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A deterministic model with variable human population for the transmission dynamics of malaria disease, which allows transmission
by the recovered humans, is first developed and rigorously analyzed. The model reveals the presence of the phenomenon of backward
bifurcation, where a stable disease-free equilibrium coexists with one or more stable endemic equilibria when the associated
reproduction number is less than unity. This phenomenon may arise due to the reinfection of host individuals who recovered
from the disease. The model in an asymptotical constant population is also investigated. This results in a model with mass action
incidence. A complete global analysis of the model with mass action incidence is given, which reveals that the global dynamics of
malaria disease with reinfection is completely determined by the associated reproduction number. Moreover, it is shown that the
phenomenon of backward bifurcation can be removed by replacing the standard incidence function with a mass action incidence.
Graphical representations are provided to study the effect of reinfection rate and to qualitatively support the analytical results on

the transmission dynamics of malaria.

1. Introduction

Malaria is a mosquito-borne disease caused by a parasite.
It is endemic and widespread in tropical and subtropical
regions, including much of sub-Saharan Africa, Asia, and
the Americas. Malaria is still a public health problem today.
Every year, there are more than 225 million cases of malaria,
killing around 781,000 people according to the World Health
Organizations 2010 World Malaria Report [1].

In humans, malaria is caused due to infection by one of
four Plasmodium species [2, 3]. Transmission from mosquito
to human occurs during a bite by an infectious mosquito.
A mosquito becomes infected when it takes a blood meal
from an infected human. Once ingested, the parasite game-
tocytes taken up in the blood will further differentiate into

gametes and then fuse in the mosquitos gut. Gametocytes
are responsible for transmission of the parasite from humans
by mosquitoes bite. Fertilization of the parasite occurs in the
mosquito gut, and after a short period of replication and
development, the cycle of transmission may begin anew.
One of the most complex features of the epidemiology
of malaria is the dynamic interaction between infection
and immunity. A better understanding of this interaction
is important for evaluating the impact of malaria control
activities. An important phenomenon is noticed that the
changes with age reflect the slow acquisition of an immunity
that reduces illness but does not completely block infection
[4,5]. In endemic areas, children younger than five years have
repeated and often serious attacks of malaria. The survivors



develop and maintain partial immunity that reduces the
severity of the disease but does not prevent subsequent
infections. Thus, in these areas older children and adults
often have become asymptomatic carriers of infection [6]. In
areas of low malaria transmission, immunity develops slowly
and may take years or decades and probably never results
in sterile immunity [7]. Therefore, humans are susceptible
to reinfections. Incomplete immunity to malaria complicates
disease control strategies [8, 9] as the partially immune
individuals suffer only mild infections, and might not seek
medical attention but continue to transmit the parasite in the
community.

The enormous public health burden inflicted by malaria
disease necessitates the use of mathematical modeling and
analysis to gain insights into its transmission dynamics,
and to determine effective control strategies. The earliest
malaria transmission models can be traced to the model
formulated by Ross in 1911 [9]. He used a mathematical model
and showed that bringing a mosquito population below a
certain threshold was sufficient to eliminate malaria. This
threshold naturally depended on biological factors such as
the biting rate and vectorial capacity. To estimate infection
and recovery rates, MacDonald extended the Ross model
in 1957 [9]. Macdonald’s model shows that reducing the
number of mosquitoes is an inefficient control strategy.
Moreover, this would have little effect on the epidemiology
of malaria in areas of intense transmission. Since then,
the emergence and reemergence of malaria diseases have
promoted many author’s interest in mathematical modeling
to describe and to predict the transmission dynamics of
malaria in the literature (see, e.g., [10-16] and the references
therein). In paper [12], Dietz et al. applied the Garki model
to show that the duration of acquired immunity in humans
in malaria depends on repeated exposure. In paper [13],
Niger and Gumel constructed a mathematical model that
includes multiple infected and recovered classes, to assess the
role of the partial immunity on the transmission dynamics
of malaria in a human population. Their results reveals
the presence of the phenomenon of backward bifurcation
in the standard incidence model with the disease-induced
death in the human population. Recently, a transmission
model of human malaria in a partially immune population
is formulated in Wan and Cui’s paper [14]. They established
the basic reproduction number and explicit subthreshold
conditions for the model, and showed that if the disease
induced death rate is large enough, the model undergoes a
backward bifurcation. Li [15] formulated a malaria transmis-
sion model with partial immunity in humans and showed that
the established model having the same reproductive number
but different numbers of progression stages can exhibit
different transient dynamics. Thus, the above mentioned
models always let the recovered individuals return into the
susceptible class to explore the transmission dynamics of
diseases. But this only takes states of complete immunity
and full susceptibility in consideration. In addition, various
vector-borne disease model concerning malaria transmission
have been established and discussed [17-20]. For example,
in paper [17], Yang et al have investigated global stability of
an epidemic model for vector-borne disease, however, they
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assumed that the immunity of the recovered population have
never lose.

Motivated by the recent work of [13, 15], in this paper,
we shall continue to construct a malaria transmission model
with partial immunity to reinfection in the recovered human
population. Our purpose is to explore the transmission
dynamics of the malaria and to assess the role of partial
immunity to reinfection on the transmission dynamics of
malaria in a human population.

The organization of this paper is as follows: in the next
section, the standard incidence malaria model, which incor-
porates the partial immunity to reinfection, is formulated.
The existence and stability of the equilibria, and the phenom-
ena of the backward bifurcation are, respectively, explored in
Sections 2.2 and 2.3. Graphical representations are provided
to study the effect of reinfection rate in Section 2.4. In
Section 3, the associated mass action incidence model is
formulated, and mathematical results such as existence and
local stability of equilibria are provided in Section 3.2. Our
main theorems for the global stability of equilibria for the
mass action model and the proofs are given in Section 3.3.
The paper ends with a conclusion in Section 4.

2. Model Formulation

We formulate a model for the spread of malaria in the
human and mosquito population, with the total population
size at time ¢ given by ﬁh(t) and Nv(t), respectively. The
total human population is divided into three epidemiological
classes: §h(t), Th(t), and ﬁh(t), which denote, respectively, the
number of the susceptible, infective, and immune class at
time t. Thus, Nh(t) = Eh(t) + Th(t) + Eh(t). The susceptible
human population is generated by the recruitment of humans
(assumed susceptible) into the community at a rate Ay, p,,
and y, are, respectively, the natural death rate and recovery
rate in human hosts population. Also, some disease-induced
death in human population contributes to an additional
population decrease at the constant rate Jj,.

Due to its short life, a mosquito never recovers from the
infection, and we may not consider the recovered class in this
population. Thus, the total vector population N (t) is divided
into the susceptible class, S, (¢), and infective class, I,(t), so
that Nv(t) = gu(t) + fv(t). Susceptible mosquitoes vectors are
generated at a rate A, by birth, y, is the per capita mortality
rate of mosquitoes. Let 3, be the transmission probability
from vector to human, and f3, be the transmission probability
from human to vector. The parameter b is the average number
of bites per mosquito per day. This rate depends on a number
of factors, in particular, climatic ones, but for simplicity in
this paper we assume b to be a constant. The parameter
0(0 € 0 < 1) determines the degree of partial protection
for the recovered individuals given by a primary infection:
o = 0 implies complete protection, and 0 = 1 implies no
protection. Taking into account the assumptions made above,
the interaction between human hosts and the mosquito
vector population with partial immunity to reinfection in
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host population is described by the following system of
equations:

d_gh Ah _ bﬁhghjv <

= —_ S 5
dt N, Unon
djl’l bﬂhghj abﬁhﬁhj -
— =+ ——— = (Y + O+ ) Ins
dt N, N, (Vh h Mh) h
dr - obp R TU —
d_th = Yl - — — Ry,

B, ST
dt

Nh - l’lvsv’

Al bRSI, -

d_ = —— - vIv'
t Nh

1

The total humans host and mosquitoes vector populations
N, =8,+1,+R,and N, = S, +1, are governed, respectively,
by

dN _ _
d_th = Ay — Ny = 8,1,
(2)

%

dN, —
=A, - pu,N,.
dt v [’lv v

It is easily seen that for the mosquitoes vector population
the corresponding total population size is asymptotically
constant: lim¢, , N, (t) = A,/p,. This implies that in our

model we assume without loss of generality that N, (t) =
A,/u,, for all t > 0, provided that S,(0) + 1,(0) = A,/u,.
Let

S, I Ry
h = h= > h=
Ayl Al Ayl 3)
_ gv _ Tv _ Nh
’ Av/[’lv, ! Av//’lv Ah/.uh'

Since Nh = Sh+1h +Rh and SU+IU =1. USinth = Nh_Sh_Ih
and S, = 1 - I, system (1) is reduced to the following four-
dimensional nonlinear system of ODEs:

dsy _ bmByS, I,

= —_ S 5
dr HUn N, Unon

dly _ bmpyS,L,  obmp, (N =Sy = 1) I,

I >
dt N, N, %15
dIv bﬁu (1 - Iv) Ih
7w MUIU’
dt N,

dN,
— =, — N, — 8,1,
dr Un — UniNp = Oply

(4)
where m = (A, /u,)/ (A /) and o =y, + py, + 65,

2.1. Basic Properties of the Model. Since the model (4) mon-
itors humans host and mosquitoes vector populations, it is
plausible to assume that all its state variables and parameters
are nonnegative for all £ > 0. Further, it can be shown that the

region € given by
Q= {(Sy 1Ny, 1) € R} :
(5)

0<S,+I,<N,<1,0<I, <1}

is positively invariant with respect to system (4). Thus, every
solution of the model (4), with initial conditions in {) remains
there for t > 0. Therefore, it is sufficient to consider the
dynamics of the flow generated by (4) in Q. In this region,
the model can be considered as been epidemiologically and
mathematically well posed.

2.2. Stability of Disease-Free Equilibria. The stability of the
disease-free equilibrium state can be obtained from studying
the eigenvalues of the Jacobian matrix evaluated at the
equilibrium point. If all the eigenvalues have negative real
parts, then the equilibrium point is stable. The disease-free
equilibrium for the system (4) is E,(1,0,1,0). The Jacobian
matrix at the disease-free equilibrium E,, is

—Uy 0 0 —bmﬁh
| 0 -a 0 bmp,

0 bﬁv 0 )

The characteristic equation of the above matrix is

(A=) A=) (A + (g + ) A+ oy, (1= Ry)) =0,
(7)

where R, = b*mp,p,/u,a,. There are four eigenvalues
corresponding to (7). Two of the eigenvalues 1;, A, = -,
have negative real parts. The other two eigenvalues can be
obtained from the equation

A+ (o + ) A+ o, (1 - Ry) = 0. (8)

Applying the Routh-Hurwitz criteria for a quadratic poly-
nomial. It is easy to see that both the coefficients of (8) are
positive if an only if R, < 1. Thus, all roots of (8) are
with negative real parts if R, < 1, and one of its roots is
with positive real part if R, > 1. Therefore, the disease-free
equilibrium (DFE) E, is locally asymptotically stable if R, < 1
and unstable if R, > 1. Thus, we have the following result.

Theorem 1. The uninfected equilibrium E is locally asymptot-
ically stable if Ry < 1 and unstable if R, > 1 in Q.

From Theorem 1, the threshold quantity R, is called the
basic reproduction number of system (4). The basic repro-
duction number, R, measures the average number of new
malaria infections generated by a single infected individual
in a completely susceptible population [21]. Theorem 1 also
implies that malaria can be eliminated from the community
(when R, < 1) if the initial sizes of the subpopulations of



the model are in the basin of attraction of the disease-free
equilibrium (DFE) (E,). To ensure that disease elimination
is independent of the initial sizes of the subpopulations, it
is necessary to show that the DFE is globally asymptotically
stable (GAS) if R, < 1. This is explored for a special case in
Section 3.2.

2.3. The Existence of Endemic Equilibria and Backward
Bifurcation. In this section, conditions for the existence of
endemic equilibria and phenomenon of backward bifurcation
in system (4) will be determined. In order to do this, we let

E"=(S;,I;,N;, L)) )

represent an arbitrary endemic equilibrium of the model (4).
Setting the right-hand sides of the equations in (4) to zero and
solving them in terms of I} gives the following expressions for
the state variables of the model

g (e = O1;) (o Ty + pipits) (10)
v mp,BuBuL; + (= OI;) (e Ly + )
-6,1; bB,I;
NZ:Mh hh I = ("Zﬁuh i (1)
My oI, + iy
where o, = w,bpB, — 8,4,, and I, is determined from the

following equation:
KL+ KL + K L? + K+ K =0, (12)
where
K, = 8flocloc§,
K; =ay (—25h“z (0, = Sppant,) = 5h“z#hbzmﬁh/5u>
— UnOn 006" mp, B,
2
K =0ty ((pncts = Supntt,)” = 204,4,000,
+#hb2mﬁhﬁu (o, = 5;1!411!41;))
+ S0 mB B, + pyos0b’mpy B, (13)
x ((.”h“z = Oppipthy) + Mhbzmﬁhﬁv) )
2 312
Ky =y (2t (pncts = Snptnthy) + b mpy B, )
- I’libzmﬁhﬂv (102 = Sy,
- ayhb m/jhﬁv (b mﬂhﬁv 0‘3/41))
Ky = oy (1= Ry),
and a5 = py, + Oj,-
It follows from (13) that K; > 0. Further, K5 > 0 whenever
R, < 1. Thus, the number of possible positive real roots
for (12) depends on the signs of K,, K; and K. This can be

analyzed using the Descartes Rule of Signs on the quartic
fI) = KL* + K17 + KL + KL + K. The various
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possibilities for the roots of f(I};) are tabulated in Table 1.
We have the following result from the various possibilities
enumerated in Table 1.

Theorem 2. The system (4) has a unique endemic equilibrium
E* if Ry > 1 and Cases 1-3 and 6 are satisfied; it could have
more than one endemic equilibrium if R, > 1 and Cases 4, 5, 7,
and 8 are satisfied; it could have 2 or more endemic equilibria
if Ry < 1 and Cases 2-8 are satisfied.

The existence of multiple endemic equilibria when R, <
1 (is shown in Table 1). Table 1 suggests the possibility
of backward bifurcation (see [22-24]), where the stable
DFE coexists with a stable endemic equilibrium, when the
reproduction number is less than unity. Thus, the occurrence
of a backward bifurcation has an important implications for
epidemiological control measures, since an epidemic may
persist at steady state even if R < 1. This is explored below
by using Centre Manifold Theory (see, e.g., [25] and the
references therein).

Now, we shall establish the conditions on parameter
values that cause a backward bifurcation to occur in system
(4), based on the use of Center Manifold theory, of the paper
in Castillo-Chavez and Song [25].

Theorem 3. Let one consider the following general system of
ordinary differential equations with a parameter ¢:

f:R"XR —R", feC(RxR).

(14)

dx
I = f(x¢),

Without loss of generality, it is assumed that x = 0 is an
equilibrium for system (14) for all values of the parameter ¢.
Assume that

(A1) A = D,_f(0,0) is the linearized matrix of system
(14) around the equilibrium x = 0 with ¢ evaluated
at 0. Zero is a simple eigenvalues of A and all other
eigenvalue of A have negative real parts;

(A2) Matrix A has a nonnegative right eigenvector w and a
left eigenvector v corresponding to the zero eigenvalue.

Let f; be the kth component of f and

Zv £ (0,0)
kWil 0x;0x;

i,j,k=1 ,
(15)
- 2 £.(0,0)
b= ) yw———.
' i)kzzzl , axiaﬁh

The local dynamics of system (14) around 0 are totally deter-
mined by a, and b,.

(i) In the case where a; > 0, b, > 0, one has that when
¢ < 0 with |¢| close to zero, x = 0 is unstable; when
0 < ¢ < 1, x = 0is unstable and there exists a negative
and locally asymptotically stable equilibrium;

(ii) In the case where a, < 0, b, < 0, one has that when ¢ <
0 with |¢| close to zero, x = 0 is locally asymptotically
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TaBLE 1: Number of possible positive real roots of f(I,) for R, > 1and R, < 1.

Cases K, K, K, K, K R, Number of sign change Number of positive real roots

1 + + + + + R, <1 0 0
+ + + - R, >1 1 1

) + - - - + R, <1 2 0,2
+ - - - - Ry >1 1 1

3 + + - - + Ry<1 2 0,2
+ + - - Ry>1 1 1

4 + - + - + Ry<1 4 0,2,4
+ - + - - Ry>1 3 1,3

5 + - - + + R, <1 2 0,2
+ - - + - R, >1 3 1,3

6 + + + - + R, <1 2 0,2
+ + + - - R, >1 1 1

7 + + - + + Ry <1 2 0,2
+ + - + - Ry>1 3 1,3

8 + - + + + Ry <1 2 0,2
+ - + + - R, >1 3 1,3

stable and there exists a positive unstable equilibrium;
when 0 < ¢ < 1, x = 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium;

(iii) In the case where a; > 0, by < 0, one has that
when ¢ < 0 with |¢| close to zero, x = 0 is unstable
and there exists a locally asymptotically stable negative
equilibrium; when 0 < ¢ < 1, x = 0 is stable and a
positive unstable equilibrium appears;

(iv) In the case where a; < 0, b, > 0, one has that when
¢ < 0 changes from negative to positive, x = 0 changes
its stability from stable to unstable. Correspondingly
a, negative unstable equilibrium becomes positive and
locally asymptotically stable. Particularly, if a, > 0 and
b, > 0, then a backward bifurcation occurs at ¢ = 0.

To apply the center manifold method, the following
simplification and change of variables are made on the model
(4). First of all, let x; = S;,, x, = I}, x; = R, x, = S, and
x5 = I, sothat N, = x, +x,+x; and N, = x,+x;. Further, by
using the vector notation X = (x,, x,, X3, X, X5) ", the system
(4) can be written in the form (dX/dt) = (fl,fz,f3,f4,f5)T
as follows:

dx, bmp,x; x5
——=h=m-—————— — X
dt X+ X, + X5
dx bmp,x,x obmfB,x;x
2 _ ¢ _ ﬁh15+ ,Bhss_“lxz)
dt X +X, Xy X+ X, + Xy
dx;, obmpx;x5
—— = =N, - ————— — U X3, 16
dt J3 =%, X1+ %, + X5 HpXs3 (16)
dx, f bp,x,x,
—_— = = -_ — X N
dt 4= H X, + X, + X5 ot
dxs f b, x,x,
— = fy = ————— — U, Xs.
dt P X Xy + X b

Choose f3, as a bifurcation parameter and solving R, = 1
gives

‘MUOCI
v*mp,’

Bn =By = (17)

The Jacobian matrix evaluated at disease-free equilibrium
(1,0,0,1,0) with 8, = B is

—Uy 0 0 0 —bmﬂh
0 -ap 0 0 bmp,
J=1 0 v - O 0 (18)
0 _bﬁv 0 ) 0
0 bﬂu 0 0 )

It can be easily seen that the Jacobian J of the linearized
system has a simple zero eigenvalue and all other eigenvalues
have negative real parts. Hence, the center manifold theory
can be used to analyze the dynamics of the system (16). For the
case when R, = 1, it can be shown that the Jacobian matrix ]
has a right eigenvector (corresponding to the zero eigenvalue)

. T
givenbyw = [w, w, w; w, ws] , where

_ —bmp, _ bmp, _ Yubmp,
W, = —— Ws h = T Ws 3= W
HUn * Hn%y
—b*m
w, = Mws, ws = ws > 0.

Uy
(19)

Similarly, the components of the left eigenvector of J (corre-
sponding to the zero eigenvalue), denoted by v = [v; v,
vy U, Us), are given by

bB,

v, = —0s,
291

U, =0, =0, =0, vs =05 > 0. (20)



Computation of a,: for the transformed system (16), the
associated non-zero partial derivatives of f (evaluated at the
DFE) which we need in the computation of a, are given by

’f _ Of
0x,0x5  0x50x,

’f _ 9f

0x;,0x5  0x50x3

Ofs _ Ofs

0x,0x, 0x,0x,

Ifs _ 0fs

0x,0x;  0x30x,

= —bmpy,

= -bmp, + obmp,,
Tfs
ox3

Ofs _ 0fs

0x,0x, 0x,0x,

= _bﬁu’ = —21?/30,

= -bp,, = bB,.

(21)
Direct calculations shows that
a; =2b (—mﬁhvzw2w5 = mPv,wsws + ompPyv,wsws
2
- Byusww, — Busw, (22)

—Buvswyws + ﬂUU5w2w4) .

Computation of b;: Substituting the vectors v and w and
the respective partial derivatives (evaluated at the DFE ) into
the expression

5 2
bl = Z vkwi—a fk (0, 0)

2x,2, )

i,k=1

gives by = bmu,ws > 0. Since the coeflicient b, is
automatically positive, it follows that the sign of the coeffi-
cient a; decides the local dynamics around the disease-free
equilibrium for 8, = f;,. Based on Theorem 3, system (4) will
undergo backward bifurcation if the coefficient g, is positive.
The coefficient g, is positive if and only if

1
Yty

g >

(#4y (v + ) + by By — 1,5 - (24)

Thus, we have the following result.

Theorem 4. The system (4) exhibits backward bifurcation
whenever the condition (24) holds.

The backward bifurcation phenomenon is illustrated by
simulating the system (4) with the following set of parameter
values p;, = 0.00004, g, = 0.015, A, =4, A, = 3,5, =02,
b =04,6, =0.0011, y, = 0.0005 (so that,a, > 0 and R < 1).
Figure 1 depicts the associated backward bifurcation diagram.

2.4. The Effect of the Reinfection. We further investigate the
effect of the reinfection parameter ¢ and the transmission
probability from an infectious human to a susceptible vector
B, on the associated backward bifurcation region, as a
function of the average life span of mosquitoes (1/4,). The
backward bifurcation region is illustrated (Figures 2-4) by
simulating the model (4) with the following set of parameter
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v.us> T T T T T T
0.025 |
Stable endemic
0.02 1 equilibrium i
I 0015} -
\
001} '\ Unstable endemic .
N equilibrium
Stgble RS d Unstable disease
0.005 |-disease "~ - i
free "~ free equilibrium
equilibrium "~
0 1 SN 1 L 1 1
0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
R,

FIGURE 1: Simulations of the model (4) illustrating the phenomenon
of backward bifurcation.

values (note that the parameters are chosen in order to
illustrate the backward bifurcation region, and may not all
be realistic epidemiologically), A, = 30, A, = 24, B, =
0.09, 8, = 0.2, y, = 0.0005, &, = 0.00004, b = 0.4, p, =
0.2. Also to be noted is, the parameter values are chosen such
thata, > 0, b, > 0 and R, < 1 (so that backward bifurcation
occurs).

Solving for a; > Ointerms of 0 < 0 < land 3, > 0
(i.e., fixing all parameters in the expression for a, except
B, and o) we obtained the backward bifurcation region for
B,- Figure 2 depicted the results obtained for 0 = 0.5, it
shows that the region for backward bifurcation (for f3, )
increases as the average life span of vectors (1/p,) decreases.
For instance, when the average life span of vectors is 20
days (4, = 0.05), the backward bifurcation region for f3,
is B, € [0.10381,0.35556], as shown in Figure 2(a). When
the average life span of vectors is decreased to 10 days (y, =
0.1), the backward bifurcation region for f3, increases to
By, € [0.2077,0.71083] (Figure 2(b)). Furthermore, when the
average life span of vectors is decreased to 5 days (y, = 0.2),
the backward bifurcation region for f3, increases to 3, €
[0.4153,1.4217] (Figure 2(c)). Similar results are obtained for
the cases 0 = 0.6 (Figures 3(a), 3(b), and 3(c)) and ¢ = 1
(Figures 4(a), 4(b), and 4(c)), from which it is evident that the
backward bifurcation regions for f3, increase with increasing
values of the reinfection rate 0. These results are tabulated in
Table 2 (1/p, represents average life span of vectors.)

3. The Mass Action Model

In this section, we shall investigate the dynamics of system
(1) if mass action incidence is used instead of the standard
incidence function. Thus the resulting (mass action) model is

S, (£) = Ay, = bB,S, () I, () — 1Sy, (1),
I, (t) = bB,S,, (t) 1, (1) + obB,R,, (1) I, (t)

= (t + v +0,) I, (1),



Abstract and Applied Analysis

0.107

0-1065 a; > 0, backward bifurcation region

0.106 for B, € [0.1038, 0.33556]

0.212

a; > 0, backward bifurcation region

0.211 for 3, € [0.2077,0.71038]

021 |
0.1055
B 0.105 B, 0209
0.1045 |- 0.208 |
0.104
0.207 | By = 0.2077
0.1035 | _
a, <0, no backward P = 01038 a, < 0, no backward
0.103 - : 0.206 1 e )
: r bifurcation bifurcation
0.1025 . . 0.205 . \
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
o o
(a) (b)
0.424
a, > 0, backward bifurcation region
0.422 for f3;, € [0.4153,1.4217]
0.42 +
B 0.418
0.416 |
0.414 | By = 0.4153
0412 | a; < O,' no ba'ckward
bifurcation
0.41 L L L L
0 0.2 0.4 0.6 0.8 1
o
(0

FIGURE 2: Backward bifurcation regions for the model (4) in the o-f;, parameter space corresponding to o = 0.5 and various ranges of f3,,.
Parameter values used are: A, = 30,A, = 24,8, = 0.2,y, = 0.0005, i, = 0.00004, b = 0.4, y, = 0.0.015, 3, = 0.09. In (a) y, = 0.05, R, =
0.0014046 (backward bifurcation region for 3, is 3, € [0.1038,0.35556]), (b) 4, = 0.1, R, = 0.00035113 (backward bifurcation region for f3,
is 3, € [0.2077,0.71083]), and (c) 4, = 0.2, R, = 0.0000087788 (backward bifurcation region for 3, is 3, € [0.4153, 1.9468]). With the above

set of parameter values, g, > 0, b, > 0,and R, < 1.

R, (t) = y,l,, (t) = bR, () I, (t) — R, (),
S, () = Ay —bB,L, (1)S, (1) — 1,8, (t),

1L (t) = bB,L, (1) S, (t) — I, (£)
(25)

where the prime (/) stands for the derivative with respect to
time ¢ and initial conditions S;,(0) > 0, I,,(0) >0, R,(0) >0,
and S,(0) > 0, 1,(0) > 0.

3.1. Basic Properties: Positivity and Invariant Regions. The
dynamics of the total human population, obtained by adding
first three equations in the model (25), is given by

Ny, () = Ay, — Ny, (£) = 8, (8) . (26)

Thus, we have
Ay
p + O,

Ay

t + Oy,

+ <Nh 0) - >e_(”h+6*‘)t

(27)
<N, () < Ay, (Nh (0) — ﬂ) el
HUn Un

Thus, for a low level of disease induced death rate (8, =~ 0)
total human population could eventually assume a steady-
state value. Motivated by this, we consider a human popu-
lation which assumes a steady-state value A} /y, stationary.
Similarly, the dynamics of the total mosquito population,
obtained by adding last two equations in the model (25), is
given by, N/ (t) = A, — p,N,(t), so that, N,(t) = A/, as
t — oo.
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FIGURE 3: Backward bifurcation regions for the model (4) in the o-f,

parameter space corresponding to o = 0.6 and various ranges of f3,,.

Parameter values used are: A, = 30,A, = 24,6, = 0.2,y, = 0.0005, 44, = 0.00004,b = 0.4, 4, = 0.0.015, 8, = 0.09. In (a) y, = 0.05, R, =
0.0014046 (backward bifurcation region for 3, is 3, € [0.1036,0.35556]), (b) 4, = 0.1, R, = 0.00035113 (backward bifurcation region for f3,
is 3, € [0.2071,0.71083]), and (c) y, = 0.2, R, = 0.0000087788 (backward bifurcation region for 8, is 3, € [0.4142,1.4217]). With the above

set of parameter values, a, > 0, b, > 0, and R, < 1.

Let H(t) = (S0, (D), R,(8) and V(©) = (S,(0), I, (1)),
Based on the above discussion, we define a region

T={(H(®),V(®)eR, xR, |0<H(b)

<~ OsV(t)s—“}.
Ui Hy

It is easy to verify that I' is positively invariant with respect

to the system (25). In this part, it is sufficient to consider the

dynamics of the flow generated by (25) in T.

3.2. Equilibrium and Local Stability. In this section, we
investigate the existence and local stability of equilibria
of system (25). Obviously, the system (25) always has

a disease-free equilibrium E2__ (A}, /m 0,0,A,/u,,0). Let

E; .(Sn 1, R, S, 1)) represents any arbitrary endemic
equilibrium of the model (25). Solving the equations in (25)
at steady state gives

S* _ Ahn"lv (b/gvllj + ‘uU)

" A BB + bty (0BT} + )
_ Yulty (bﬁull’: + n"tv) I;;
" A OBBI; + ity (BB} + 1)
* bAvﬁvIFT
U (BT + )’

*

, (29)

AU

b I + 1,

*_

v
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FIGURE 4: Backward bifurcation regions for the model (4) in the o-f, parameter space corresponding to ¢ = 1 and various ranges of f3,,.
Parameter values used are: A, = 30,A, = 24,8, = 0.2,y, = 0.0005, i, = 0.00004,b = 0.4, 4, = 0.0.015, B, = 0.09.In (a) y, = 0.05, R, =
0.0014046 (backward bifurcation region for 3, is f8;, € [0.1025,0.35556]), (b) y, = 0.1, R, = 0.00035113 (backward bifurcation region for f3,
is 3, € [0.2051,0.71083]), and (c) p, = 0.2, R, = 0.0000087788 (backward bifurcation region for 3, is 3, € [0.4101, 1.4217]). With the above

set of parameter values, a, > 0, b, > 0,and R, < 1.

where I} is the positive root of the following quadratic
equation,

A\’ +dyI +d; =0, (30)

with

d, = bzlgi (ty + 8y,) (A, By, + ppt,) (DA LBy, + i)
+ Vb’ Bopintty (bA By, + pinthy,) > 0,
d, = bﬁuﬂwﬁ (4 + i+ 0) (DA By, + iy,

+ bﬁu#h#f (4, + 61,) (GOA By, + ) + yhbﬁmﬁﬂi

— b’ A AL BLB (bOA By + tytty)

bzAhAvﬁhﬁv )
iy + Vi + Op) iyt ‘

d; = (#h+}’h+5h)!4;21ﬂ3<1_(

(31)
The dynamics of the model (25) are analyzed by R, given
by
VA LA
'Rmass — h vﬁhﬁv - (32)
(b + Vi + 81) it
The threshold quantity R, is the basic reproduction num-

ber of the system (25). It can be derived from the Jacobian

matrix of the system (25) at the disease-free equilibrium EC,__

together with the assumption of local asymptotical stability



10

Abstract and Applied Analysis

TABLE 2: Backward Bifurcation Ranges for f3;, for Various Values of 1/u, and o.

Average life span of vectors

=05 0=0.6 o=1
(1/p)
20 days By, € [0.1038, 0.35556] By, € [0.1036, 0.35556] B, € [0.1025, 0.35556]
10 days By, € [0.2077, 0.71083] By, € [0.2071, 0.71083] B, € [0.2051, 0.71083]
5 days B, € [0.4153, 1.4217] B, € [0.4142, 1.4217] B, € [0.4101, 1.4217]
of EX . [21]. From (31), we see that R, > 1 if and only x I, (£) = (py, + v + 6,) I, (1),

if, d; < 0. Since d; > 0, (30) has a unique positive root
in feasible region Q. If R, < 1, then dy > 0. Also
b*A A BBy < (g, +yn + O3, iy, is equivalent to R . < 1.
Hence, d, > 0. Thus, by considering the shape of the graph
f,) = d,I; +d, I, +d; (and noting that d; > 0), we have that
there will be zero endemic equilibria in this case. Therefore,
we can conclude thatif R .. < 1, (30) has no positive root in
the feasible region I'. If, R , ., = 1, (30) has a unique positive
root in the feasible region I'. This result is summarized below.

Theorem 5. System (25) always has the infection-free equi-
librium E° . = ((Ay/w,),0,0,(A/u,),0). If Rpgss >

1, system (25) has a unique endemic equilibrium E, =
(S, 1, R}, S, 1) defined by (29) and (30).

Linearizing the system (25) around the disease-free equi-
librium E?__ yields the following characteristic equation:

(/\Jﬁ“h)z /\sz(P‘hJr)’wL‘SthMu))L

ALA,
+ (b, + Vi + Op) phy — bzﬁhﬁu ‘uhﬂ

ht*v

=0.

(33)

Two of the roots of the characteristic equation (33) A, , = —,
have negative real parts. The other two roots can be determine
from the quadratic term in (33) and have negative real parts if
andonlyif R . < 1. Therefore, the disease-free equilibrium
Efnass is locally asymptotically stable for R, < 1. When
Rppass > L, EY . becomes an unstable equilibrium point, and
the endemic equilibrium E = emerges in I. This result is
summarized below.

Theorem 6. The disease-free equilibrium E°, __ of system (25)
is locally asymptotically stable if R, ... < 1 and unstable if
R > 1.

mass

In order to discuss the stability of the endemic equilib-
rium E; - and to simplify our calculations, we assume both
humans and mosquitoes populations are at steady state. Thus,
using N, =S, + I, + R, = A, /uy,and N, = S, + I, = A,/ y,»
system (25) in the invariant space I' can be written as the
following equivalent three dimensional nonlinear system of

ODEs:
Sy (t) = Ay —bB,S, (O L, (1) — S, (1),

I (t) = bB,S, (1) I, (t) + abB, (N}, = S, (t) — I, (1))

I, (t) = bR, (1) (N, = I, (1)) — p, I, (t) -
(34)

Now, linearization of system (34) about an endemic equilib-
rium E_  gives the following characteristic equation:

A, + [/lh + bﬁhlj 0 bﬁhS;
I*
bB,(c-1I A+a;+bof,Il —(X}*h o
I*
0 _‘uv*v A+ bﬁullj +
I,
(35)
where, «; =, +y;, + 0. Expanding (35) gives
P +QA +QA+Q; =0, (36)
where
L =t + ORI + oy + oI + p, + BRI, >0,
Q, = (py +bBylLy) () +bofLI; + p, +bB,I;)
+ bﬁvll/t (“1 + boﬁhI:) + A"ivboﬁhl: > 0’ (37)
Qs = (py +bPuLy) [bBLI, () +boBLI,) + b1 ]
I*
R Y A=}

h

From the second equation of system (34) at steady state E*,
we have

o = -
Ih

—bopyI,. (38)
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Using (37), direct calculations show that
QQ - Qs
= (s +BBALL +ar, + boB, I +pt, + BT, )
x [ BB, (e, + bop,Iy) + bl

+ (Mh + bﬁhI:) (“1 +boPyIy +p, + bﬁvl;)]

. [ (i + bBI2) (BRI (0 + BB, L) + bl

I*
+b2ﬁ;(1—a)1:s*"’“—“].

h e
I,
(39)

Obviously, the term (y;, + b, 1) in first bracket times the
term (b, I, (o, +baB, I ) +u,bof, 1)) in the second bracket is
(U +bB, 1) [bB, I, (o +bofy 1)) +p,bof, I, ]. Multiplying the
terms under straight line and using (30), we have p, b, I («; +
boB,L}) > b*Br(1 - 0)L:S;:(u, I /1;). Hence, QQ, - Q; >
0. Thus, by Routh Hurwitz criteria, the following result is
established.

Theorem 7. The endemic equilibrium E, . of the reduced

model (34) is locally asymptotically stable if R .. > 1.

3.3. Global Stability of the Equilibria. In this section, the
global stability of the equilibria of system (34) will be
explored. First, we claim the following theorem.

Theorem 8. If R, ... < 1, then the infection-free-equilibrium
E} .. of system (34) is globally asymptotically stable in T.

Proof. To establish the global stability of the disease-free
equilibrium E° ., we construct the following Lyapunov
function

L(t)=bB,I, (1) + (up+y,+6,) 1, (1). (40)

Calculating the derivative of L (where a dot represents
differentiation with respect to ) along the solutions of (34)
we obtain

L' (1) = bB, L, () + (uy + v + ) I, (1),
=bp, [bBS, (1) 1, () +bapy, (N, =S, (1)=1, () I, (¢)
= (#t + yn + 0) I ()]
+ (p + v+ 8) [0B, (N, = L, 1)) I () = p, I, (D],
= UByfBy (Su (1) + 0 (N, = 8, (1) = 1, (1))
X I, (6) = (gt + Y + O) 1, (8)
= b (b + Y+ 84) Bl O I, ()

11
= (b + Vi + On) thy
v BBy
(t + ¥+ 0)
X (S (1) + 0 (N =S, (1) = I, (1)) = 1| I, (t)
-b (Auh + Y + 81’!) ﬁth (t) Iu (t) >
< ([’lh + Y + 8h) /"vIv (t) (Rmass - 1)
= by + yy + 6p) Bln () I, (2) .
(41)

Thus, L'(t) < 0if R, < 1 with L'(t) = 0 if
and only if I,(f) = 0. Thus, from the second and the
first equation of system (34), we have lim, , I, (t) = 0,
and lim, , S, (t) = A,/w,. Therefore, the largest compact
invariant set in {(S,(t), I,(t),I,(t)) € « L'ty = 0}
is the singleton {(A,/u;,,0,0)} in I. Using the LaSalle’s
invariant principle [26], the infection-free equilibrium E?
is globally asymptotically stable for R, < 1 in I. The
epidemiological implication of the above result is that malaria
will be eliminated from the population if R, can be brought
to (and maintained at) a value less than unity. Thus, the
substitution of standard incidence with mass action incidence
in the model (1) removes the phenomenon of backward
bifurcation. The result of Theorem 8 is illustrated numerically
by simulating the model (30), for the case R, < 1, using
various initial conditions. The solution profiles obtained
shows convergence to the DFE, as depicted in Figure 5.

Now, we investigate the global stability of the endemic
equilibrium E; . We notice that when the incomplete
immunity term 0 < ¢ < 1, system (30) is no longer
competitive. To investigate the global stability of E; .,
we adopted a general approach of Li and Muldowney
[27, 28], which is developed for higher dimensional systems
irrespective if they are competitive. While the approach
of Li and Muldowney has been successfully applied to
many classes of epidemic models, we demonstrated in the
present paper, for the first time, that this approach is also
applicable to vector-host model which is non-competitive.

O

We briefly state the approach developed recently in Li and
Muldowney as follows:

Let G ¢ R"be an open set and f : x — f(x) € R" be
a C' function for x € G. Consider the following differential
equation:

X' = f(x). (42)

Let x(t, x,) denote the solution of (42) satisfying x(0, x,) =
X,- We make the following two assumptions.

(H,) There exists a compact absorbing set K ¢ G.

(H,) Eqution (42) has a unique equilibrium X in G.
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FIGURE 5: Simulations of the model (5) showing (a) the number of susceptible humans, (b) the number of infected humans, (c) the number of
infected mosquitoes, as a function of time using the parameters: b = 0.5, A, = 25, A, = 500, §; = 0.00001, 3, = 0.005, y;, = 0.5 y, = 0.06,

0 =0.8,6;, =0.0001, and y, = 0.6 (so that R, = 0.0789 < 1).

LetQ : x = Q(x) bean (3 )x(5) matrix-valued function, that
is, it is C! and Q7' (x) exists for x € G. Let p be a Lozinskii
measure on R*?, where d = (4). Define a quantity g, as

_ . 1(f
3, = lim swpsup ¢ [ w(M(x(sx)ds (43)

Xo€E 0
where M = QfQ_1 +QJP!Q7!, the matrix Qg is obtained by
replacing each entry g;; of Q by its derivative in the direction
of £, (q;j) e and J' is the second additive compound matrix

of the Jacobian matrix J of system (42). The following results
have been established in Li and Muldowney [27, 28].

Theorem 9. For system (42), assume that G is a simple
connected and that the assumptions (H,) and (H,) hold. Then,
the unique equilibrium X is globally asymptotically stable in G

if there exist a function Q(x) and a Lozinskii measure y such
that g, < 0.

From the above discussion, we know that I' is simply
connect and E;_  is the unique positive equilibrium for
Rpass > 1inT.

To apply the result of Theorem 9 to investigate the global
stability of the infective equilibrium E; ., we first state and

prove the following result.

Theorem 10. If R, > 1, then system (34) is uniformly
persistent, that is, there exists € > 0 (independent of initial con-
ditions), such that lim inf S,(t) > €, liminf L(t) > €
and liminf, | I (t) > €.

t— 00 t— 00

Proof. Similar to the proof of Theorem 3.4 in [29], we choose
X =T1,X, = intl, X, = bd(T). It is easy to obtain that
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Y, = {(8,0,0) : 0 < S < 1LT, = U,ey, [(y) = {E’}, and

{E%} is an isolated compact invariant set in X. Furthermore,

let M = {E"}, thus, M is an acyclic isolated covering of T.
Now, we only need to show that {(A /¢, 0,0)} is a weak

repeller for X,. Suppose that there exists a positive orbit
(Sp> I, 1) of (34) such that

llm Sh (t) = ﬂ,

t— +co Un tl—1>rPooIh &) =0,

lim I, (t) = 0.
t— +00
(44)

Since R > 1, there exists a small enough € > 0, such that

mass

DA LA BB (L= &) > (g, + v + O) pintdy- (45)

From (34), we choose t, > 0 large enough such that when
t > t,, we have

' A
L, (t) > bf, (1-¢) ”—:Iu () = (pp + y + ) I, (1),

A (46)
I (t) > bB, (1 - &) =1, (t) - p, I, () .
Hy
Consider the following matrix M, defined by
A
—(t + Vi +84) BBy (1—e) ="
M, = A o, (47)

bB,(1-¢)

v

Hy

Since M, admits positive oft-diagonal element, the Perron-
Frobenius Theorem [26] implies that there is a positive

13

eigenvector v = (v}, v,) for the maximum eigenvalue 1* of
M,. From (45), we see that the maximum eigenvalue 1* is
positive. Let us consider the following system:

) A
ul (t) = b, (1 -¢) “—huz ) = (w, +yn +8) uy (),

Ah (48)
u, (t) = b, (1 -¢) #—”ul () — uyuy (1)

(%

Letu(t) = (u,(t), u,(t)) be a solution of (48) through (lv;, lv,)
att = t,, where [ > 0 satisfies lv; < I,(¢,),lv, < I,(t,). Since
the semiflow of (48) is monotone and M,v > 0, it follows that
u;(t) are strictly increasing and u;(f) — +ocoast — +09,
contradicting the eventual boundedness of positive solutions
of system (48). Thus, E” is weak repeller for X,. The proof is
completed. O

From Theorem 10 and the boundedness of solutions, it
follows that a compact set M C T exists in system (34).
Therefore, in Theorem 9, both assumptions (H, ) and (H,) are
satisfied for R, > 1.

Now, we apply Theorem 9 to investigate the global
stability of the endemic equilibrium E;  in the feasible

region I'. For the global stability of the endemic equilibrium
E; .. We have the following theorem.

*
mass

Theorem 11. If R, .. > 1, then the infective equilibrium E
of system (48) is globally asymptotically stable in int T
Proof. The Jacobian matrix ] evaluated at a general solution
(Sp> I, 1) of system (34) is

= (pp, + bPu1,) ~bByS,
bpS, (1 - 0)
J=| bB.(1-0)1, —(uy,+yy+0,)-bopyl, +obB, (N, -1,) |’ (49)
0 bﬁv (Nv - Iv) - (bﬁvlh + Auv)
and its corresponding second compound matrix J?! takes the
form
+y, + bop,1,) +0bpy (N), = I,) OBsSi
I _ _ - (luh + bﬁth _ . 50
J bﬁv (NU Iv) +bﬁ1}1h + /’lv) (Sh ( )
- (m Tt b/jvlh
0 bB,(1-0)1, b 1)

Set the function P(x) = P(S,, I, 1,) = diag(l,1,/I,,I,/L,).
Then P;P™' = diag(0,1; /1, - I,/1,, 1 /1, - I,/1,) . Moreover,
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B=P/P + prllp!

— (b + OBYI, +
+'}/h + 6h + baﬁhlv)

Ih
)1

v

bﬂu (Nu - Iv

_ <Bu Bu)
BZI BZZ

where By, = —(u, + bB,1, + w, + y, + 6, + bof,1,), By, =
((bBS, + obPy(Ny, = Sy — L)L/, bByS,L /L], By =
[bB,(N, - 1,)(I,/1,),0]", and
322
L I
E_T_(Mh+8h+ﬂu) 0
_ ~bByI, ~ bB, I, o
BRI, (1-0), i*;*(whwwéhwv)
b0, — b, T,

(52)

Let (u,v,w) be the vectors in R>. We choose a norm in
R® as |(u,v,w)| = max{|ul,|v] + |w|}, and let y be the
corresponding Lozinskii measure. From the paper [28], we
have the following estimate:

u(B) < sup {g, 95}, (53)

where

(B1) + |B1al [By|. (54)

g, = 1 (By) +
Here, |By,|, |B,,|are matrix norm with respect to the; vector

norm, and g, is the Lozinskii measure with respect to /; norm.
Thus, we have

ty (Byy) = = (iy + bByL, + ty, + yy + 8y, + boOB,L,)

|B1s| = (bB,S, + by (N, —

|BZIl = bﬁv (NU - Iu) T
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(bBLS, (1 - 0)

I
I, bB,S,
+obpy (N, = 1)) A P "1,
I "
-
v 0
+ bﬁh v
+bB,1;) ’ G
L I,
5,1, M
b/’gh(l_a)lv _;;h gh_‘u
_bﬁth - baﬁth

According to paper [28], u,(B,,) can be evaluated as follows:

! !

oI
H (BZZ) = max {i - I_ - (.”h + iy, t bﬁvlh + Obﬁth) >

v

I I
L I_v - baﬁth

-bB,1
Ih , ﬁvh

—Mh—‘sh—)’h—ﬂu}a

I, I
=1, I_ ~ (tp + 4y + b, I, + abBL,) .

v

(56)

Thus,
Gy = = (y + bBLI, + py, + 8y, + y, + by, 1,,)

I
+ (bBySy + obPy (N, = S, = 1)) i
(57)

9> =bﬁu(Nv_Iv)I_+___v

v

- (/’lh T, t bﬁvlh + O'b/}hlv) .

From system (34), we have

I I,

i = (BBuSi+ obBy (N =8y = 1)) 1 = (1 + 8 + )
I I

I_ = bﬁv(Nv_IV)I_h ~ Uy

<

v

(58)
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FIGURE 6: Simulations of the model (5) showing (a) the number of susceptible humans, (b) the number of infected humans, (c) the number of
infected mosquitoes, as a function of time using the parameters: b = 0.5, A, = 25, A, = 500, 3, = 0.00001, 3, = 0.005, y;, = 0.03, p, = 0.03,

0 =0.8,68, =0.0001, and y, = 0.6 (so that R, = 9.1843 > 1).

Using (58) in (57) gives

I,
91 = E — (i + bByL, + boPy1,),
(59)

!

I
9 = i - (n"lh + bﬂth + Gbﬁhlv) .

From Theorem 9 we know that for the uniform persistence
constant ¢ > 0, there exists a time T" > 0 independent of
x(0) € T, the compact absorbing set, such that

L (t) > &, I (t) > ¢ (60)

for t > T. Thus, from (59) and (60), we get

II
g = i = (4 + bOPye + bobBe)
(61)

!

I,
92 = E — (py + bPB,e + abPye) .

Therefore, from (61), we have u(B) < (IL/Ih) -nfort > T,
where

7 = min {y, + bP,e + bobP,e, w, + bB,e + obBel.  (62)
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Then along each solution (S,(t),I,(t),I,(t)) such that
(S,(0),1,,(0), I,(0)) € I for t > T, give the following:

B _ =T

I, (t) t (63)

T 1
J u(B)ds+ —In
0 t

~ | =

1 t
—J u(B)ds <
t Jo

which implies that g, < —#/2 < 0. This proves that the unique
infective equilibrium E; __ is globally asymptotically stable
whenever it exists.

This completes the proof. O

Remark 12. The epidemiological implication of Theorem 11
is that malaria would persist in the population if R, > 1.
Theorem 11 is illustrated numerically by simulating the model
(25), for the case R, > 1 using various initial conditions.
The convergence of the solutions to E, . for the case R, >
1, is depicted in Figure 6.

4. Conclusions

This paper presents a deterministic model for the trans-
mission dynamics of malaria with partial immunity to
reinfection. The basic reproduction number of the model is
obtained. The proposed model with standard incidence rate,
undergoes the phenomenon of backward bifurcation, where
the stable disease-free equilibrium coexists with one or more
stable endemic equilibrium as the basic reproduction number
(R) isless than unity. In comparison with the corresponding
results of the model with mass action incidence, we can
conclude that this phenomenon arises due to the use of stan-
dard incidence rate. This study suggests that in some regions
where malaria is inducing the varying total populations, it is
difficult to control malaria due to the occurrence of backward
bifurcation phenomenon. If we ignore the disease-induced
rate, and consider an asymptotical constant host population,
the standard incidence model results in a model with mass
action incidence. In this case, the dynamics of the model
are relatively simple. That is, the global dynamics of malaria
disease with reinfection is completely determined by the
associated reproduction number R . If R . < 1, the
disease-free equilibrium is globally asymptotically stable, so
the disease always dies out. If R, > 1, the disease-free
equilibrium becomes unstable while the endemic equilibrium
emerges as the unique positive equilibrium and it is globally
asymptotically stable in the interior of the feasible region, and
once the disease appears, it eventually persists at the unique
endemic equilibrium level. Therefore, we have shown that the
backward bifurcation property can be removed by replacing
the standard incidence function in the model with a mass
action incidence. The numerical simulations suggest also that
the region of backward bifurcation increases with increasing
rate of partial protection (o) of recovered individuals. The
region of backward bifurcation for the model increases with
decreasing average life span of mosquitoes.
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