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Adeterministicmodelwith variable humanpopulation for the transmission dynamics ofmalaria disease, which allows transmission
by the recovered humans, is first developed and rigorously analyzed.Themodel reveals the presence of the phenomenonof backward
bifurcation, where a stable disease-free equilibrium coexists with one or more stable endemic equilibria when the associated
reproduction number is less than unity. This phenomenon may arise due to the reinfection of host individuals who recovered
from the disease. The model in an asymptotical constant population is also investigated. This results in a model with mass action
incidence. A complete global analysis of the model with mass action incidence is given, which reveals that the global dynamics of
malaria disease with reinfection is completely determined by the associated reproduction number. Moreover, it is shown that the
phenomenon of backward bifurcation can be removed by replacing the standard incidence function with a mass action incidence.
Graphical representations are provided to study the effect of reinfection rate and to qualitatively support the analytical results on
the transmission dynamics of malaria.

1. Introduction

Malaria is a mosquito-borne disease caused by a parasite.
It is endemic and widespread in tropical and subtropical
regions, including much of sub-Saharan Africa, Asia, and
the Americas. Malaria is still a public health problem today.
Every year, there are more than 225 million cases of malaria,
killing around 781,000 people according to the World Health
Organization’s 2010 World Malaria Report [1].

In humans, malaria is caused due to infection by one of
four Plasmodium species [2, 3]. Transmission frommosquito
to human occurs during a bite by an infectious mosquito.
A mosquito becomes infected when it takes a blood meal
from an infected human. Once ingested, the parasite game-
tocytes taken up in the blood will further differentiate into

gametes and then fuse in the mosquito’s gut. Gametocytes
are responsible for transmission of the parasite from humans
by mosquitoes bite. Fertilization of the parasite occurs in the
mosquito gut, and after a short period of replication and
development, the cycle of transmission may begin anew.

One of the most complex features of the epidemiology
of malaria is the dynamic interaction between infection
and immunity. A better understanding of this interaction
is important for evaluating the impact of malaria control
activities. An important phenomenon is noticed that the
changes with age reflect the slow acquisition of an immunity
that reduces illness but does not completely block infection
[4, 5]. In endemic areas, children younger than five years have
repeated and often serious attacks of malaria. The survivors
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develop and maintain partial immunity that reduces the
severity of the disease but does not prevent subsequent
infections. Thus, in these areas older children and adults
often have become asymptomatic carriers of infection [6]. In
areas of low malaria transmission, immunity develops slowly
and may take years or decades and probably never results
in sterile immunity [7]. Therefore, humans are susceptible
to reinfections. Incomplete immunity to malaria complicates
disease control strategies [8, 9] as the partially immune
individuals suffer only mild infections, and might not seek
medical attention but continue to transmit the parasite in the
community.

The enormous public health burden inflicted by malaria
disease necessitates the use of mathematical modeling and
analysis to gain insights into its transmission dynamics,
and to determine effective control strategies. The earliest
malaria transmission models can be traced to the model
formulated by Ross in 1911 [9]. He used amathematicalmodel
and showed that bringing a mosquito population below a
certain threshold was sufficient to eliminate malaria. This
threshold naturally depended on biological factors such as
the biting rate and vectorial capacity. To estimate infection
and recovery rates, MacDonald extended the Ross model
in 1957 [9]. Macdonald’s model shows that reducing the
number of mosquitoes is an inefficient control strategy.
Moreover, this would have little effect on the epidemiology
of malaria in areas of intense transmission. Since then,
the emergence and reemergence of malaria diseases have
promoted many author’s interest in mathematical modeling
to describe and to predict the transmission dynamics of
malaria in the literature (see, e.g., [10–16] and the references
therein). In paper [12], Dietz et al. applied the Garki model
to show that the duration of acquired immunity in humans
in malaria depends on repeated exposure. In paper [13],
Niger and Gumel constructed a mathematical model that
includes multiple infected and recovered classes, to assess the
role of the partial immunity on the transmission dynamics
of malaria in a human population. Their results reveals
the presence of the phenomenon of backward bifurcation
in the standard incidence model with the disease-induced
death in the human population. Recently, a transmission
model of human malaria in a partially immune population
is formulated in Wan and Cui’s paper [14]. They established
the basic reproduction number and explicit subthreshold
conditions for the model, and showed that if the disease
induced death rate is large enough, the model undergoes a
backward bifurcation. Li [15] formulated a malaria transmis-
sionmodelwith partial immunity in humans and showed that
the established model having the same reproductive number
but different numbers of progression stages can exhibit
different transient dynamics. Thus, the above mentioned
models always let the recovered individuals return into the
susceptible class to explore the transmission dynamics of
diseases. But this only takes states of complete immunity
and full susceptibility in consideration. In addition, various
vector-borne diseasemodel concerningmalaria transmission
have been established and discussed [17–20]. For example,
in paper [17], Yang et al have investigated global stability of
an epidemic model for vector-borne disease, however, they

assumed that the immunity of the recovered population have
never lose.

Motivated by the recent work of [13, 15], in this paper,
we shall continue to construct a malaria transmission model
with partial immunity to reinfection in the recovered human
population. Our purpose is to explore the transmission
dynamics of the malaria and to assess the role of partial
immunity to reinfection on the transmission dynamics of
malaria in a human population.

The organization of this paper is as follows: in the next
section, the standard incidence malaria model, which incor-
porates the partial immunity to reinfection, is formulated.
The existence and stability of the equilibria, and the phenom-
ena of the backward bifurcation are, respectively, explored in
Sections 2.2 and 2.3. Graphical representations are provided
to study the effect of reinfection rate in Section 2.4. In
Section 3, the associated mass action incidence model is
formulated, and mathematical results such as existence and
local stability of equilibria are provided in Section 3.2. Our
main theorems for the global stability of equilibria for the
mass action model and the proofs are given in Section 3.3.
The paper ends with a conclusion in Section 4.

2. Model Formulation

We formulate a model for the spread of malaria in the
human and mosquito population, with the total population
size at time 𝑡 given by 𝑁ℎ(𝑡) and 𝑁𝑣(𝑡), respectively. The
total human population is divided into three epidemiological
classes: 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), and 𝑅ℎ(𝑡), which denote, respectively, the
number of the susceptible, infective, and immune class at
time 𝑡. Thus, 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡). The susceptible
human population is generated by the recruitment of humans
(assumed susceptible) into the community at a rate Λ ℎ, 𝜇ℎ,
and 𝛾ℎ are, respectively, the natural death rate and recovery
rate in human hosts population. Also, some disease-induced
death in human population contributes to an additional
population decrease at the constant rate 𝛿ℎ.

Due to its short life, a mosquito never recovers from the
infection, and wemay not consider the recovered class in this
population.Thus, the total vector population𝑁𝑣(𝑡) is divided
into the susceptible class, 𝑆𝑣(𝑡), and infective class, 𝐼𝑣(𝑡), so
that𝑁𝑣(𝑡) = 𝑆𝑣(𝑡) + 𝐼𝑣(𝑡). Susceptible mosquitoes vectors are
generated at a rate Λ 𝑣 by birth, 𝜇𝑣 is the per capita mortality
rate of mosquitoes. Let 𝛽ℎ be the transmission probability
from vector to human, and 𝛽𝑣 be the transmission probability
fromhuman to vector.The parameter 𝑏 is the average number
of bites per mosquito per day.This rate depends on a number
of factors, in particular, climatic ones, but for simplicity in
this paper we assume 𝑏 to be a constant. The parameter
𝜎 (0 ≤ 𝜎 ≤ 1) determines the degree of partial protection
for the recovered individuals given by a primary infection:
𝜎 = 0 implies complete protection, and 𝜎 = 1 implies no
protection. Taking into account the assumptionsmade above,
the interaction between human hosts and the mosquito
vector population with partial immunity to reinfection in
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host population is described by the following system of
equations:

𝑑𝑆ℎ

𝑑𝑡
= Λ ℎ −

𝑏𝛽ℎ𝑆ℎ𝐼𝑣

𝑁ℎ

− 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ

𝑑𝑡
=

𝑏𝛽ℎ𝑆ℎ𝐼𝑣

𝑁ℎ

+
𝜎𝑏𝛽ℎ𝑅ℎ𝐼𝑣

𝑁ℎ

− (𝛾ℎ + 𝛿ℎ + 𝜇ℎ) 𝐼ℎ,

𝑑𝑅ℎ

𝑑𝑡
= 𝛾ℎ𝐼ℎ −

𝜎𝑏𝛽ℎ𝑅ℎ𝐼𝑣

𝑁ℎ

− 𝜇ℎ𝑅ℎ,

𝑑𝑆𝑣

𝑑𝑡
= Λ 𝑣 −

𝑏𝛽𝑣𝑆𝑣𝐼ℎ

𝑁ℎ

− 𝜇𝑣𝑆𝑣,

𝑑𝐼𝑣

𝑑𝑡
=

𝑏𝛽𝑣𝑆𝑣𝐼ℎ

𝑁ℎ

− 𝜇𝑣𝐼𝑣.

(1)

The total humans host and mosquitoes vector populations
𝑁ℎ = 𝑆ℎ+𝐼ℎ+𝑅ℎ and𝑁𝑣 = 𝑆𝑣+𝐼𝑣 are governed, respectively,
by

𝑑𝑁ℎ

𝑑𝑡
= Λ ℎ − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ,

𝑑𝑁𝑣

𝑑𝑡
= Λ 𝑣 − 𝜇𝑣𝑁𝑣.

(2)

It is easily seen that for the mosquitoes vector population
the corresponding total population size is asymptotically
constant: lim 𝑡𝑡→∞𝑁𝑣(𝑡) = Λ 𝑣/𝜇𝑣. This implies that in our
model we assume without loss of generality that 𝑁𝑣(𝑡) =

Λ 𝑣/𝜇𝑣, for all 𝑡 ≥ 0, provided that 𝑆𝑣(0) + 𝐼𝑣(0) = Λ 𝑣/𝜇𝑣.
Let

𝑆ℎ =
𝑆ℎ

Λ ℎ/𝜇ℎ

, 𝐼ℎ =
𝐼ℎ

Λ ℎ/𝜇ℎ

, 𝑅ℎ =
𝑅ℎ

Λ ℎ/𝜇ℎ

,

𝑆𝑣 =
𝑆𝑣

Λ 𝑣/𝜇𝑣

, 𝐼𝑣 =
𝐼𝑣

Λ 𝑣/𝜇𝑣

, 𝑁ℎ =
𝑁ℎ

Λ ℎ/𝜇ℎ

.

(3)

Since𝑁ℎ = 𝑆ℎ+𝐼ℎ+𝑅ℎ and 𝑆𝑣+𝐼𝑣 = 1. Using𝑅ℎ = 𝑁ℎ−𝑆ℎ−𝐼ℎ

and 𝑆𝑣 = 1 − 𝐼𝑣, system (1) is reduced to the following four-
dimensional nonlinear system of ODEs:

𝑑𝑆ℎ

𝑑𝑡
= 𝜇ℎ −

𝑏𝑚𝛽ℎ𝑆ℎ𝐼𝑣

𝑁ℎ

− 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ

𝑑𝑡
=

𝑏𝑚𝛽ℎ𝑆ℎ𝐼𝑣

𝑁ℎ

+
𝜎𝑏𝑚𝛽ℎ (𝑁ℎ − 𝑆ℎ − 𝐼ℎ) 𝐼𝑣

𝑁ℎ

− 𝛼1𝐼ℎ,

𝑑𝐼𝑣

𝑑𝑡
=

𝑏𝛽𝑣 (1 − 𝐼𝑣) 𝐼ℎ

𝑁ℎ

− 𝜇𝑣𝐼𝑣,

𝑑𝑁ℎ

𝑑𝑡
= 𝜇ℎ − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ,

(4)

where𝑚 = (Λ 𝑣/𝜇𝑣)/(Λ ℎ/𝜇ℎ) and 𝛼1 = 𝛾ℎ + 𝜇ℎ + 𝛿ℎ.

2.1. Basic Properties of the Model. Since the model (4) mon-
itors humans host and mosquitoes vector populations, it is
plausible to assume that all its state variables and parameters
are nonnegative for all 𝑡 ≥ 0. Further, it can be shown that the
regionΩ given by

Ω = {(𝑆ℎ, 𝐼ℎ, 𝑁ℎ, 𝐼𝑣) ∈ 𝑅
4

+
:

0 ≤ 𝑆ℎ + 𝐼ℎ ≤ 𝑁ℎ ≤ 1, 0 ≤ 𝐼𝑣 ≤ 1}

(5)

is positively invariant with respect to system (4). Thus, every
solution of themodel (4), with initial conditions inΩ remains
there for 𝑡 > 0. Therefore, it is sufficient to consider the
dynamics of the flow generated by (4) in Ω. In this region,
the model can be considered as been epidemiologically and
mathematically well posed.

2.2. Stability of Disease-Free Equilibria. The stability of the
disease-free equilibrium state can be obtained from studying
the eigenvalues of the Jacobian matrix evaluated at the
equilibrium point. If all the eigenvalues have negative real
parts, then the equilibrium point is stable. The disease-free
equilibrium for the system (4) is 𝐸0(1, 0, 1, 0). The Jacobian
matrix at the disease-free equilibrium 𝐸0 is

𝐽 = (

−𝜇ℎ 0 0 −𝑏𝑚𝛽ℎ

0 −𝛼1 0 𝑏𝑚𝛽ℎ

0 −𝛿ℎ −𝜇ℎ 0

0 𝑏𝛽𝑣 0 −𝜇𝑣

). (6)

The characteristic equation of the above matrix is

(𝜆 − 𝜇ℎ) (𝜆 − 𝜇ℎ) (𝜆
2
+ (𝛼1 + 𝜇𝑣) 𝜆 + 𝛼1𝜇𝑣 (1 − ℜ0)) = 0,

(7)

where ℜ0 = 𝑏
2
𝑚𝛽ℎ𝛽𝑣/𝜇𝑣𝛼1. There are four eigenvalues

corresponding to (7). Two of the eigenvalues 𝜆1, 𝜆2 = −𝜇ℎ

have negative real parts. The other two eigenvalues can be
obtained from the equation

𝜆
2
+ (𝛼1 + 𝜇𝑣) 𝜆 + 𝛼1𝜇𝑣 (1 − ℜ0) = 0. (8)

Applying the Routh-Hurwitz criteria for a quadratic poly-
nomial. It is easy to see that both the coefficients of (8) are
positive if an only if ℜ0 < 1. Thus, all roots of (8) are
with negative real parts if ℜ0 < 1, and one of its roots is
with positive real part if ℜ0 > 1. Therefore, the disease-free
equilibrium (DFE)𝐸0 is locally asymptotically stable ifℜ0 < 1

and unstable if ℜ0 > 1. Thus, we have the following result.

Theorem 1. Theuninfected equilibrium𝐸0 is locally asymptot-
ically stable if ℜ0 < 1 and unstable if ℜ0 > 1 in Ω.

FromTheorem 1, the threshold quantity ℜ0, is called the
basic reproduction number of system (4). The basic repro-
duction number, ℜ0 measures the average number of new
malaria infections generated by a single infected individual
in a completely susceptible population [21]. Theorem 1 also
implies that malaria can be eliminated from the community
(when ℜ0 < 1) if the initial sizes of the subpopulations of
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the model are in the basin of attraction of the disease-free
equilibrium (DFE) (𝐸0). To ensure that disease elimination
is independent of the initial sizes of the subpopulations, it
is necessary to show that the DFE is globally asymptotically
stable (GAS) if ℜ0 < 1. This is explored for a special case in
Section 3.2.

2.3. The Existence of Endemic Equilibria and Backward
Bifurcation. In this section, conditions for the existence of
endemic equilibria andphenomenonof backward bifurcation
in system (4) will be determined. In order to do this, we let

𝐸
∗
= (𝑆

∗

ℎ
, 𝐼

∗

ℎ
, 𝑁

∗

ℎ
, 𝐼

∗

𝑣
) (9)

represent an arbitrary endemic equilibrium of the model (4).
Setting the right-hand sides of the equations in (4) to zero and
solving them in terms of 𝐼∗

ℎ
gives the following expressions for

the state variables of the model

𝑆
∗

ℎ
=

(𝜇ℎ − 𝛿𝐼
∗

ℎ
) (𝛼2𝐼

∗

ℎ
+ 𝜇ℎ𝜇𝑣)

𝑏
2
𝑚𝜇ℎ𝛽ℎ𝛽𝑣𝐼

∗

ℎ
+ (𝜇ℎ − 𝛿𝐼

∗

ℎ
) (𝛼2𝐼

∗

ℎ
+ 𝜇ℎ𝜇𝑣)

, (10)

𝑁
∗

ℎ
=

𝜇ℎ − 𝛿ℎ𝐼
∗

ℎ

𝜇ℎ

, 𝐼
∗

𝑣
=

𝜇ℎ𝑏𝛽𝑣𝐼
∗

ℎ

𝛼2𝐼
∗

ℎ
+ 𝜇ℎ𝜇𝑣

, (11)

where 𝛼2 = 𝜇ℎ𝑏𝛽𝑣 − 𝛿ℎ𝜇𝑣, and 𝐼
∗

ℎ
is determined from the

following equation:

𝐾1𝐼
∗4

ℎ
+ 𝐾2𝐼

∗3

ℎ
+ 𝐾3𝐼

∗2

ℎ
+ 𝐾4𝐼

∗

ℎ
+ 𝐾5 = 0, (12)

where

𝐾1 = 𝛿
2

ℎ
𝛼1𝛼

2

2
,

𝐾2 =𝛼1 (−2𝛿ℎ𝛼2 (𝜇ℎ𝛼2 − 𝛿ℎ𝜇ℎ𝜇𝑣) − 𝛿ℎ𝛼2𝜇ℎ𝑏
2
𝑚𝛽ℎ𝛽𝑣)

− 𝜇ℎ𝛿ℎ𝛼2𝛼3𝜎𝑏
2
𝑚𝛽ℎ𝛽𝑣,

𝐾3 =𝛼1 ((𝜇ℎ𝛼2 − 𝛿ℎ𝜇ℎ𝜇𝑣)
2
− 2𝜇

2

ℎ
𝜇𝑣𝛿ℎ𝛼2

+𝜇ℎ𝑏
2
𝑚𝛽ℎ𝛽𝑣 (𝜇ℎ𝛼2 − 𝛿ℎ𝜇ℎ𝜇𝑣))

+ 𝜇
2

ℎ
𝛿ℎ𝛼2𝑏

2
𝑚𝛽ℎ𝛽𝑣 + 𝜇ℎ𝛼3𝜎𝑏

2
𝑚𝛽ℎ𝛽𝑣

× ((𝜇ℎ𝛼2 − 𝛿ℎ𝜇ℎ𝜇𝑣) + 𝜇ℎ𝑏
2
𝑚𝛽ℎ𝛽𝑣) ,

𝐾4 =𝛼1 (2𝜇
2

ℎ
𝜇𝑣 (𝜇ℎ𝛼2 − 𝛿ℎ𝜇ℎ𝜇𝑣) + 𝜇

3

ℎ
𝜇𝑣𝑏

2
𝑚𝛽ℎ𝛽𝑣)

− 𝜇
2

ℎ
𝑏
2
𝑚𝛽ℎ𝛽𝑣 (𝜇ℎ𝛼2 − 𝛿ℎ𝜇ℎ𝜇𝑣)

− 𝜎𝜇
3

ℎ
𝑏
2
𝑚𝛽ℎ𝛽𝑣 (𝑏

2
𝑚𝛽ℎ𝛽𝑣 − 𝛼3𝜇𝑣)

𝐾5 = 𝛼1𝜇
4

ℎ
𝜇
2

𝑣
(1 − ℜ0) ,

(13)

and 𝛼3 = 𝜇ℎ + 𝛿ℎ.
It follows from (13) that𝐾1 > 0. Further,𝐾5 > 0whenever

ℜ0 < 1. Thus, the number of possible positive real roots
for (12) depends on the signs of 𝐾2, 𝐾3 and 𝐾4. This can be
analyzed using the Descartes Rule of Signs on the quartic
𝑓(𝐼

∗

ℎ
) = 𝐾1𝐼

∗4

ℎ
+ 𝐾2𝐼

∗3

ℎ
+ 𝐾3𝐼

∗2

ℎ
+ 𝐾4𝐼

∗

ℎ
+ 𝐾5. The various

possibilities for the roots of 𝑓(𝐼∗
ℎ
) are tabulated in Table 1.

We have the following result from the various possibilities
enumerated in Table 1.

Theorem 2. The system (4) has a unique endemic equilibrium
𝐸
∗ if ℜ0 > 1 and Cases 1–3 and 6 are satisfied; it could have

more than one endemic equilibrium ifℜ0 > 1 and Cases 4, 5, 7,
and 8 are satisfied; it could have 2 or more endemic equilibria
if ℜ0 < 1 and Cases 2–8 are satisfied.

The existence of multiple endemic equilibria when ℜ0 <

1 (is shown in Table 1). Table 1 suggests the possibility
of backward bifurcation (see [22–24]), where the stable
DFE coexists with a stable endemic equilibrium, when the
reproduction number is less than unity.Thus, the occurrence
of a backward bifurcation has an important implications for
epidemiological control measures, since an epidemic may
persist at steady state even if ℜ0 < 1. This is explored below
by using Centre Manifold Theory (see, e.g., [25] and the
references therein).

Now, we shall establish the conditions on parameter
values that cause a backward bifurcation to occur in system
(4), based on the use of Center Manifold theory, of the paper
in Castillo-Chavez and Song [25].

Theorem 3. Let one consider the following general system of
ordinary differential equations with a parameter 𝜙:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥, 𝜙) , 𝑓 : R

𝑛
×R 󳨀→ R

𝑛
, 𝑓 ∈ 𝐶

2
(R ×R) .

(14)

Without loss of generality, it is assumed that 𝑥 = 0 is an
equilibrium for system (14) for all values of the parameter 𝜙.
Assume that

(𝐴1) 𝐴 = 𝐷𝑥𝑓(0, 0) is the linearized matrix of system
(14) around the equilibrium 𝑥 = 0 with 𝜙 evaluated
at 0. Zero is a simple eigenvalues of 𝐴 and all other
eigenvalue of 𝐴 have negative real parts;

(𝐴2) Matrix 𝐴 has a nonnegative right eigenvector w and a
left eigenvector v corresponding to the zero eigenvalue.

Let 𝑓𝑘 be the kth component of 𝑓 and

𝑎1 =

5

∑

𝑖,𝑗,𝑘=1

𝑣𝑘𝑤𝑖𝑤𝑗

𝜕
2
𝑓𝑘 (0, 0)

𝜕𝑥𝑖𝜕𝑥𝑗

,

𝑏1 =

5

∑

𝑖,𝑘=1

𝑣𝑘𝑤𝑖

𝜕
2
𝑓𝑘 (0, 0)

𝜕𝑥𝑖𝜕𝛽ℎ

.

(15)

The local dynamics of system (14) around 0 are totally deter-
mined by 𝑎1 and 𝑏1.

(i) In the case where 𝑎1 > 0, 𝑏1 > 0, one has that when
𝜙 < 0 with |𝜙| close to zero, 𝑥 = 0 is unstable; when
0 < 𝜙 ≪ 1, 𝑥 = 0 is unstable and there exists a negative
and locally asymptotically stable equilibrium;

(ii) In the case where 𝑎1 < 0, 𝑏1 < 0, one has that when 𝜙 <

0 with |𝜙| close to zero, 𝑥 = 0 is locally asymptotically
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Table 1: Number of possible positive real roots of 𝑓(𝐼∗
ℎ
) for ℜ0 > 1 and ℜ0 < 1.

Cases 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 ℜ0 Number of sign change Number of positive real roots

1 + + + + + ℜ0 < 1 0 0

+ + + + − ℜ0 > 1 1 1

2 + − − − + ℜ0 < 1 2 0, 2

+ − − − − ℜ0 > 1 1 1

3 + + − − + ℜ0 < 1 2 0, 2

+ + − − − ℜ0 > 1 1 1

4 + − + − + ℜ
0
< 1 4 0, 2, 4

+ − + − − ℜ0 > 1 3 1, 3

5 + − − + + ℜ0 < 1 2 0, 2

+ − − + − ℜ0 > 1 3 1, 3

6 + + + − + ℜ0 < 1 2 0, 2

+ + + − − ℜ0 > 1 1 1

7 + + − + + ℜ0 < 1 2 0, 2

+ + − + − ℜ0 > 1 3 1, 3

8 + − + + + ℜ0 < 1 2 0, 2

+ − + + − ℜ0 > 1 3 1, 3

stable and there exists a positive unstable equilibrium;
when 0 < 𝜙 ≪ 1, 𝑥 = 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium;

(iii) In the case where 𝑎1 > 0, 𝑏1 < 0, one has that
when 𝜙 < 0 with |𝜙| close to zero, 𝑥 = 0 is unstable
and there exists a locally asymptotically stable negative
equilibrium; when 0 < 𝜙 ≪ 1, 𝑥 = 0 is stable and a
positive unstable equilibrium appears;

(iv) In the case where 𝑎1 < 0, 𝑏1 > 0, one has that when
𝜙 < 0 changes from negative to positive, 𝑥 = 0 changes
its stability from stable to unstable. Correspondingly
𝑎1 negative unstable equilibrium becomes positive and
locally asymptotically stable. Particularly, if 𝑎1 > 0 and
𝑏1 > 0, then a backward bifurcation occurs at 𝜙 = 0.

To apply the center manifold method, the following
simplification and change of variables are made on the model
(4). First of all, let 𝑥1 = 𝑆ℎ, 𝑥2 = 𝐼ℎ, 𝑥3 = 𝑅ℎ, 𝑥4 = 𝑆𝑣, and
𝑥5 = 𝐼𝑣, so that𝑁ℎ = 𝑥1+𝑥2+𝑥3 and𝑁𝑣 = 𝑥4+𝑥5. Further, by
using the vector notation𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)

𝑇, the system
(4) can be written in the form (𝑑𝑋/𝑑𝑡) = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5)

𝑇

as follows:
𝑑𝑥1

𝑑𝑡
= 𝑓1 = 𝜇ℎ −

𝑏𝑚𝛽ℎ𝑥1𝑥5

𝑥1 + 𝑥2 + 𝑥3

− 𝜇ℎ𝑥1,

𝑑𝑥2

𝑑𝑡
= 𝑓2 =

𝑏𝑚𝛽ℎ𝑥1𝑥5

𝑥1 + 𝑥2 + 𝑥3

+
𝜎𝑏𝑚𝛽ℎ𝑥3𝑥5

𝑥1 + 𝑥2 + 𝑥3

− 𝛼1𝑥2,

𝑑𝑥3

𝑑𝑡
= 𝑓3 = 𝛾ℎ𝑥2 −

𝜎𝑏𝑚𝛽ℎ𝑥3𝑥5

𝑥1 + 𝑥2 + 𝑥3

− 𝜇ℎ𝑥3,

𝑑𝑥4

𝑑𝑡
= 𝑓4 = 𝜇𝑣 −

𝑏𝛽𝑣𝑥4𝑥2

𝑥1 + 𝑥2 + 𝑥3

− 𝜇𝑣𝑥4,

𝑑𝑥5

𝑑𝑡
= 𝑓5 =

𝑏𝛽𝑣𝑥4𝑥2

𝑥1 + 𝑥2 + 𝑥3

− 𝜇𝑣𝑥5.

(16)

Choose 𝛽ℎ as a bifurcation parameter and solvingℜ0 = 1

gives

𝛽ℎ = 𝛽
∗

ℎ
=

𝜇𝑣𝛼1

𝑏
2
𝑚𝛽𝑣

. (17)

The Jacobian matrix evaluated at disease-free equilibrium
(1, 0, 0, 1, 0) with 𝛽ℎ = 𝛽

∗

ℎ
is

𝐽 = (

−𝜇ℎ 0 0 0 −𝑏𝑚𝛽ℎ

0 −𝛼1 0 0 𝑏𝑚𝛽ℎ

0 𝛾ℎ −𝜇ℎ 0 0

0 −𝑏𝛽𝑣 0 −𝜇𝑣 0

0 𝑏𝛽𝑣 0 0 −𝜇𝑣

). (18)

It can be easily seen that the Jacobian 𝐽 of the linearized
system has a simple zero eigenvalue and all other eigenvalues
have negative real parts. Hence, the center manifold theory
can be used to analyze the dynamics of the system (16). For the
case when 𝑅0 = 1, it can be shown that the Jacobian matrix 𝐽

has a right eigenvector (corresponding to the zero eigenvalue)
given by w = [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5]

𝑇, where

𝑤1 =
−𝑏𝑚𝛽ℎ

𝜇ℎ

𝑤5, 𝑤2 =
𝑏𝑚𝛽ℎ

𝛼1

𝑤5, 𝑤3 =
𝛾ℎ𝑏𝑚𝛽ℎ

𝜇ℎ𝛼1

𝑤5,

𝑤4 =
−𝑏

2
𝑚𝛽ℎ𝛽𝑣

𝜇𝑣𝛼1

𝑤5, 𝑤5 = 𝑤5 > 0.

(19)

Similarly, the components of the left eigenvector of 𝐽 (corre-
sponding to the zero eigenvalue), denoted by v = [𝑣1 𝑣2

𝑣3 𝑣4 𝑣5], are given by

𝑣1 = 𝑣3 = 𝑣4 = 0, 𝑣2 =
𝑏𝛽𝑣

𝛼1

𝑣5, 𝑣5 = 𝑣5 > 0. (20)
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Computation of 𝑎1: for the transformed system (16), the
associated non-zero partial derivatives of 𝑓 (evaluated at the
DFE) which we need in the computation of 𝑎1 are given by

𝜕
2
𝑓2

𝜕𝑥2𝜕𝑥5

=
𝜕
2
𝑓2

𝜕𝑥5𝜕𝑥2

= −𝑏𝑚𝛽ℎ,

𝜕
2
𝑓2

𝜕𝑥3𝜕𝑥5

=
𝜕
2
𝑓2

𝜕𝑥5𝜕𝑥3

= −𝑏𝑚𝛽ℎ + 𝜎𝑏𝑚𝛽ℎ,

𝜕
2
𝑓5

𝜕𝑥1𝜕𝑥2

=
𝜕
2
𝑓5

𝜕𝑥2𝜕𝑥1

= −𝑏𝛽𝑣,
𝜕
2
𝑓5

𝜕𝑥
2

2

= −2𝑏𝛽𝑣,

𝜕
2
𝑓5

𝜕𝑥2𝜕𝑥3

=
𝜕
2
𝑓5

𝜕𝑥3𝜕𝑥2

= −𝑏𝛽𝑣,
𝜕
2
𝑓5

𝜕𝑥2𝜕𝑥4

=
𝜕
2
𝑓5

𝜕𝑥4𝜕𝑥2

= 𝑏𝛽𝑣.

(21)

Direct calculations shows that

𝑎1 = 2𝑏 (−𝑚𝛽ℎ𝑣2𝑤2𝑤5 − 𝑚𝛽ℎ𝑣2𝑤3𝑤5 + 𝜎𝑚𝛽ℎ𝑣2𝑤3𝑤5

− 𝛽𝑣𝑣5𝑤1𝑤2 − 𝛽𝑣𝑣5𝑤
2

2

−𝛽𝑣𝑣5𝑤2𝑤3 + 𝛽𝑣𝑣5𝑤2𝑤4) .

(22)

Computation of 𝑏1: Substituting the vectors v and w and
the respective partial derivatives (evaluated at the DFE ) into
the expression

𝑏1 =

5

∑

𝑖,𝑘=1

𝑣𝑘𝑤𝑖

𝜕
2
𝑓𝑘 (0, 0)

𝜕𝑥𝑖𝜕𝛽ℎ

(23)

gives 𝑏1 = 𝑏𝑚𝑣2𝑤5 > 0. Since the coefficient 𝑏1 is
automatically positive, it follows that the sign of the coeffi-
cient 𝑎1 decides the local dynamics around the disease-free
equilibrium for 𝛽ℎ = 𝛽

∗

ℎ
. Based onTheorem 3, system (4) will

undergo backward bifurcation if the coefficient 𝑎1 is positive.
The coefficient 𝑎1 is positive if and only if

𝜎 >
1

𝛾ℎ𝜇𝑣

(𝜇𝑣 (𝛾ℎ + 𝜇ℎ) + 𝑏𝜇ℎ𝛽𝑣 − 𝜇𝑣𝛿ℎ) . (24)

Thus, we have the following result.

Theorem 4. The system (4) exhibits backward bifurcation
whenever the condition (24) holds.

The backward bifurcation phenomenon is illustrated by
simulating the system (4) with the following set of parameter
values 𝜇ℎ = 0.00004, 𝜇𝑣 = 0.015, Λ 𝑣 = 4, Λ ℎ = 3, 𝛽𝑣 = 0.2,
𝑏 = 0.4, 𝛿ℎ = 0.0011, 𝛾ℎ = 0.0005 (so that, 𝑎1 > 0 andℜ0 < 1).
Figure 1 depicts the associated backward bifurcation diagram.

2.4. The Effect of the Reinfection. We further investigate the
effect of the reinfection parameter 𝜎 and the transmission
probability from an infectious human to a susceptible vector
𝛽ℎ on the associated backward bifurcation region, as a
function of the average life span of mosquitoes (1/𝜇𝑣). The
backward bifurcation region is illustrated (Figures 2–4) by
simulating the model (4) with the following set of parameter

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

Unstable disease
free equilibrium

equilibrium

equilibrium

0

0.005

0.01

0.015

0.02

0.025

0.03

Stable endemic
equilibrium

Unstable endemic
Stable
disease

free

𝐼ℎ

𝑅0

Figure 1: Simulations of the model (4) illustrating the phenomenon
of backward bifurcation.

values (note that the parameters are chosen in order to
illustrate the backward bifurcation region, and may not all
be realistic epidemiologically), Λ ℎ = 30, Λ 𝑣 = 24, 𝛽𝑣 =

0.09, 𝛿ℎ = 0.2, 𝛾ℎ = 0.0005, 𝜇ℎ = 0.00004, 𝑏 = 0.4, 𝜇𝑣 =

0.2. Also to be noted is, the parameter values are chosen such
that 𝑎1 > 0, 𝑏1 > 0 and ℜ0 < 1 (so that backward bifurcation
occurs).

Solving for 𝑎1 > 0 in terms of 0 ⩽ 𝜎 ⩽ 1 and 𝛽ℎ > 0

(i.e., fixing all parameters in the expression for 𝑎1 except
𝛽ℎ and 𝜎) we obtained the backward bifurcation region for
𝛽ℎ. Figure 2 depicted the results obtained for 𝜎 = 0.5, it
shows that the region for backward bifurcation (for 𝛽ℎ )
increases as the average life span of vectors (1/𝜇𝑣) decreases.
For instance, when the average life span of vectors is 20
days (𝜇𝑣 = 0.05), the backward bifurcation region for 𝛽ℎ

is 𝛽ℎ ∈ [0.10381, 0.35556], as shown in Figure 2(a). When
the average life span of vectors is decreased to 10 days (𝜇𝑣 =

0.1), the backward bifurcation region for 𝛽ℎ increases to
𝛽ℎ ∈ [0.2077, 0.71083] (Figure 2(b)). Furthermore, when the
average life span of vectors is decreased to 5 days (𝜇𝑣 = 0.2),
the backward bifurcation region for 𝛽ℎ increases to 𝛽ℎ ∈

[0.4153, 1.4217] (Figure 2(c)). Similar results are obtained for
the cases 𝜎 = 0.6 (Figures 3(a), 3(b), and 3(c)) and 𝜎 = 1

(Figures 4(a), 4(b), and 4(c)), fromwhich it is evident that the
backward bifurcation regions for 𝛽ℎ increase with increasing
values of the reinfection rate 𝜎. These results are tabulated in
Table 2 (1/𝜇𝑣 represents average life span of vectors.)

3. The Mass Action Model

In this section, we shall investigate the dynamics of system
(1) if mass action incidence is used instead of the standard
incidence function.Thus the resulting (mass action) model is

𝑆
󸀠

ℎ
(𝑡) = Λ ℎ − 𝑏𝛽ℎ𝑆ℎ (𝑡) 𝐼𝑣 (𝑡) − 𝜇ℎ𝑆ℎ (𝑡) ,

𝐼
󸀠

ℎ
(𝑡) = 𝑏𝛽ℎ𝑆ℎ (𝑡) 𝐼𝑣 (𝑡) + 𝜎𝑏𝛽ℎ𝑅ℎ (𝑡) 𝐼𝑣 (𝑡)

− (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼ℎ (𝑡) ,
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𝜎
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for 𝛽ℎ ∈ [0.1038, 0.33556]

(a)

0.205

0.206

0.207

0.208

0.209

0.21

0.211

0.212

bifurcation

0 0.2 0.4 0.6 0.8 1
𝜎

𝑎1 = 0

𝛽ℎ = 0.2077

𝛽ℎ

𝑎1 < 0, no backward

𝑎1 > 0, backward bifurcation region
for 𝛽ℎ ∈ [0.2077, 0.71038]

(b)

0.41

0.412

0.414

0.416

0.418

0.42

0.422

0.424
𝑎1 > 0, backward bifurcation region

𝛽ℎ

0 0.2 0.4 0.6 0.8 1
𝜎

𝛽ℎ = 0.4153

𝑎1 = 0

bifurcation
𝑎1 < 0, no backward

for 𝛽ℎ ∈ [0.4153,1.4217]

(c)

Figure 2: Backward bifurcation regions for the model (4) in the 𝜎-𝛽ℎ parameter space corresponding to 𝜎 = 0.5 and various ranges of 𝛽ℎ.
Parameter values used are: Λ ℎ = 30, Λ 𝑣 = 24, 𝛿ℎ = 0.2, 𝛾ℎ = 0.0005, 𝜇ℎ = 0.00004, 𝑏 = 0.4, 𝜇𝑣 = 0.0.015, 𝛽𝑣 = 0.09. In (a) 𝜇𝑣 = 0.05, ℜ0 =

0.0014046 (backward bifurcation region for 𝛽ℎ is 𝛽ℎ ∈ [0.1038, 0.35556]), (b) 𝜇𝑣 = 0.1, ℜ0 = 0.00035113 (backward bifurcation region for 𝛽ℎ

is 𝛽ℎ ∈ [0.2077, 0.71083]), and (c) 𝜇𝑣 = 0.2, ℜ0 = 0.0000087788 (backward bifurcation region for 𝛽ℎ is 𝛽ℎ ∈ [0.4153, 1.9468]). With the above
set of parameter values, 𝑎1 > 0, 𝑏1 > 0, and ℜ0 < 1.

𝑅
󸀠

ℎ
(𝑡) = 𝛾ℎ𝐼ℎ (𝑡) − 𝜎𝑏𝛽ℎ𝑅ℎ (𝑡) 𝐼𝑣 (𝑡) − 𝜇ℎ𝑅ℎ (𝑡) ,

𝑆
󸀠

𝑣
(𝑡) = Λ 𝑣 − 𝑏𝛽𝑣𝐼ℎ (𝑡) 𝑆𝑣 (𝑡) − 𝜇𝑣𝑆𝑣 (𝑡) ,

𝐼
󸀠

𝑣
(𝑡) = 𝑏𝛽𝑣𝐼ℎ (𝑡) 𝑆𝑣 (𝑡) − 𝜇𝑣𝐼𝑣 (𝑡) ,

(25)

where the prime (󸀠) stands for the derivative with respect to
time 𝑡 and initial conditions 𝑆ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝑅ℎ(0) ≥ 0,
and 𝑆𝑣(0) ≥ 0, 𝐼𝑣(0) ≥ 0.

3.1. Basic Properties: Positivity and Invariant Regions. The
dynamics of the total human population, obtained by adding
first three equations in the model (25), is given by

𝑁
󸀠

ℎ
(𝑡) = Λ ℎ − 𝜇ℎ𝑁ℎ (𝑡) − 𝛿ℎ𝐼ℎ (𝑡) . (26)

Thus, we have

Λ ℎ

𝜇ℎ + 𝛿ℎ

+ (𝑁ℎ (0) −
Λ ℎ

𝜇ℎ + 𝛿ℎ

) 𝑒
−(𝜇ℎ+𝛿ℎ)𝑡

≤ 𝑁ℎ (𝑡) ≤
Λ ℎ

𝜇ℎ

+ (𝑁ℎ (0) −
Λ ℎ

𝜇ℎ

) 𝑒
−𝜇ℎ𝑡

.

(27)

Thus, for a low level of disease induced death rate (𝛿ℎ ≈ 0)
total human population could eventually assume a steady-
state value. Motivated by this, we consider a human popu-
lation which assumes a steady-state value Λ ℎ/𝜇ℎ stationary.
Similarly, the dynamics of the total mosquito population,
obtained by adding last two equations in the model (25), is
given by, 𝑁󸀠

𝑣
(𝑡) = Λ 𝑣 − 𝜇𝑣𝑁𝑣(𝑡), so that, 𝑁𝑣(𝑡) = Λ 𝑣/𝜇𝑣 as

𝑡 → ∞.
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Figure 3: Backward bifurcation regions for the model (4) in the 𝜎-𝛽
ℎ
parameter space corresponding to 𝜎 = 0.6 and various ranges of 𝛽

ℎ
.

Parameter values used are: Λ ℎ = 30, Λ 𝑣 = 24, 𝛿ℎ = 0.2, 𝛾ℎ = 0.0005, 𝜇ℎ = 0.00004, 𝑏 = 0.4, 𝜇𝑣 = 0.0.015, 𝛽𝑣 = 0.09. In (a) 𝜇𝑣 = 0.05, ℜ0 =

0.0014046 (backward bifurcation region for 𝛽ℎ is 𝛽ℎ ∈ [0.1036, 0.35556]), (b) 𝜇𝑣 = 0.1, ℜ0 = 0.00035113 (backward bifurcation region for 𝛽ℎ

is 𝛽ℎ ∈ [0.2071, 0.71083]), and (c) 𝜇𝑣 = 0.2, ℜ0 = 0.0000087788 (backward bifurcation region for 𝛽ℎ is 𝛽ℎ ∈ [0.4142, 1.4217]). With the above
set of parameter values, 𝑎1 > 0, 𝑏1 > 0, and ℜ0 < 1.

Let 𝐻(𝑡) = (𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡)) and 𝑉(𝑡) = (𝑆𝑣(𝑡), 𝐼𝑣(𝑡)).
Based on the above discussion, we define a region

Γ = {(𝐻 (𝑡) , 𝑉 (𝑡)) ∈ 𝑅
3

+
× 𝑅

2

+
| 0 ≤ 𝐻 (𝑡)

≤
Λ ℎ

𝜇ℎ

, 0 ≤ 𝑉 (𝑡) ≤
Λ 𝑣

𝜇𝑣

} .

(28)

It is easy to verify that Γ is positively invariant with respect
to the system (25). In this part, it is sufficient to consider the
dynamics of the flow generated by (25) in Γ.

3.2. Equilibrium and Local Stability. In this section, we
investigate the existence and local stability of equilibria
of system (25). Obviously, the system (25) always has

a disease-free equilibrium 𝐸
0

mass(Λ ℎ/𝜇ℎ, 0, 0, Λ 𝑣/𝜇𝑣, 0). Let
𝐸
∗

mass(𝑆
∗

ℎ
, 𝐼

∗

ℎ
, 𝑅

∗

ℎ
, 𝑆

∗

𝑣
, 𝐼

∗

𝑣
) represents any arbitrary endemic

equilibrium of the model (25). Solving the equations in (25)
at steady state gives

𝑆
∗

ℎ
=

Λ ℎ𝜇𝑣 (𝑏𝛽𝑣𝐼
∗

ℎ
+ 𝜇𝑣)

𝑏
2
Λ 𝑣𝛽ℎ𝛽𝑣𝐼

∗

ℎ
+ 𝜇ℎ𝜇𝑣 (𝑏𝛽𝑣𝐼

∗

ℎ
+ 𝜇𝑣)

,

𝑅
∗

ℎ
=

𝛾ℎ𝜇𝑣 (𝑏𝛽𝑣𝐼
∗

ℎ
+ 𝜇𝑣) 𝐼

∗

ℎ

𝑏
2
Λ 𝑣𝜎𝛽ℎ𝛽𝑣𝐼

∗

ℎ
+ 𝜇ℎ𝜇𝑣 (𝑏𝛽𝑣𝐼

∗

ℎ
+ 𝜇𝑣)

,

𝑆
∗

𝑣
=

Λ 𝑣

𝑏𝛽𝑣𝐼
∗

ℎ
+ 𝜇𝑣

, 𝐼
∗

𝑣
=

𝑏Λ 𝑣𝛽𝑣𝐼
∗

ℎ

𝜇𝑣 (𝑏𝛽𝑣𝐼
∗

ℎ
+ 𝜇𝑣)

,

(29)



Abstract and Applied Analysis 9

0.1025

0.103

0.1035

0.104

0.1045

0.105

0.1055

0.106

0.1065

0.107

𝑎1 = 0

0 0.2 0.4 0.6 0.8 1
𝜎

bifurcation
𝑎1 < 0, no backward

𝑎1 > 0, backward bifurcation region for
𝛽ℎ ∈ [0.1025,0.35556]

𝛽ℎ

(a)

0.205

0.206

0.207

0.208

0.209

0.21

0.211

0.212

𝑎1 = 0

0 0.2 0.4 0.6 0.8 1
𝜎

𝑎1 > 0, backward bifurcation region for

bifurcation
𝑎1 < 0, no backward

𝛽ℎ ∈ [0.2051,0.71038]

𝛽ℎ

(b)

0.41

0.412

0.414

0.416

0.418

0.42

0.422

0.424

0 0.2 0.4 0.6 0.8 1
𝜎

𝑎1 = 0

𝑎1 > 0, backward bifurcation region for
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𝑎1 < 0, no backward

𝛽ℎ

(c)

Figure 4: Backward bifurcation regions for the model (4) in the 𝜎-𝛽ℎ parameter space corresponding to 𝜎 = 1 and various ranges of 𝛽ℎ.
Parameter values used are: Λ ℎ = 30, Λ 𝑣 = 24, 𝛿ℎ = 0.2, 𝛾ℎ = 0.0005, 𝜇ℎ = 0.00004, 𝑏 = 0.4, 𝜇𝑣 = 0.0.015, 𝛽𝑣 = 0.09. In (a) 𝜇𝑣 = 0.05, ℜ0 =

0.0014046 (backward bifurcation region for 𝛽ℎ is 𝛽ℎ ∈ [0.1025, 0.35556]), (b) 𝜇𝑣 = 0.1, ℜ0 = 0.00035113 (backward bifurcation region for 𝛽ℎ

is 𝛽ℎ ∈ [0.2051, 0.71083]), and (c) 𝜇𝑣 = 0.2, ℜ0 = 0.0000087788 (backward bifurcation region for 𝛽ℎ is 𝛽ℎ ∈ [0.4101, 1.4217]). With the above
set of parameter values, 𝑎1 > 0, 𝑏1 > 0, and ℜ0 < 1.

where 𝐼
∗

ℎ
is the positive root of the following quadratic

equation,

𝑑1𝐼
∗2

ℎ
+ 𝑑2𝐼

∗

ℎ
+ 𝑑

∗

3
= 0, (30)

with

𝑑1 = 𝑏
2
𝛽
2

𝑣
(𝜇ℎ + 𝛿ℎ) (𝜎𝑏Λ 𝑣𝛽ℎ + 𝜇ℎ𝜇𝑣) (𝑏Λ 𝑣𝛽ℎ + 𝜇ℎ𝜇𝑣)

+ 𝛾ℎ𝑏
2
𝛽
2

𝑣
𝜇ℎ𝜇𝑣 (𝑏Λ 𝑣𝛽ℎ + 𝜇ℎ𝜇𝑣) > 0,

𝑑2 = 𝑏𝛽𝑣𝜇ℎ𝜇
2

𝑣
(𝜇ℎ + 𝛾ℎ + 𝛿ℎ) (𝑏Λ 𝑣𝛽ℎ + 𝜇ℎ𝜇𝑣)

+ 𝑏𝛽𝑣𝜇ℎ𝜇
2

𝑣
(𝜇ℎ + 𝛿ℎ) (𝜎𝑏Λ 𝑣𝛽ℎ + 𝜇ℎ𝜇𝑣) + 𝛾ℎ𝑏𝛽𝑣𝜇

2

ℎ
𝜇
3

𝑣

− 𝑏
3
Λ 𝑣Λ ℎ𝛽ℎ𝛽

2

𝑣
(𝑏𝜎Λ 𝑣𝛽ℎ + 𝜇𝑣𝜇ℎ) ,

𝑑3 = (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇
2

ℎ
𝜇
4

𝑣
(1 −

𝑏
2
Λ ℎΛ 𝑣𝛽ℎ𝛽𝑣

(𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇ℎ𝜇
2
𝑣

) .

(31)

The dynamics of the model (25) are analyzed by ℜmass given
by

ℜmass =
𝑏
2
Λ ℎΛ 𝑣𝛽ℎ𝛽𝑣

(𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇ℎ𝜇
2
𝑣

. (32)

The threshold quantityℜmass is the basic reproduction num-
ber of the system (25). It can be derived from the Jacobian
matrix of the system (25) at the disease-free equilibrium𝐸

0

mass
together with the assumption of local asymptotical stability
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Table 2: Backward Bifurcation Ranges for 𝛽ℎ for Various Values of 1/𝜇𝑣 and 𝜎.

Average life span of vectors
(1/𝜇𝑣)

𝜎 = 0.5 𝜎 = 0.6 𝜎 = 1

20 days 𝛽ℎ ∈ [0.1038, 0.35556] 𝛽ℎ ∈ [0.1036, 0.35556] 𝛽ℎ ∈ [0.1025, 0.35556]
10 days 𝛽ℎ ∈ [0.2077, 0.71083] 𝛽ℎ ∈ [0.2071, 0.71083] 𝛽ℎ ∈ [0.2051, 0.71083]
5 days 𝛽ℎ ∈ [0.4153, 1.4217] 𝛽ℎ ∈ [0.4142, 1.4217] 𝛽ℎ ∈ [0.4101, 1.4217]

of 𝐸0

mass [21]. From (31), we see that ℜmass > 1 if and only
if, 𝑑3 < 0. Since 𝑑1 > 0, (30) has a unique positive root
in feasible region Ω. If ℜmass < 1, then 𝑑3 > 0. Also
𝑏
2
Λ ℎΛ 𝑣𝛽ℎ𝛽𝑣 < (𝜇ℎ +𝛾ℎ +𝛿ℎ)𝜇ℎ𝜇𝑣, is equivalent toℜmass < 1.

Hence, 𝑑2 > 0. Thus, by considering the shape of the graph
𝑓(𝐼ℎ) = 𝑑1𝐼

2

ℎ
+𝑑2𝐼ℎ+𝑑3 (and noting that 𝑑1 > 0), we have that

there will be zero endemic equilibria in this case. Therefore,
we can conclude that ifℜmass < 1, (30) has no positive root in
the feasible region Γ. If,ℜmass = 1, (30) has a unique positive
root in the feasible region Γ. This result is summarized below.

Theorem 5. System (25) always has the infection-free equi-
librium 𝐸

0

mass = ((Λ ℎ/𝜇ℎ), 0, 0, (Λ 𝑣/𝜇𝑣), 0). If ℜmass >

1, system (25) has a unique endemic equilibrium 𝐸
∗

mass =

(𝑆
∗

ℎ
, 𝐼

∗

ℎ
, 𝑅

∗

ℎ
, 𝑆

∗

𝑣
, 𝐼

∗

𝑣
) defined by (29) and (30).

Linearizing the system (25) around the disease-free equi-
librium 𝐸

0

mass yields the following characteristic equation:

(𝜆 + 𝜇ℎ)
2
[𝜆

2
+ (𝜇ℎ + 𝛾ℎ + 𝛿ℎ + 𝜇𝑣) 𝜆

+ (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇𝑣 − 𝑏
2
𝛽ℎ𝛽𝑣

Λ ℎΛ 𝑣

𝜇ℎ𝜇𝑣

] = 0.

(33)
Twoof the roots of the characteristic equation (33)𝜆1,2 = −𝜇ℎ,
have negative real parts.The other two roots can be determine
from the quadratic term in (33) and have negative real parts if
and only ifℜmass < 1. Therefore, the disease-free equilibrium
𝐸
0

mass is locally asymptotically stable for ℜmass < 1. When
ℜmass > 1, 𝐸0

mass becomes an unstable equilibrium point, and
the endemic equilibrium 𝐸

∗

mass emerges in Γ. This result is
summarized below.

Theorem 6. The disease-free equilibrium 𝐸
0

mass of system (25)
is locally asymptotically stable if ℜmass < 1 and unstable if
ℜmass > 1.

In order to discuss the stability of the endemic equilib-
rium 𝐸

∗

mass and to simplify our calculations, we assume both
humans andmosquitoes populations are at steady state.Thus,
using𝑁𝑣 = 𝑆ℎ + 𝐼ℎ + 𝑅ℎ = 𝜆𝑣/𝜇ℎ, and 𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣 = 𝜆𝑣/𝜇𝑣,
system (25) in the invariant space Γ can be written as the
following equivalent three dimensional nonlinear system of
ODEs:

𝑆
󸀠

ℎ
(𝑡) = Λ ℎ − 𝑏𝛽ℎ𝑆ℎ (𝑡) 𝐼𝑣 (𝑡) − 𝜇ℎ𝑆ℎ (𝑡) ,

𝐼
󸀠

ℎ
(𝑡) = 𝑏𝛽ℎ𝑆ℎ (𝑡) 𝐼𝑣 (𝑡) + 𝜎𝑏𝛽ℎ (𝑁ℎ − 𝑆ℎ (𝑡) − 𝐼ℎ (𝑡))

× 𝐼𝑣 (𝑡) − (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼ℎ (𝑡) ,

𝐼
󸀠

𝑣
(𝑡) = 𝑏𝛽𝑣𝐼ℎ (𝑡) (𝑁𝑣 − 𝐼𝑣 (𝑡)) − 𝜇𝑣𝐼𝑣 (𝑡) .

(34)

Now, linearization of system (34) about an endemic equilib-
rium 𝐸

∗

mass gives the following characteristic equation:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 + 𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣
0 𝑏𝛽ℎ𝑆

∗

ℎ

𝑏𝛽ℎ (𝜎 − 1) 𝐼
∗

𝑣
𝜆 + 𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
−
𝛼1𝐼

∗

ℎ

𝐼
∗
𝑣

0 −
𝜇𝑣𝐼

∗

𝑣

𝐼
∗

ℎ

𝜆 + 𝑏𝛽𝑣𝐼
∗

ℎ
+ 𝜇𝑣

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0,

(35)

where, 𝛼1 = 𝜇ℎ + 𝛾ℎ + 𝛿ℎ. Expanding (35) gives

𝜆
3
+ 𝑄1𝜆

2
+ 𝑄2𝜆 + 𝑄3 = 0, (36)

where

𝑄1 = 𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣
+ 𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
+ 𝜇𝑣 + 𝑏𝛽𝑣𝐼

∗

ℎ
> 0,

𝑄2 = (𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣
) (𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
+ 𝜇𝑣 + 𝑏𝛽𝑣𝐼

∗

ℎ
)

+ 𝑏𝛽𝑣𝐼
∗

ℎ
(𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
) + 𝜇𝑣𝑏𝜎𝛽ℎ𝐼

∗

𝑣
> 0,

𝑄3 = (𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣
) [𝑏𝛽𝑣𝐼

∗

ℎ
(𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
) + 𝜇𝑣𝑏𝜎𝛽ℎ𝐼

∗

𝑣
]

+ 𝑏
2
𝛽
2

ℎ
(1 − 𝜎) 𝐼

∗

𝑣
𝑆
∗

ℎ

𝜇𝑣𝐼
∗

𝑣

𝐼
∗

ℎ

> 0.

(37)

From the second equation of system (34) at steady state 𝐸
∗,

we have

𝛼1 =
𝑏𝛽ℎ𝑆

∗

ℎ
𝐼
∗

𝑣
(1 − 𝜎) + 𝑏𝜎𝑁ℎ𝛽ℎ𝐼

∗

𝑣

𝐼
∗

ℎ

− 𝑏𝜎𝛽ℎ𝐼
∗

𝑣
. (38)
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Using (37), direct calculations show that

𝑄1𝑄2 − 𝑄3

= (𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ +𝛼1 + 𝑏𝜎𝛽ℎ𝐼
∗

𝑣
+ 𝜇𝑣 + 𝑏𝛽𝑣𝐼

∗

ℎ
)

× [ 𝑏𝛽𝑣𝐼
∗

ℎ
(𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
) + 𝜇𝑣𝑏𝜎𝛽ℎ𝐼

∗

𝑣⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

+ (𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣
) (𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
+ 𝜇𝑣 + 𝑏𝛽𝑣𝐼

∗

ℎ
)]

− [ (𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣
) [𝑏𝛽𝑣𝐼

∗

ℎ
(𝛼1 + 𝑏𝜎𝛽ℎ𝐼

∗

𝑣
) + 𝜇𝑣𝑏𝜎𝛽ℎ𝐼

∗

𝑣
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

+ 𝑏
2
𝛽
2

ℎ
(1 − 𝜎) 𝐼

∗

𝑣
𝑆
∗

ℎ

𝜇𝑣𝐼
∗

𝑣

𝐼
∗

ℎ

] .

(39)

Obviously, the term (𝜇ℎ + 𝑏𝛽ℎ𝐼
∗

𝑣
) in first bracket times the

term (𝑏𝛽𝑣𝐼
∗

ℎ
(𝛼1+𝑏𝜎𝛽ℎ𝐼

∗

𝑣
)+𝜇𝑣𝑏𝜎𝛽ℎ𝐼

∗

𝑣
) in the second bracket is

(𝜇ℎ+𝑏𝛽ℎ𝐼
∗

𝑣
)[𝑏𝛽𝑣𝐼

∗

ℎ
(𝛼1+𝑏𝜎𝛽ℎ𝐼

∗

𝑣
)+𝜇𝑣𝑏𝜎𝛽ℎ𝐼

∗

𝑣
]. Multiplying the

terms under straight line andusing (30), we have𝜇𝑣𝑏𝛽ℎ𝐼𝑣(𝛼1+

𝑏𝜎𝛽ℎ𝐼
∗

𝑣
) > 𝑏

2
𝛽
2

ℎ
(1 − 𝜎)𝐼

∗

𝑣
𝑆
∗

ℎ
(𝜇𝑣𝐼

∗

𝑣
/𝐼

∗

ℎ
). Hence, 𝑄1𝑄2 − 𝑄3 >

0. Thus, by Routh Hurwitz criteria, the following result is
established.

Theorem 7. The endemic equilibrium 𝐸
∗

mass of the reduced
model (34) is locally asymptotically stable if ℜmass > 1.

3.3. Global Stability of the Equilibria. In this section, the
global stability of the equilibria of system (34) will be
explored. First, we claim the following theorem.

Theorem 8. If ℜmass ≤ 1, then the infection-free-equilibrium
𝐸
0

mass of system (34) is globally asymptotically stable in Γ.

Proof. To establish the global stability of the disease-free
equilibrium 𝐸

0

mass, we construct the following Lyapunov
function

𝐿 (𝑡) = 𝑏𝛽
𝑣
𝐼ℎ (𝑡) + (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼𝑣 (𝑡) . (40)

Calculating the derivative of 𝐿 (where a dot represents
differentiation with respect to 𝑡) along the solutions of (34)
we obtain

𝐿
󸀠
(𝑡) = 𝑏𝛽𝑣𝐼

󸀠

ℎ
(𝑡) + (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼

󸀠

𝑣
(𝑡) ,

=𝑏𝛽𝑣 [𝑏𝛽ℎ𝑆ℎ (𝑡) 𝐼𝑣 (𝑡)+𝑏𝜎𝛽ℎ (𝑁ℎ−𝑆ℎ (𝑡)−𝐼ℎ (𝑡)) 𝐼𝑣 (𝑡)

− (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼ℎ (𝑡)]

+ (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) [𝑏𝛽𝑣 (𝑁𝑣 − 𝐼𝑣 (𝑡)) 𝐼ℎ (𝑡) − 𝜇𝑣𝐼𝑣 (𝑡)] ,

= 𝑏
2
𝛽𝑣𝛽ℎ (𝑆ℎ (𝑡) + 𝜎 (𝑁ℎ − 𝑆ℎ (𝑡) − 𝐼ℎ (𝑡)))

× 𝐼𝑣 (𝑡) − (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇𝑣𝐼𝑣 (𝑡)

− 𝑏 (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝛽𝑣𝐼ℎ (𝑡) 𝐼𝑣 (𝑡) ,

= (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇𝑣

× [
𝑏
2
𝛽𝑣𝛽ℎ

(𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇𝑣

× (𝑆ℎ (𝑡) + 𝜎 (𝑁ℎ − 𝑆ℎ (𝑡) − 𝐼ℎ (𝑡))) − 1] 𝐼𝑣 (𝑡)

− 𝑏 (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝛽𝑣𝐼ℎ (𝑡) 𝐼𝑣 (𝑡) ,

≤ (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇𝑣𝐼𝑣 (𝑡) (𝑅mass − 1)

− 𝑏 (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝛽𝑣𝐼ℎ (𝑡) 𝐼𝑣 (𝑡) .

(41)

Thus, 𝐿
󸀠
(𝑡) ≤ 0 if 𝑅mass ≤ 1 with 𝐿

󸀠
(𝑡) = 0 if

and only if 𝐼𝑣(𝑡) = 0. Thus, from the second and the
first equation of system (34), we have lim𝑡→∞𝐼ℎ(𝑡) = 0,
and lim𝑡→∞𝑆ℎ(𝑡) = Λ ℎ/𝜇ℎ. Therefore, the largest compact
invariant set in {(𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝐼𝑣(𝑡)) ∈ 𝛼 : 𝐿

󸀠
(𝑡) = 0}

is the singleton {(Λ ℎ/𝜇ℎ, 0, 0)} in Γ. Using the LaSalle’s
invariant principle [26], the infection-free equilibrium 𝐸

0

mass
is globally asymptotically stable for 𝑅mass ≤ 1 in Γ. The
epidemiological implication of the above result is thatmalaria
will be eliminated from the population if𝑅mass can be brought
to (and maintained at) a value less than unity. Thus, the
substitution of standard incidencewithmass action incidence
in the model (1) removes the phenomenon of backward
bifurcation.The result ofTheorem 8 is illustrated numerically
by simulating the model (30), for the case 𝑅mass < 1, using
various initial conditions. The solution profiles obtained
shows convergence to the DFE, as depicted in Figure 5.

Now, we investigate the global stability of the endemic
equilibrium 𝐸

∗

mass. We notice that when the incomplete
immunity term 0 < 𝜎 < 1, system (30) is no longer
competitive. To investigate the global stability of 𝐸

∗

mass,
we adopted a general approach of Li and Muldowney
[27, 28], which is developed for higher dimensional systems
irrespective if they are competitive. While the approach
of Li and Muldowney has been successfully applied to
many classes of epidemic models, we demonstrated in the
present paper, for the first time, that this approach is also
applicable to vector-host model which is non-competitive.

We briefly state the approach developed recently in Li and
Muldowney as follows:

Let 𝐺 ⊂ 𝑅
𝑛 be an open set and 𝑓 : 𝑥 󳨃→ 𝑓(𝑥) ∈ 𝑅

𝑛 be
a 𝐶

1 function for 𝑥 ∈ 𝐺. Consider the following differential
equation:

𝑥
󸀠
= 𝑓 (𝑥) . (42)

Let 𝑥(𝑡, 𝑥0) denote the solution of (42) satisfying 𝑥(0, 𝑥0) =

𝑥0. We make the following two assumptions.

(𝐻1) There exists a compact absorbing set𝐾 ⊂ 𝐺.

(𝐻2) Eqution (42) has a unique equilibrium 𝑥 in 𝐺.
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Figure 5: Simulations of the model (5) showing (a) the number of susceptible humans, (b) the number of infected humans, (c) the number of
infected mosquitoes, as a function of time using the parameters: 𝑏 = 0.5, Λ ℎ = 25, Λ𝑉 = 500, 𝛽1 = 0.00001, 𝛽2 = 0.005, 𝜇ℎ = 0.5 𝜇𝑣 = 0.06,
𝜎 = 0.8, 𝛿ℎ = 0.0001, and 𝛾ℎ = 0.6 (so that ℜ0 = 0.0789 < 1).

Let𝑄 : 𝑥 󳨃→ 𝑄(𝑥) be an (
𝑛
2 )×(

𝑛
2 )matrix-valued function, that

is, it is 𝐶
1 and 𝑄

−1
(𝑥) exists for 𝑥 ∈ 𝐺. Let 𝜇 be a Lozinsk ̆𝑖𝑖

measure on 𝑅
𝑑×𝑑, where 𝑑 = (

𝑛
2 ). Define a quantity 𝑞2 as

𝑞
2
= lim

𝑡→∞
sup sup

𝑥0∈𝐸

1

𝑡
∫

𝑡

0

𝜇 (𝑀(𝑥 (𝑠, 𝑥0))) 𝑑𝑠, (43)

where𝑀 = 𝑄𝑓𝑄
−1

+ 𝑄𝐽
[2]

𝑄
−1, the matrix 𝑄𝑓 is obtained by

replacing each entry 𝑞𝑖𝑗 of 𝑄 by its derivative in the direction
of 𝑓, (𝑞𝑖𝑗)𝑓, and 𝐽

[2] is the second additive compound matrix
of the Jacobian matrix 𝐽 of system (42). The following results
have been established in Li and Muldowney [27, 28].

Theorem 9. For system (42), assume that 𝐺 is a simple
connected and that the assumptions (𝐻1) and (𝐻2) hold.Then,
the unique equilibrium 𝑥 is globally asymptotically stable in 𝐺

if there exist a function 𝑄(𝑥) and a Lozinski ̆𝑖 measure 𝜇 such
that 𝑞

2
< 0.

From the above discussion, we know that Γ is simply
connect and 𝐸

∗

mass is the unique positive equilibrium for
ℜmass > 1 in Γ.

To apply the result of Theorem 9 to investigate the global
stability of the infective equilibrium 𝐸

∗

mass, we first state and
prove the following result.

Theorem 10. If ℜmass > 1, then system (34) is uniformly
persistent, that is, there exists 𝜖 > 0 (independent of initial con-
ditions), such that lim inf 𝑡→∞𝑆ℎ(𝑡) > 𝜖, lim inf 𝑡→∞𝐼ℎ(𝑡) > 𝜖,
and lim inf 𝑡→∞𝐼𝑣(𝑡) > 𝜖.

Proof. Similar to the proof ofTheorem 3.4 in [29], we choose
𝑋 = Γ,𝑋1 = int Γ,𝑋2 = 𝑏𝑑(Γ). It is easy to obtain that
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𝑌2 = {(𝑆, 0, 0) : 0 < 𝑆 ≤ 1}, Γ2 = ⋃
𝑦∈𝑌2

Γ(𝑦) = {𝐸
0
}, and

{𝐸
0
} is an isolated compact invariant set in 𝑋. Furthermore,

let𝑀 = {𝐸
0
}, thus,𝑀 is an acyclic isolated covering of Γ2.

Now, we only need to show that {(Λ ℎ/𝜇ℎ, 0, 0)} is a weak
repeller for 𝑋1. Suppose that there exists a positive orbit
(𝑆ℎ, 𝐼ℎ, 𝐼𝑣) of (34) such that

lim
𝑡→+∞

𝑆ℎ (𝑡) =
Λ ℎ

𝜇ℎ

, lim
𝑡→+∞

𝐼ℎ (𝑡) = 0, lim
𝑡→+∞

𝐼𝑣 (𝑡) = 0.

(44)

Since ℜmass > 1, there exists a small enough 𝜀 > 0, such that

𝑏Λ ℎΛ 𝑣𝛽ℎ𝛽𝑣(1 − 𝜀)
2
> (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝜇ℎ𝜇

2

𝑣
. (45)

From (34), we choose 𝑡0 > 0 large enough such that when
𝑡 ≥ 𝑡0, we have

𝐼
󸀠

ℎ
(𝑡) > 𝑏𝛽ℎ (1 − 𝜀)

Λ ℎ

𝜇ℎ

𝐼𝑣 (𝑡) − (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼ℎ (𝑡) ,

𝐼
󸀠

𝑣
(𝑡) > 𝑏𝛽𝑣 (1 − 𝜀)

Λ 𝑣

𝜇𝑣

𝐼ℎ (𝑡) − 𝜇𝑣𝐼𝑣 (𝑡) .

(46)

Consider the following matrix𝑀𝜀 defined by

𝑀𝜀 = (

− (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝑏𝛽ℎ (1 − 𝜀)
Λ ℎ

𝜇ℎ

𝑏𝛽𝑣 (1 − 𝜀)
Λ 𝑣

𝜇𝑣

𝜇𝑣

). (47)

Since 𝑀𝜀 admits positive off-diagonal element, the Perron-
Frobenius Theorem [26] implies that there is a positive

eigenvector 𝑣 = (𝑣1, 𝑣2) for the maximum eigenvalue 𝜆
∗ of

𝑀𝜀. From (45), we see that the maximum eigenvalue 𝜆
∗ is

positive. Let us consider the following system:

𝑢
󸀠

1
(𝑡) = 𝑏𝛽ℎ (1 − 𝜀)

Λ ℎ

𝜇ℎ

𝑢2 (𝑡) − (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝑢1 (𝑡) ,

𝑢
󸀠

2
(𝑡) = 𝑏𝛽𝑣 (1 − 𝜀)

Λ 𝑣

𝜇𝑣

𝑢1 (𝑡) − 𝜇𝑣𝑢2 (𝑡) .

(48)

Let 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡)) be a solution of (48) through (𝑙𝑣1, 𝑙𝑣2)

at 𝑡 = 𝑡0, where 𝑙 > 0 satisfies 𝑙𝑣1 < 𝐼ℎ(𝑡0), 𝑙𝑣2 < 𝐼𝑣(𝑡0). Since
the semiflow of (48) is monotone and𝑀𝜀𝑣 > 0, it follows that
𝑢𝑖(𝑡) are strictly increasing and 𝑢𝑖(𝑡) → +∞ as 𝑡 → +∞,
contradicting the eventual boundedness of positive solutions
of system (48). Thus, 𝐸0 is weak repeller for 𝑋1. The proof is
completed.

From Theorem 10 and the boundedness of solutions, it
follows that a compact set 𝑀 ⊂ Γ exists in system (34).
Therefore, inTheorem 9, both assumptions (𝐻1) and (𝐻2) are
satisfied forℜmass > 1.

Now, we apply Theorem 9 to investigate the global
stability of the endemic equilibrium 𝐸

∗

mass in the feasible
region Γ. For the global stability of the endemic equilibrium
𝐸
∗

mass, we have the following theorem.

Theorem 11. Ifℜmass > 1, then the infective equilibrium 𝐸
∗

mass
of system (48) is globally asymptotically stable in int Γ.
Proof. The Jacobian matrix 𝐽 evaluated at a general solution
(𝑆ℎ, 𝐼ℎ, 𝐼𝑣) of system (34) is

𝐽 = (

(

−(𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣) 0 −𝑏𝛽ℎ𝑆ℎ

𝑏𝛽ℎ (1 − 𝜎) 𝐼𝑣 − (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) − 𝑏𝜎𝛽ℎ𝐼𝑣

𝑏𝛽ℎ𝑆ℎ (1 − 𝜎)

+𝜎𝑏𝛽ℎ (𝑁ℎ − 𝐼ℎ)

0 𝑏𝛽𝑣 (𝑁𝑣 − 𝐼𝑣) − (𝑏𝛽𝑣𝐼ℎ + 𝜇𝑣)

)

)

, (49)

and its corresponding second compoundmatrix 𝐽[2] takes the
form

𝐽
[2]

= (

(

−(𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣 + 𝜇ℎ

+𝛾ℎ + 𝑏𝜎𝛽ℎ𝐼𝑣)

𝑏𝛽ℎ𝑆ℎ (1 − 𝜎)

+𝜎𝑏𝛽ℎ (𝑁ℎ − 𝐼ℎ)
𝑏𝛽ℎ𝑆ℎ

𝑏𝛽𝑣 (𝑁𝑣 − 𝐼𝑣)
− (𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣

+𝑏𝛽𝑣𝐼ℎ + 𝜇𝑣)
−𝛿ℎ

0 𝑏𝛽ℎ (1 − 𝜎) 𝐼𝑣

− (𝑚 + 𝜇𝑣 + 𝑏𝛽𝑣𝐼ℎ

+𝑏𝜎𝛽ℎ𝐼𝑣)

)

)

. (50)

Set the function 𝑃(𝑥) = 𝑃(𝑆ℎ, 𝐼ℎ, 𝐼𝑣) = diag(1, 𝐼ℎ/𝐼𝑣, 𝐼ℎ/𝐼𝑣).
Then 𝑃𝑓𝑃

−1
= diag(0, 𝐼󸀠

ℎ
/𝐼ℎ − 𝐼

󸀠

𝑣
/𝐼𝑣, 𝐼

󸀠

ℎ
/𝐼ℎ − 𝐼

󸀠

𝑣
/𝐼𝑣) . Moreover,
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𝐵 = 𝑃𝑓𝑃
−1

+ 𝑃𝐽
[2]

𝑃
−1

=

(
(
(
(
(
(
(
(
(
(
(

(

−(𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣 + 𝜇ℎ

+𝛾ℎ + 𝛿ℎ + 𝑏𝜎𝛽ℎ𝐼𝑣)

(𝑏𝛽ℎ𝑆ℎ (1 − 𝜎)

+𝜎𝑏𝛽ℎ (𝑁ℎ − 𝐼ℎ))
𝐼𝑣

𝐼ℎ

𝑏𝛽ℎ𝑆ℎ

𝐼𝑣

𝐼ℎ

𝑏𝛽𝑣 (𝑁𝑣 − 𝐼𝑣)
𝐼ℎ

𝐼𝑣

𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

− (𝜇ℎ + 𝜇𝑣

+ 𝑏𝛽ℎ𝐼𝑣

+𝑏𝛽𝑣𝐼ℎ)

0

0 𝑏𝛽ℎ (1 − 𝜎) 𝐼𝑣

𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

− 𝜇ℎ

−𝛾ℎ − 𝛿ℎ − 𝜇𝑣

−𝑏𝛽𝑣𝐼ℎ − 𝑏𝜎𝛽ℎ𝐼𝑣

)
)
)
)
)
)
)
)
)
)
)

)

= (
𝐵11 𝐵12

𝐵21 𝐵22

) ,

, (51)

where 𝐵11 = −(𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣 + 𝜇ℎ + 𝛾ℎ + 𝛿ℎ + 𝑏𝜎𝛽ℎ𝐼𝑣), 𝐵12 =

[(𝑏𝛽ℎ𝑆ℎ + 𝜎𝑏𝛽ℎ(𝑁ℎ − 𝑆ℎ − 𝐼ℎ))𝐼𝑣/𝐼ℎ, 𝑏𝛽ℎ𝑆ℎ𝐼𝑣/𝐼ℎ], 𝐵21 =

[𝑏𝛽𝑣(𝑁𝑣 − 𝐼𝑣)(𝐼ℎ/𝐼𝑣), 0]
𝑇, and

𝐵22

=
(
(

(

𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

−(𝜇ℎ+𝛿ℎ+𝜇𝑣)

−𝑏𝛽ℎ𝐼𝑣 − 𝑏𝛽𝑣𝐼ℎ

0

𝑏𝛽ℎ𝐼𝑣 (1 − 𝜎) ,

𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

−(+𝜇ℎ+𝛾ℎ+𝛿ℎ+𝜇𝑣)

−𝑏𝜃𝛽ℎ𝐼𝑣 − 𝑏𝛽𝑣𝐼ℎ

)
)

)

.

(52)

Let (𝑢, 𝑣, 𝑤) be the vectors in 𝑅
3. We choose a norm in

𝑅
3 as |(𝑢, 𝑣, 𝑤)| = max{|𝑢|, |𝑣| + |𝑤|}, and let 𝜇 be the

corresponding Lozinski ̆𝑖 measure. From the paper [28], we
have the following estimate:

𝜇 (𝐵) ≤ sup {𝑔1, 𝑔2} , (53)

where

𝑔1 = 𝜇1 (𝐵11) +
󵄨󵄨󵄨󵄨
𝐵12

󵄨󵄨󵄨󵄨
, 𝑔2 = 𝜇1 (𝐵22) +

󵄨󵄨󵄨󵄨
𝐵21

󵄨󵄨󵄨󵄨
. (54)

Here, |𝐵12|, |𝐵21| arematrix normwith respect to the 𝑙1 vector
norm, and𝜇1 is the Lozinski ̆𝑖measurewith respect to 𝑙1 norm.
Thus, we have

𝜇1 (𝐵11) = − (𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣 + 𝜇ℎ + 𝛾ℎ + 𝛿ℎ + 𝑏𝜎𝜃𝛽ℎ𝐼𝑣) ,

󵄨󵄨󵄨󵄨
𝐵12

󵄨󵄨󵄨󵄨
= (𝑏𝛽ℎ𝑆ℎ + 𝜎𝑏𝛽ℎ (𝑁ℎ − 𝑆ℎ − 𝐼ℎ))

𝐼𝑣

𝐼ℎ

,

󵄨󵄨󵄨󵄨
𝐵21

󵄨󵄨󵄨󵄨
= 𝑏𝛽𝑣 (𝑁𝑣 − 𝐼𝑣)

𝐼ℎ

𝐼𝑣

.

(55)

According to paper [28], 𝜇1(𝐵22) can be evaluated as follows:

𝜇1 (𝐵22) = max{
𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

− (𝜇ℎ + 𝜇𝑣 + 𝑏𝛽𝑣𝐼ℎ + 𝜎𝑏𝛽ℎ𝐼𝑣) ,

𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

− 𝑏𝜎𝛽ℎ𝐼𝑣 − 𝑏𝛽𝑣𝐼ℎ

−𝜇ℎ − 𝛿ℎ − 𝛾ℎ − 𝜇𝑣} ,

=
𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

− (𝜇ℎ + 𝜇𝑣 + 𝑏𝛽𝑣𝐼ℎ + 𝜎𝑏𝛽ℎ𝐼𝑣) .

(56)

Thus,

𝑔1 = − (𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣 + 𝜇ℎ + 𝛿ℎ + 𝛾ℎ + 𝑏𝜎𝛽ℎ𝐼𝑣)

+ (𝑏𝛽ℎ𝑆ℎ + 𝜎𝑏𝛽ℎ (𝑁ℎ − 𝑆ℎ − 𝐼ℎ))
𝐼𝑣

𝐼ℎ

,

𝑔2 =𝑏𝛽𝑣 (𝑁𝑣 − 𝐼𝑣)
𝐼ℎ

𝐼𝑣

+
𝐼
󸀠

ℎ

𝐼ℎ

−
𝐼
󸀠

𝑣

𝐼𝑣

− (𝜇ℎ + 𝜇𝑣 + 𝑏𝛽𝑣𝐼ℎ + 𝜎𝑏𝛽ℎ𝐼𝑣) .

(57)

From system (34), we have

𝐼
󸀠

ℎ

𝐼ℎ

= (𝑏𝛽ℎ𝑆ℎ + 𝜎𝑏𝛽ℎ (𝑁ℎ − 𝑆ℎ − 𝐼ℎ))
𝐼𝑣

𝐼ℎ

− (𝜇ℎ + 𝛿ℎ + 𝛾ℎ) ,

𝐼
󸀠

𝑣

𝐼𝑣

= 𝑏𝛽𝑣 (𝑁𝑣 − 𝐼𝑉)
𝐼ℎ

𝐼𝑣

− 𝜇𝑣.

(58)
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Figure 6: Simulations of the model (5) showing (a) the number of susceptible humans, (b) the number of infected humans, (c) the number of
infected mosquitoes, as a function of time using the parameters: 𝑏 = 0.5, Λ ℎ = 25, Λ 𝑣 = 500, 𝛽1 = 0.00001, 𝛽2 = 0.005, 𝜇ℎ = 0.03, 𝜇

𝑣
= 0.03,

𝜎 = 0.8, 𝛿ℎ = 0.0001, and 𝛾ℎ = 0.6 (so that ℜ0 = 9.1843 > 1).

Using (58) in (57) gives

𝑔1 =
𝐼
󸀠

ℎ

𝐼ℎ

− (𝜇ℎ + 𝑏𝛽ℎ𝐼𝑣 + 𝑏𝜎𝛽ℎ𝐼𝑣) ,

𝑔2 =
𝐼
󸀠

ℎ

𝐼ℎ

− (𝜇ℎ + 𝑏𝛽𝑣𝐼ℎ + 𝜎𝑏𝛽ℎ𝐼𝑣) .

(59)

From Theorem 9 we know that for the uniform persistence
constant 𝜀 > 0, there exists a time 𝑇 > 0 independent of
𝑥(0) ∈ Γ, the compact absorbing set, such that

𝐼ℎ (𝑡) > 𝜀, 𝐼𝑣 (𝑡) > 𝜀 (60)

for 𝑡 > 𝑇. Thus, from (59) and (60), we get

𝑔1 ≤
𝐼
󸀠

ℎ

𝐼ℎ

− (𝜇ℎ + 𝑏𝜃𝛽ℎ𝜀 + 𝑏𝜎𝜃𝛽ℎ𝜀) ,

𝑔2 ≤
𝐼
󸀠

ℎ

𝐼ℎ

− (𝜇ℎ + 𝑏𝛽𝑣𝜀 + 𝜎𝑏𝛽ℎ𝜀) .

(61)

Therefore, from (61), we have 𝜇(𝐵) ≤ (𝐼
󸀠

ℎ
/𝐼ℎ) − 𝜂 for 𝑡 > 𝑇,

where

𝜂 = min {𝜇ℎ + 𝑏𝛽ℎ𝜀 + 𝑏𝜎𝜃𝛽ℎ𝜀, 𝜇ℎ + 𝑏𝛽𝑣𝜀 + 𝜎𝑏𝛽ℎ𝜀} . (62)
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Then along each solution (𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝐼𝑣(𝑡)) such that
(𝑆ℎ(0), 𝐼ℎ(0), 𝐼𝑣(0)) ∈ Γ for 𝑡 > 𝑇, give the following:

1

𝑡
∫

𝑡

0

𝜇 (𝐵) 𝑑𝑠 ≤
1

𝑡
∫

𝑇

0

𝜇 (𝐵) 𝑑𝑠 +
1

𝑡
ln

𝐼ℎ (𝑡)

𝐼𝑣 (𝑡)
− 𝜂

𝑡 − 𝑇

𝑡
, (63)

which implies that 𝑞
2
≤ −𝜂/2 < 0.This proves that the unique

infective equilibrium 𝐸
∗

mass is globally asymptotically stable
whenever it exists.

This completes the proof.

Remark 12. The epidemiological implication of Theorem 11
is that malaria would persist in the population if 𝑅mass > 1.
Theorem 11 is illustrated numerically by simulating themodel
(25), for the case 𝑅mass > 1 using various initial conditions.
The convergence of the solutions to 𝐸

∗

mass for the case𝑅mass >
1, is depicted in Figure 6.

4. Conclusions

This paper presents a deterministic model for the trans-
mission dynamics of malaria with partial immunity to
reinfection. The basic reproduction number of the model is
obtained. The proposed model with standard incidence rate,
undergoes the phenomenon of backward bifurcation, where
the stable disease-free equilibrium coexists with one or more
stable endemic equilibrium as the basic reproduction number
(ℜ0) is less than unity. In comparison with the corresponding
results of the model with mass action incidence, we can
conclude that this phenomenon arises due to the use of stan-
dard incidence rate. This study suggests that in some regions
where malaria is inducing the varying total populations, it is
difficult to control malaria due to the occurrence of backward
bifurcation phenomenon. If we ignore the disease-induced
rate, and consider an asymptotical constant host population,
the standard incidence model results in a model with mass
action incidence. In this case, the dynamics of the model
are relatively simple. That is, the global dynamics of malaria
disease with reinfection is completely determined by the
associated reproduction number ℜmass. If ℜmass < 1, the
disease-free equilibrium is globally asymptotically stable, so
the disease always dies out. If ℜmass > 1, the disease-free
equilibriumbecomes unstablewhile the endemic equilibrium
emerges as the unique positive equilibrium and it is globally
asymptotically stable in the interior of the feasible region, and
once the disease appears, it eventually persists at the unique
endemic equilibrium level.Therefore, we have shown that the
backward bifurcation property can be removed by replacing
the standard incidence function in the model with a mass
action incidence.The numerical simulations suggest also that
the region of backward bifurcation increases with increasing
rate of partial protection (𝜎) of recovered individuals. The
region of backward bifurcation for the model increases with
decreasing average life span of mosquitoes.
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