑏) ≤ 1 which is a contradiction. Hence roots of

equation Δ 0(𝜆) = 0 are separate. The lemma is proved.
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Denote

Γ𝑛 = {𝜆 : |𝜆| =
󵄨󵄨󵄨󵄨󵄨
𝜆
0

𝑛

󵄨󵄨󵄨󵄨󵄨
+

𝛽

2
} , 𝑛 = 0, 1, . . . ,

𝐺𝛿 := {𝜆 :
󵄨󵄨󵄨󵄨󵄨
𝜆 − 𝜆
0

𝑛

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} (𝛿 > 0) ,

(46)

where 𝛿 is sufficiently small positive number (𝛿 ≪ 𝛽/2).

Lemma 11. For sufficiently large values of 𝑛, one has

󵄨󵄨󵄨󵄨Δ (𝜆) − Δ 𝑜 (𝜆)
󵄨󵄨󵄨󵄨 <

𝐶𝛿

2
𝑒
| Im𝜆|𝜋

, 𝜆 ∈ Γ𝑛. (47)

Proof. As it is shown in [38], |Δ 𝑜(𝜆)| ≥ 𝐶𝛿𝑒
| Im𝜆|𝜋 for all 𝜆 ∈

𝐺𝛿, where 𝐶𝛿 > 0 is some constant. On the other hand, since

lim
|𝜆|→∞

𝑒
−| Im𝜆|𝜋

(Δ (𝜆) − Δ 𝑜 (𝜆))

= lim
|𝜆|→∞

𝑒
−| Im𝜆|𝜋

(∫

𝜋

0

𝐴̃ (𝜋, 𝑡) cos 𝜆𝑡 𝑑𝑡

+ ∫

𝜋

0

𝐵̃ (𝜋, 𝑡) sin 𝜆𝑡 𝑑𝑡)

= 0

(48)

for sufficiently large values of 𝑛 (see [1]) we get (47). The
lemma is proved.

Lemma 12. The problem 𝐿(𝛼, 𝑎) has countable set of eigen-
values. If one denotes by 𝜆1, 𝜆2, . . . the positive eigenvalues
arranged in increasing order and by 𝜆−1, 𝜆−2, . . . the negative
eigenvalues arranged in decreasing order, then eigenvalues of
the problem 𝐿(𝛼, 𝑎) have the asymptotic behavior

𝜆𝑛 = 𝜆
0

𝑛
+

𝑑𝑛

𝜆0
𝑛

+
𝛿𝑛

𝜆0
𝑛

, 𝑛 󳨀→ ±∞, (49)

where 𝛿𝑛 ∈ 𝑙2 and 𝑑𝑛 is a bounded sequence, 𝜆
0

𝑛
= 𝑛 +

(1/𝜋)𝛽
+
(𝜋) + ℎ𝑛, sup𝑛|ℎ𝑛| < ∞.

Proof. According to Lemma 11, if 𝑛 is a sufficiently large
natural number and 𝜆 ∈ Γ𝑛, we have |Δ 𝑜(𝜆)| ≥ 𝐶𝛿𝑒

| Im𝜆|𝜋
>

(𝐶𝛿/2)𝑒
| Im𝜆|𝜋

> |Δ(𝜆) − Δ 𝑜(𝜆)|. Applying Rouche’s theorem
we conclude that for sufficiently large 𝑛 inside the contour
Γ𝑛 the functions Δ 𝑜(𝜆) and Δ 𝑜(𝜆) + {Δ(𝜆) − Δ 𝑜(𝜆)} = Δ(𝜆)

have the same number of zeros counting their multiplicities.
That is, there are exactly (𝑛 + 1) zeros 𝜆0, 𝜆1, . . . , 𝜆𝑛. in
Γ𝑛. Analogously, it is shown by Rouche’s theorem that, for
sufficiently large values of 𝑛, the function Δ(𝜆) has a unique
zero inside each circle |𝜆 − 𝜆

0

𝑛
| < 𝛿. Since 𝛿 > 0 is arbitrary,

it follows that 𝜆𝑛 = 𝜆
0

𝑛
+ 𝜀𝑛, where lim𝑛→∞𝜀𝑛 = 0. Further

according to Δ(𝜆𝑛) = 0, we have

Δ 0 (𝜆
0

𝑛
+ 𝜀𝑛) + ∫

𝜋

0

𝐴 (𝜋, 𝑡) cos (𝜆0
𝑛
+ 𝜀𝑛) 𝑡 𝑑𝑡

+ ∫

𝜋

0

𝐵 (𝜋, 𝑡) sin (𝜆
0

𝑛
+ 𝜀𝑛) 𝑡 𝑑𝑡 = 0.

(50)

On the other hand, since

Δ 0 (𝜆)

= 𝛼
+ cos (𝜆𝜋 − 𝛽

+
(𝜋)) + 𝛼

− cos (𝜆 (2𝑎 − 𝜋) + 𝛽
−
(𝜋)) ,

Δ 0 (𝜆
0

𝑛
+ 𝜀𝑛) = Δ̇𝑜 (𝜆

0

𝑛
) 𝜀𝑛 + 𝑜 (𝜀𝑛) , 𝑛 󳨀→ ∞,

(51)

(50) takes the form of

Δ̇0 (𝜆
0

𝑛
) 𝜀𝑛 + ∫

𝜋

0

𝐴 (𝜋, 𝑡) cos (𝜆0
𝑛
+ 𝜀𝑛) 𝑡 𝑑𝑡

+ ∫

𝜋

0

𝐵 (𝜋, 𝑡) sin (𝜆
0

𝑛
+ 𝜀𝑛) 𝑡 𝑑𝑡 + 𝑜 (𝜀𝑛) = 0, 𝑛 󳨀→ ∞.

(52)

It is easy to see that the function Δ 0(𝜆) is type of “Sine” [39],
so there exists 𝛾𝛿 > 0 such that |Δ̇𝑜(𝜆

0

𝑛
)| ≥ 𝛾𝛿 > 0 is satisfied

for all 𝑛. We also have

𝜆
0

𝑛
= 𝑛 +

1

𝜋
𝛽
+
(𝜋) + ℎ𝑛, (53)

where sup
𝑛
|ℎ𝑛| ≤ 𝑀 for some constant 𝑀 > 0 [40] (see

also [41]). Further, substituting (53) into (52) after certain
transformations [1, page 67], we reach 𝜀𝑛 ∈ 𝑙2. We can obtain
more precisely

𝜀𝑛 =
1

2Δ̇𝑜 (𝜆
0
𝑛
) 𝜆0
𝑛

{ [𝛼
+ sin (𝜆

0

𝑛
𝜋 − 𝛽1 (𝜋))

+ 𝛼
− sin (𝜆

0

𝑛
(2𝑎 − 𝜋) + 𝛽2 (𝜋))]

× ∫

𝜋

0

(𝑞 (𝑥) + 𝑝
2
(𝑥)) 𝑑𝑥

− [𝛼
+ cos (𝜆0

𝑛
𝜋 − 𝛽1 (𝜋))

+ 𝛼
− cos (𝜆0

𝑛
(2𝑎 − 𝜋) + 𝛽2 (𝜋))]

× (𝑝 (𝜋) − 𝑝 (0)) }

+
1

Δ̇𝑜 (𝜆
0
𝑛
) 𝜆0
𝑛

[∫

𝜋

0

𝐵
󸀠

𝑡
(𝜋, 𝑡) cos 𝜆0

𝑛
𝑡 𝑑𝑡

−∫

𝜋

0

𝐴
󸀠

𝑡
(𝜋, 𝑡) sin 𝜆

0

𝑛
𝑡 𝑑𝑡]

+
𝑜 (𝜀𝑛)

𝜆0
𝑛

, 𝑛 󳨀→ ∞.

(54)
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Since ∫
𝜋

0
𝐵
󸀠

𝑡
(𝜋, 𝑡) cos 𝜆0

𝑛
𝑡 𝑑𝑡 ∈ 𝑙2, ∫

𝜋

0
𝐴
󸀠

𝑡
(𝜋, 𝑡) sin 𝜆

0

𝑛
𝑡 𝑑𝑡 ∈

𝑙2, we have

𝜀𝑛 =
1

2Δ̇𝑜 (𝜆
0
𝑛
) 𝜆0
𝑛

{ [𝛼
+ sin (𝜆

0

𝑛
𝜋 − 𝛽1 (𝜋))

+ 𝛼
− sin (𝜆

0

𝑛
(2𝑎 − 𝜋) + 𝛽2 (𝜋))]

× ∫

𝜋

0

(𝑞 (𝑥) + 𝑝
2
(𝑥)) 𝑑𝑥

− [𝛼
+ cos (𝜆0

𝑛
𝜋 − 𝛽1 (𝜋))

+ 𝛼
− cos (𝜆0

𝑛
(2𝑎 − 𝜋) + 𝛽2 (𝜋))]

× (𝑝 (𝜋) − 𝑝 (0)) } +
𝛿𝑛

𝜆0
𝑛

,

(55)

where 𝛿𝑛 ∈ 𝑙2. Hence we obtain

𝜆𝑛 = 𝜆
0

𝑛
+

𝑑𝑛

𝜆0
𝑛

+
𝛿𝑛

𝜆0
𝑛

, (56)

where

𝑑𝑛 =
1

2Δ̇𝑜 (𝜆
0
𝑛
)
{ [𝛼
+ sin (𝜆

0

𝑛
𝜋 − 𝛽
+
(𝜋))

+ 𝛼
− sin (𝜆

0

𝑛
(2𝑎 − 𝜋) + 𝛽

−
(𝜋))]

×∫

𝜋

0

(𝑞 (𝑥) + 𝑝
2
(𝑥)) 𝑑𝑥

− [𝛼
+ cos (𝜆0

𝑛
𝜋 − 𝛽
+
(𝜋))

+ 𝛼
− cos (𝜆0

𝑛
(2𝑎 − 𝜋) + 𝛽

−
(𝜋))]

× (𝑝 (𝜋) − 𝑝 (0)) }

(57)

is a bounded sequence. The proof is completed.

Lemma 13. Normalizing numbers 𝛼𝑛 of the problem 𝐿(𝛼, 𝑎)

are positive and the formula

𝛼𝑛 =
𝜋

2
[(𝛼
+
)
2
+ (𝛼
−
)
2
] +

𝑑11

𝜆0
𝑛

+
𝑑1𝑛

𝑛
(58)

holds, where 𝑑11 = −(𝛼𝜋/2)𝑝(0), 𝑑1𝑛 ∈ 𝑙2.

Proof. The formula (58) can be easily obtained from the
equalities

𝐴 (𝑥, 𝑥) sin 𝜆𝑛𝑥 − 𝐵 (𝑥, 𝑥) cos 𝜆𝑛𝑥

=
𝛼
+

2
{ (𝑝 (𝑥) − 𝑝 (0)) cos (𝜆𝑛𝑥 − 𝛽

+
(𝑥))

+ ∫

𝑥

0

(𝑞 (𝑡) + 𝑝
2
(𝑡)) 𝑑𝑡 sin (𝜆𝑛𝑥 − 𝛽

+
(𝑥))} ,

[𝐴 (𝑥, 2𝑎 − 𝑥 + 0) − 𝐴 (𝑥, 2𝑎 − 𝑥 − 0)] sin 𝜆𝑛 (2𝑎 − 𝑥)

− [𝐵 (𝑥, 2𝑎 − 𝑥 + 0) − 𝐵 (𝑥, 2𝑎 − 𝑥 − 0)] cos 𝜆𝑛 (2𝑎 − 𝑥)

=
𝛼
−

2
{∫

𝑥

0

(𝑞 (𝑡) + 𝑝
2
(𝑡)) 𝑑𝑡 sin (𝜆𝑛 (2𝑎 − 𝑥) + 𝛽

−
(𝑥))

− (𝑝 (𝑥) − 𝑝 (0)) cos (𝜆𝑛 (2𝑎 − 𝑥) + 𝛽
−
(𝑥)) }

(59)

by using the asymptotic formula (49) for 𝜆𝑛.

4. Inverse Problems

Together with 𝐿(𝛼, 𝑎), we consider the boundary value prob-
lem 𝐿̃(𝛼, 𝑎) of the same form but with different coefficients
(𝑞̃, 𝑝̃, 𝛼̃, 𝑎̃). It is assumed in what follows that if a certain
symbol 𝛾 denotes an object related to the problem 𝐿(𝛼, 𝑎),
then 𝛾̃ will denote the corresponding object related to the
problem 𝐿̃(𝛼, 𝑎).

In the present section, we investigate some inverse spec-
tral problem of the reconstruction of a boundary value prob-
lem 𝐿(𝛼, 𝑎) of type (1)–(4) from its spectral characteristics.
Namely, we consider the inverse problems of reconstruc-
tion of the boundary value problem 𝐿(𝛼, 𝑎) from the Weyl
function, from the spectral data {𝜆𝑛, 𝛼𝑛}𝑛≥0, and from two
spectra {𝜆𝑛, 𝜇𝑛}𝑛≥0 and prove that the following two lemmas
can be easily obtained from asymptotic behavior (49) of the
eigenvalues 𝜆𝑛.

Lemma 14. If 𝜆𝑛 = 𝜆̃𝑛, 𝑛 = 0, ±1, ±2, . . ., then 𝛽
+
(𝜋) =

𝛽̃
+

(𝜋), 𝛽
−
(𝜋) = 𝛽̃

−

(𝜋), that is, the sequence {𝜆𝑛} uniquely
determines 𝛽±(𝜋).

Lemma 15. If 𝜆𝑛 = 𝜆̃𝑛, 𝑛 = 0, ±1, ±2, . . ., then 𝑎 = 𝑎̃, 𝛼 = 𝛼̃,
that is, the sequence {𝜆𝑛} uniquely determines numbers 𝑎 and
𝛼.

Let Φ(𝑥, 𝜆) be the solution of (1) under the conditions
𝑈(Φ) = 1, 𝑉(Φ) = 0 and under the jump conditions (3). One
sets 𝑀(𝜆) := Φ(0, 𝜆). The functions Φ(𝑥, 𝜆) and 𝑀(𝜆) are
called the Weyl solution andWeyl function for the boundary
value problem 𝐿(𝛼, 𝑎), respectively. Using the solution𝜑(𝑥, 𝜆)

defined in the previous sections one has

Φ (𝑥, 𝜆) = −
𝜓 (𝑥, 𝜆)

Δ (𝜆)
= 𝑆 (𝑥, 𝜆) + 𝑀 (𝜆) 𝜑 (𝑥, 𝜆) ,

𝑀 (𝜆) = −
𝜓 (0, 𝜆)

Δ (𝜆)
,

(60)

where 𝜓(𝑥, 𝜆) is a solution of (1) satisfying the conditions
𝜓(𝜋, 𝜆) = 0, 𝜓

󸀠
(𝜋, 𝜆) = −1, and the jump conditions (3), and

𝑆(𝑥, 𝜆) is defined from the equality

𝜓 (𝑥, 𝜆) = 𝜓 (0, 𝜆) 𝜑 (𝑥, 𝜆) − Δ (𝜆) 𝑆 (𝑥, 𝜆) . (61)
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Note that, by virtue of equalities ⟨𝜑(𝑥, 𝜆), 𝑆(𝑥, 𝜆)⟩ ≡ 1 and
(60), one has

⟨Φ (𝑥, 𝜆) , 𝜑 (𝑥, 𝜆)⟩ ≡ 1,

⟨𝜑 (𝑥, 𝜆) , 𝜓 (𝑥, 𝜆)⟩ ≡ −Δ (𝜆) for 𝑥 ̸= 𝑎.

(62)

The following theorem shows that the Weyl function
uniquely determines the potentials and the coefficients of the
boundary value problem 𝐿(𝛼, 𝑎).

Theorem 16. If 𝑀(𝜆) = 𝑀̃(𝜆), then 𝐿(𝛼, 𝑎) = 𝐿̃(𝛼, 𝑎). Thus,
the boundary value problem 𝐿(𝛼, 𝑎) is uniquely defined by the
Weyl function.

Proof. Since

𝜓
(])

(𝑥, 𝜆) = 𝑂 (|𝜆|
]−1 exp (|Im 𝜆| (𝜋 − 𝑥))) , 𝜆 ∈ 𝐺̃𝛿,

(63)

|Δ (𝜆)| ≥ 𝐶𝛿 exp (|Im 𝜆| 𝜋) , 𝜆 ∈ 𝐺̃𝛿, 𝐶𝛿 < 0, ] = 0, 1,

(64)

it is easy to observe that
󵄨󵄨󵄨󵄨󵄨
Φ
(])

(𝑥, 𝜆)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝛿|𝜆|

]−1 exp (− |Im 𝜆| 𝑥) , 𝜆 ∈ 𝐺𝛿. (65)

Let us define the matrix 𝑃(𝑥, 𝜆) = [𝑃𝑗𝑘(𝑥, 𝜆)]𝑗,𝑘=1,2, where

𝑃𝑗1 (𝑥, 𝜆) = 𝜑
(𝑗−1)

(𝑥, 𝜆) Φ̃
󸀠

(𝑥, 𝜆) − Φ
(𝑗−1)

(𝑥, 𝜆) 𝜑̃
󸀠
(𝑥, 𝜆) ,

𝑃𝑗2 (𝑥, 𝜆) = Φ
(𝑗−1)

(𝑥, 𝜆) 𝜑̃
󸀠
(𝑥, 𝜆) − 𝜑

(𝑗−1)
(𝑥, 𝜆) Φ̃ (𝑥, 𝜆) .

(66)

Then we have

𝜑 (𝑥, 𝜆) = 𝑃11 (𝑥, 𝜆) 𝜑̃ (𝑥, 𝜆) + 𝑃12 (𝑥, 𝜆) 𝜑̃
󸀠
(𝑥, 𝜆) ,

Φ (𝑥, 𝜆) = 𝑃11 (𝑥, 𝜆) Φ̃ (𝑥, 𝜆) + 𝑃12 (𝑥, 𝜆) Φ̃
󸀠

(𝑥, 𝜆) .

(67)

According to (60) and (65), for each fixed 𝑥, the functions
𝑃𝑗𝑘(𝑥, 𝜆) are meromorphic in 𝜆 with poles at points 𝜆𝑛 and
𝜆̃𝑛. Denote 𝐺

∘

𝛿
= 𝐺𝛿 ∩ 𝐺̃𝛿. By virtue of (65), (66), and

𝜑
(])

(𝑥, 𝜆) = 𝑂 (|𝜆|
] exp (|Im 𝜆| 𝑥)) , 𝜆 ∈ 𝐺

∘

𝛿
, (68)

we get
󵄨󵄨󵄨󵄨𝑃12 (𝑥, 𝜆)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝛿|𝜆|
−1

,
󵄨󵄨󵄨󵄨𝑃11 (𝑥, 𝜆)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝛿, 𝜆 ∈ 𝐺
∘

𝛿
. (69)

It follows from (60) and (66) that if 𝑀(𝜆) ≡ 𝑀̃(𝜆), then for
each fixed 𝑥 the functions 𝑃1𝑘(𝑥, 𝜆) are entire in 𝑘. Together
with (69) this yields 𝑃12(𝑥, 𝜆) ≡ 0, 𝑃12(𝑥, 𝜆) ≡ 𝐴(𝑥). Now
using (67), we obtain

𝜑 (𝑥, 𝜆) ≡ 𝐴 (𝑥) 𝜑̃ (𝑥, 𝜆) , Φ (𝑥, 𝜆) ≡ 𝐴 (𝑥) Φ̃ (𝑥, 𝜆) .

(70)

Therefore, for |𝜆| → ∞, arg 𝜆 ∈ [𝜀, 𝜋 − 𝜀] (𝜀 > 0), we have

𝜑 (𝑥, 𝜆) =
𝑏

2
exp (−𝑖 (𝜆𝑥 − 𝛽1 (𝑥))) (1 + 𝑂(

1

𝜆
)) , (71)

where 𝑏 = 1 for 𝑥 < 𝑎 and 𝑏 = 𝛼
+ for 𝑥 > 𝑎. Similarly, one

can calculate

Φ (𝑥, 𝜆) = (𝑖𝜆𝑏)
−1 exp (𝑖 (𝜆𝑥 − 𝛽1 (𝑥))) (1 + 𝑂(

1

𝜆
)) ,

|𝜆| 󳨀→ ∞, arg 𝜆 ∈ [𝜀, 𝜋 − 𝜀] .

(72)

Finally, taking into account the relations ⟨Φ(𝑥, 𝜆), 𝜑(𝑥, 𝜆)⟩ ≡

1 and (65), we have 𝛼
+

= 𝛼̃
+
, 𝐴(𝑥) ≡ 1, that is, 𝜑(𝑥, 𝜆) ≡

𝜑̃(𝑥, 𝜆), Φ(𝑥, 𝜆) ≡ Φ̃(𝑥, 𝜆) for all 𝑥 and 𝜆. Consequently,
𝐿(𝛼, 𝑎) = 𝐿̃(𝛼, 𝑎). The theorem is proved.

The following two theorems show that two spectra and
spectral data also uniquely determine the potentials and the
coefficients of the boundary value problem 𝐿(𝛼, 𝑎).

Theorem 17. If 𝜆𝑛 = 𝜆̃𝑛, 𝜇𝑛 = 𝜇̃
𝑛
, 𝑛 = 0, ±1, ±2, . . ., then

𝐿(𝛼, 𝑎) = 𝐿̃(𝛼, 𝑎).

Proof. It is obvious that characteristic functions Δ(𝜆) and
𝜓(0, 𝜆) are uniquely determined by the sequences {𝜆

2

𝑛
} and

{𝜇
2

𝑛
} (𝑛 = 0, ±1, ±2, . . .), respectively. If 𝜆𝑛 = 𝜆̃𝑛, 𝜇𝑛 =

𝜇̃
𝑛
, 𝑛 = 0, ±1, ±2, . . ., then Δ(𝜆) ≡ Δ̃(𝜆), 𝜓(0, 𝜆) ≡ 𝜓̃(0, 𝜆).

It follows from (60) that 𝑀(𝜆) ≡ 𝑀̃(𝜆). Therefore, applying
Theorem 16, we conclude that 𝐿(𝛼, 𝑎) = 𝐿̃(𝛼, 𝑎). The proof is
completed.

Theorem 18. If 𝜆𝑛 = 𝜆̃𝑛, 𝛼𝑛 = 𝛼̃𝑛, 𝑛 = 0, ±1, ±2, . . ., then
𝐿(𝛼, 𝑎) = 𝐿̃(𝛼, 𝑎), that is, spectral data {𝜆𝑛, 𝛼𝑛} uniquely
determines the problem 𝐿(𝛼, 𝑎).

Proof. It is obvious that theWeyl function𝑀(𝜆) is meromor-
phic with simple poles at points 𝜆2

𝑛
. Using the expression

Δ (𝜆) = Δ 0 (𝜆) + ∫

𝜋

0

𝐴 (𝜋, 𝜆) cos 𝜆𝑡 𝑑𝑡 + ∫

𝜋

0

𝐵 (𝜋, 𝜆) sin 𝜆𝑡 𝑑𝑡

(73)

and equalities 2𝜆𝑛𝛽𝑛𝛼𝑛 = −Δ̇(𝜆𝑛), 𝜓(𝑥, 𝜆𝑛) = 𝛽𝑛𝜑(𝑥, 𝜆𝑛), we
have

Re
𝜆=𝜆
𝑛

𝑠𝑀 (𝜆) = −
𝜓 (0, 𝜆𝑛)

Δ̇ (𝜆𝑛)
= −

𝛽𝑛

Δ̇ (𝜆𝑛)
=

1

2𝜆𝑛𝛼𝑛

. (74)

Since the Weyl function 𝑀(𝜆) is regular for 𝜆 ∈ Γ𝑛, applying
the Rouche theorem, we conclude that

𝑀(𝜆) =
1

2𝜋𝑖
∫
Γ
𝑛

𝑀(𝜇)

𝜇 − 𝜆
𝑑𝜇, 𝜆 ∈ int Γ𝑛. (75)

Taking (60) and (63) into account, we arrive at |𝑀(𝜆)| ≤

𝐶𝛿|𝜆|
−1

, 𝜆 ∈ 𝐺𝛿. Therefore

𝑀(𝜆) = lim
𝑛→∞

1

2𝜋𝑖
∫
Γ
𝑛1

𝑀(𝜇)

𝜇 − 𝜆
𝑑𝜇, (76)

where Γ𝑛1 = {𝜆 : |𝜆| = |𝜆
0

𝑛
|}, 𝑛 = 0, ±1, ±2, . . .. Hence, by the

residue theorem, we have

𝑀(𝜆) =

∞

∑

𝑛=−∞

1

2𝜆𝑛𝛼𝑛 (𝜆 − 𝜆𝑛)
. (77)
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Finally, from the equality 𝑀(𝜆) ≡ 𝑀̃(𝜆), applying Theo-
rem 16, we conclude that 𝐿(𝛼, 𝑎) = 𝐿̃(𝛼, 𝑎). The theorem is
proved.
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133–160, 1995, English translation, Sbornik: Mathematics, vol.
186, no. 6, pp. 901–928, 1995.

[35] V. Yurko, “Integral transforms connected with differential
operators having singularities inside the interval,” Integral
Transforms and Special Functions, vol. 5, no. 3-4, pp. 309–322,
1997.



10 Abstract and Applied Analysis

[36] R. Kh. Amirov and V. A. Yurko, “On differential operators with
a singularity and discontinuity conditions inside an interval,”
Ukrainian Mathematical Journal, vol. 53, no. 11, pp. 1443–1457,
2001.

[37] G. Freiling andV. Yurko, “Inverse spectral problems for singular
non-selfadjoint differential operators with discontinuities in an
interior point,” Inverse Problems, vol. 18, no. 3, pp. 757–773, 2002.

[38] R. Bellman and K. L. Cooke, Differential-Difference Equations,
Academic Press, New York, NY, USA, 1963.

[39] B. Ya. Levin, Entire Functions, MGV, Moscow, Russia, 1971.
[40] B. F. Jdanovich, “Formulae for the zeros of Drichlet polynomials

and quasi-polynomials,”Doklady Akademii Nauk SSSR, vol. 135,
no. 8, pp. 1046–1049, 1960.
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