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We study the existence and uniqueness of a fixed point of the multidimensional operators which satisfy Meir-Keeler type contraction
condition. Our results extend, improve, and generalize the results mentioned above and the recent results on these topics in the

literature.

1. Introduction

Fixed point theory plays a crucial role in nonlinear functional
analysis. In particular, fixed point results are used to prove
the existence (and also uniqueness) when solving various
type of equations. On the other hand, fixed point theory has
a wide application potential in almost all positive sciences,
such as Economics, Computer Science, Biology, Chemistry,
and Engineering. One of the initial results in this direction
(given by S. Banach), which is known as Banach fixed
point theorem or Banach contraction mapping principle [1]
is as follows. Every contraction in a complete metric space
has a unique fixed point. In fact, this principle not only
guarantees the existence and uniqueness of a fixed point,
but it also shows how to get the desired fixed point. Since
then, this celebrated principle has attracted the attention of a
number of authors (e.g., see [1-39]). Due to its importance in
nonlinear functional analysis, Banach contraction mapping
principle has been generalized in many ways with regards to
different abstract spaces. One of the most interesting results
on generalization was reported by Guo and Lakshmikantham
[18] in 1987. In their paper, the authors introduced the notion
of coupled fixed point and proved some related theorems for
certain type mappings. After this pioneering work, Gnana
Bhaskar and Lakshmikantham [10] reconsidered coupled
fixed point in the context of partially ordered sets by defining

the notion of mixed monotone mapping. In this outstanding
paper, the authors proved the existence and uniqueness of
coupled fixed points for mixed monotone mappings and they
also discussed the existence and uniqueness of solution for
a periodic boundary value problem. Following these initial
papers, a significant number of papers on coupled fixed point
theorems have been reported (e.g., see [6, 11, 13,19, 22, 23, 29,
31-33, 36, 38, 40]).

Following this trend, Berinde and Borcut [8] extended
the notion of coupled fixed point to tripled fixed point.
Inspired by this interesting paper, Karapinar [24] improved
this idea by defining quadruple fixed point (see also [25-
28]). Very recently, Roldan et al. [35] generalized this idea
by introducing the notion of ®-fixed point, that is to say, the
multidimensional fixed point.

Another remarkable generalization of Banach contrac-
tion mapping principle was given by Meir and Keeler [34]. In
the literature of this topic, Meir-Keeler type contraction has
been studied densely by many selected mathematicians (e.g.,
see [2-4, 9, 20, 21, 36, 39]).

In this paper, we prove the existence and uniqueness of
fixed point of multidimensional Meir-Keeler contraction in a
complete partially ordered metric space. Our results improve,
extend, and generalize the existence results on the topic in
fixed point theory.



2. Preliminaries

Preliminaries and notation about coincidence points can also
be found in [35]. Let n be a positive integer. Henceforth, X
will denote a nonempty set, and X" will denote the product
space X x X x .". x X. Throughout this paper, m and k will
denote nonnegative integers and i, j,s € {1,2,...,n}. Unless
otherwise stated, “for all r” will mean “for allm > 0” and “for
all 7” will mean “for alli € {1,2,...,n}”

A metric on X is a mappingd : X x X — R satisfying,
forallx, y,z € X,

(1) d(x’y) :O)
(i) d(x,y) <d(z,x)+d(z,y).

From these properties, we can easily deduce that d(x, y) > 0
and d(y, x) = d(x, y) for all x, y € X. The last requirement is
called the triangle inequality. If d is a metric on X, we say that
(X, d) is a metric space (for short, an MS).

iff x = y; "

Definition 1 (see [15]). A triple (X,d, <) is called a partially
ordered metric space if (X, d) is an MS and < is a partial order
on X.

Definition 2 (see [10]). Anordered MS (X, d, <) is said to have
the sequential g-monotone property if it verifies the following.

(i) If {x,,} is a nondecreasing sequence and {x,,} 4, X,
then gx,, < gx for all m.

(ii) If {y,,} is a nonincreasing sequence and {y,,} LN ¥,
then gy,, < gy for all m.

If g is the identity mapping, then X is said to have the
sequential monotone property.

Henceforth, fix a partition {A,B} of A, = {1,2,...,n};
thatis, AUB = A, and AN B = 0. We will denote that
Qup={0:A, — A,:0(A) CA, o(B)CB},

2)
Qip={o:A,— A,:0(A) CB, o(B) C A}.

If (X, <) is a partially ordered space, x, y € X,andi € A, we
will use the following notation:

ifieA,

ifi € B.

X<y,

<. 3
X 'y={x>y, (3)

Let F: X" — Xand g: X — X be two mappings.

Definition 3 (see [35]). We say that F and g are commuting if
gF(x,,...,x,) = F(gx,,...,gx,) forall x|,...,x, € X.

Definition 4 (see [35]). Let (X, <) be a partially ordered space.
We say that F has the mixed g-monotone property (w.r.t.
{A, B}) if F is g-monotone nondecreasing in arguments of A
and g-monotone nonincreasing in arguments of B; that is, for

all x,x,,...,x,, ¥, z € X and all {,
9y 292 = F(X|,e s X1, Vs Xis1s - r Xp)
(4)
G F (X)X 102 Xy o e e o0 X)) -
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Henceforth, let 0,,0,,...,0,,7 : A, — A,ben+1
mappings from A, into itself, and let ® be the (n + 1)-tuple
(01,05, ...,0,,T).

Definition 5 (see [35]). A point (x;,x,,...,x,) € X" is called
a O-coincidence point of the mappings F and g if

F (%o X+ Xoymy) = 9%ey Vi (5)

If g is the identity mapping on X, then (x, x,,...,x,) € X"

is called a ®-fixed point of the mapping F.

Remark 6. If F and g are commuting and (x;, x,,...,X,,) €
X" is a ®-coincidence point of F and g, then
(9x1> 9%, ..., gx,) also is a ®-coincidence point of F
and g.

With regards to coincidence points, it is possible to
consider the following simplification. If 7 is a permutation of
A, and we reorder (5), then we deduce that every coincidence
point may be seen as a coincidence point associated to the
identity mapping on A ,,.

Lemma 7. Let T be a permutation of A,, and let & =
(0'1, 02, ey Un, T) [l?’ld (D, = (GT_I(I)’ 01_1(2)’ ey UT_l(n)’ IAn)'
Then, a point (xy,%,,...,x,) € X" is a ®-coincidence point
of the mappings F and g if and only if (x,, %5, ...,x,) isa ®'-
coincidence point of the mappings F and g.

Therefore, in the sequel, without loss of generality,
we will only consider Y-coincidence points where Y =
(01,0%,...,0,), that is, that verify F(x, 1), X5 (2> - - -» X)) =
gx; for all i.

If one represents a mapping o : A, — A, throughout
its ordered image, that is, 0 = (6(1),d(2), ..., 0(n)), then

(i) Gnana-Bhaskar and Lakshmikantham’s election in
n=2iso, =7=(1,2)and o, = (2,1);

(ii) Berinde and Borcut’s election inn = 3iso; = 7 =
(1,2,3),0, =(2,1,2)and 05 = (3,2,1);

(iii) Karapnar’s election inn = 4iso; = 7 = (1,2,3,4),
0,=1(2,3,41),05 =(3,4,1,2),and 0, = (4,1,2,3).

For more details, see [35]. We will use the following result
about real sequences in the proof of our main theorem.

Lemma 8. If {x,,},.cn is a sequence in an MS (X, d) that is
not Cauchy, then there exist &, > 0 and two subsequences
(%o tken and {x, g en such that, forallk € N, k < m(k) <
n(k) < m(k + 1), d(Xpk Xp(ry) 2 oo and A(X,00)> Xiy-1) <
£

Meir and Keeler generalized the Banach contraction
mapping principle in the following way.

Definition 9 (Meir and Keeler [34]). A Meir-Keeler mapping
isamapping T : X — X on an MS (X, d) such that for
all e > 0, there exists § > 0 verifying that if x, y € X and
e<d(x,y) <e+0d,thend(Tx,Ty) < e.
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Lim characterized this kind of mappings in terms of a
contractivity condition using the following class of functions.

Definition 10 (Lim [30]). A function ¢ : [0,0c0[ — [0,00]
will be called an L-function if (a) ¢(0) = 0, (b) ¢(t) > 0 for
allt > 0, and (c) for all € > 0, there exists § > 0 such that
o) < eforallt € [e, e+ 6].

Theorem 11 (Lim [30]). Let (X,d) bean MS, andletT : X —
X. Then T is a Meir-Keeler mapping if and only if there exists
an (nondecreasing, right-continuous) L-map ¢ such that

d(T (x),T(y)) <¢(d(xy))

6

Vx,y € X verifying d (x,y) > 0. (©

Using a result of Chu and Diaz [14], Meir and Keeler

[34] proved that every Meir-Keeler mapping on a complete

MS has a unique fixed point. Since then, many authors have

developed this notion in different ways (e.g., see [2-4, 9,

20, 21, 36, 39]). For instance, in [36], Samet introduces the
concept of generalized Meir-Keeler type function as follows.

Definition 12 (see [36]). Let (X, d, <) be a partially ordered
metric space and F : X x X — X a given mapping. We say
that F is a generalized Meir-Keeler type function if for all e > 0,
there exists §(¢) > 0 such that

€<

[d(x,u)+d(y,v)] <e+d(e) (7)

N | —

= d(F(x,y),F(uv)<e.

Then, the author [36] proved some coupled fixed point
theorems via generalized Meir Keeler type mappings. In this
paper, we extend the notion of generalized Meir-Keeler type
mappings in various ways and get some fixed point results by
the help of these notions.

3. Multidimensional Meir-Keeler-Type
Mappings

Henceforth, let (X, d, <) be a partially ordered MS and let F :

X" — Xand g: X — X be two mappings.

Definition 13. We will say that F is a (multidimensional) g-
Meir-Keeler type mapping, ((MK) mapping) if it verifies the
following two properties.

(MK1) If X1, %5, . o5 X5 V1> Vs - -
for all 4, then F(x,, x,, ...

Y, € X verify gx; = gy,
s %) = F(Y1 Yoo o5 )-
(MK2) For all ¢ > 0, there exists & > 0 such that if

X15Xgse e Xy V15 Voo - -+ ¥ € X verify gx; %; gy; for
all i and

e < maxd (gx;, gy;) < e+9,
<i<n (8)

then d (F (x;, x,,..

%) s F (Y1 25 1)) < &

If g is the identity mapping on X, we will say that F is a
(n-dimensional) Meir-Keeler type mapping.

On the one hand, notice that, in a wide sense, property
(MKI) may be interpreted as property (MK2) for ¢ = 0. On
the other hand, we observe that our definition may not be
compared with the original one due to Meir and Keeler since
we assume that X has a partial order. In any case, if n = 1,
(X, d) has a partial order and g is the identity mapping on X,
and we can only establish that if F: X — X is a Meir-Keeler
mapping in the sense of Definition 9, then F is a Meir-Keeler-
type mapping in the sense of Definition 13, but the converse
does not hold.

Remark 14. If g is an injective mapping on X, then all
mappings F verify (MK1).

Lemma 15. Let F : X" — X be a mapping on a partially
ordered MS (X, d, <), and let X1, X5, ...; X V1> Voo o> Yy € X
be such that gx; <; gy, for all i.

(1) If F verifies (MK2), then either gx; = gy, for alli or

d (F (%1 %0+ %,) s F (15 7255 7)) < maxd (gxi, g;)
)
(2) If F is a g-Meir-Keeler type mapping, then

d (F (%1 X005 %) F (Y15 3255 7)) < maxd (g2, g3;).
(10)

and the equality is achieved if and only if gx; = gy; for
alli.

Proof. (1) If the condition “gx; = gy, for all 7
does not hold, then ¢ = max,__,d(gx;gy;) > 0.
Hence, d(F(xy,%y,...,%,),F(¥1;¥2r--»¥)) < € =

max, ., d(gx;, gy;). (2) If F is a g-Meir-Keeler-type map-
ping, the case “gx; = gy; for all i” means that the equality
is achieved. O

This global contractivity condition (10) is not strong
enough to ensure that F has a fixed point. For instance, if
n =1, then F(x) = x + 1 for all x € R has no fixed point. In
order to characterize this kind of mappings in different ways,
we recall some definitions and results.

Definition 16. The g-modulus of uniform continuity of F is, for
alle > 0,

gx;i%;9y; Vi,
(Sg’F (e) = sup({k >0: [{naxd(gxi,gyi) < )L:|
<isn

= d (F (x> X,) (11)
F(ypyz,---,yn))w}).

Remark 17, 'The identity mapping on a set X will be denoted
byly : X —- X.Ifg: X — X is a mapping, then



G : X" — X" will be defined by G(xy, x,,...,x,) = (gx;,
gxys ..., gx,) for all x,x,,...,x, € X.If (X,d) is a
metric space, then D : X" x X" — [0,00[, given by
D(P,Q) = max,,,d(p;q;) for all P = (py, pps-..5 Pu)s
Q=419 ----9,) € X", is a metric on X". A partial order
< on X may be induced on X" by P < Q if and only if
p; < g; for all i (notice that this partial order depends on
the partition {A, B} of A ,,). Then, (X", D, <) also is a partially
ordered MS. Furthermore, given any w = (w,, @s,...,w,) €
X" E, : X" — X" will denote the mapping defined by

E (x1,%5, ..., %,) = (F(xX1, Xy ..., X,), Wy, w3, ..., w,) for all
X1, X5, %, € X.Itis obvious that
D(Fw ('xl’xZ""’xn)’Fw (yl’yZ""’yn)) (12)

=d (F(x1: %0 :%,) s F (712 Y252 )

for all x;, x5, ... , ¥, € X.

> X V1> Voo v e

Theorem 18. Let (X, d, <) be a partially ordered MS, and let
F:X" - Xandg: X — X be two mappings. Then, the
following statements are equivalent.

(MK) F is a g-Meir-Keeler-type mapping.
(MK3) For all € > 0, there exists > 0 such that

X5 X9 e X Vi> Vare oo Yy € X
9% gy; Vi
maxd (gx;, gy;) < e +6 (13)
<i<n
= d(F(x;, %3 ..»%,),F (31, ¥20-- > ¥,)) < &

(MK4) Sg’F(e) > ¢ foralle > 0.

(MKS5) F and g verify (MK1), and there exists an (nondecreas-
ing, right-continuous) L-function ¢ : [0,00[ — [0, 00[
such that

d(F (x5 %5 5%,) s F(¥15 Y25 -5 V)

<¢ (maxd (g% 9%-)) "

1<i<n

forall x,,.... %, y1,..., ¥, € X verifying gx; <; gy;
for all i and max,_;_, d(gx;, gy;) > 0.

(MKG6) For all w € X", the mapping F,, : X" — X"isa
G-Meir-Keeler-type mapping on (X", D, <).

(MK?7) There exists w, € X' such that the mapping E, :
X" — X" is a G-Meir-Keeler-type mapping on
(X", D, x).

Proof. [(MK)=(MK3)]: Fix ¢ > 0, and let § > 0 given
by (MK2). Let xy,...,%,, ¥1>.-.»¥, € X be such that
gx;<;gy; for all i, and let n = max,,d(gx;gy) <

e+ 6. Ity = 0, then gx; = gy, for all i, and so
d(F(xy, %y, .. s %), F(¥15 ¥35--» ) = 0 < & by (MKI).
In another case, # > 0.If e < 5 < &+ §, then
d(F(xy, %5, ..., %,), F(¥15 ¥35-..» ¥,)) < € by (MK2). Now,

suppose that 0 < # < &. Then, 7 € [1,17 + 6, [, where §, > 0
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is also given by (MK2), and d(F(x,, ...
n < . Hence, (MK3) holds.
[(MK3)=(MK4)]: Givene > 0,let§ > 0 verifying (MK3).
Then, Sg,F(s) > ¢+ 6, and so Sg,F(s) > e
[(MK4)=(MK)]: On the one hand, if gx; = gy; for all 4,
then d(F(x;, %5, ...,%,), F(¥1, Y5> ---»¥,)) < eforalle > 0,
and so F verify (MK1). On the other hand, let ¢ > 0, and
define § = (8g)F(£) —¢€)/2 > 0. Therefore, e + § < (Sg)F(s).
Since Sg’F(s) is a supremum, there exists A, € ]e + &, Sg’F(s)]
such that if gx; <; gy, for all i and max,_;, d(gx;, gy;) < A¢»
then d(F(x, x5, ...,%,), F(¥1> ¥2> .- > ¥,)) < & In particular,
if gx; <; gy; foralliand e < max,_;, d(gx;, gy;) < €+8 < Ay,
then d(F(xy, X5, ..., %,), F(¥15 Y255 V) < &
[(MK)&(MKS5)]: 1t is possible to follow step by step the
proof of Proposition 1 in [39] with slight changes.
[((MK)e(MK6)&(MK7)]: It is apparent taking into
account (12). O

X)), F(yps oo 9,) <

The following result is a particular case taking ¢(t) = kt
forallt > 0.

Corollary19. Let (X, d, <) be a partially ordered metric space,
andlet F : X" — Xand g : X — X be two mappings.
Assume that there exists k € (0, 1) such that

d (F (xpx00-0 %) F (15 7255 7)) < kmaxd (g, gy;)
(15)

forall x,,...,x,, v,..., ¥, € X verifying gx; <; gy; for all i.
Then, F is a g-Meir-Keeler-type mapping.

Next, we prove that a generalized Meir Keeler type
function in the sense of Samet [36, Definition 12] is a
particular case of 2-dimensional Meir-Keeler-type mapping
in the sense of Definition 13.

Lemma 20. Every generalized Meir Keeler type function in the
sense of Samet is a 2-dimensional Meir-Keeler-type mapping in
the sense of Definition 13 taking g as the identity mapping on
the MS.

Proof. Suppose that F : X x X — X is a generalized Meir
Keeler type function in the sense of Samet. Fix ¢ > 0 and
let & > 0 verifying (7). Let x, y,u,v € X such that x > u,
y < v,and max(d(x, u),d(y, v)) < e+0. We have to prove that
d(F(x, y), F(u,v)) < e.If x = uand y = v, there is nothing to
prove. Next, suppose that max (d(x, u),d(y,v)) > 0. Let

M=%[d(x,u)+d(y,v)]. (16)

If M =0, then x = u and y = v, which is false. Then, M > 0.
On the other hand,

w < max (d (x,u),d (y,7)) < & +8.

17)

M =

Ife < M < ¢+ 6, then d(F(x, y), F(u,v)) < &by (7).
Finally, if 0 < M < ¢, taking € = M in (7), we have
that M € [¢/,¢ + 8, (where §, is taken as in (7)), and
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so d(F(x,y),F(u,v)) < M < e. This proves that F is a 2-
dimensional Meir-Keeler type mapping associated to g =
Iy. O

Remark 21. Converse of Lemma 20 does not hold. For
instance, let X = R be provided with its usual metric
d(x,y) = |x — y| and partial order <. Take 0 < k < 1
and consider F(x, y) = kx for all x,y € R. Then, F is
a 2-dimensional Meir-Keeler-type mapping in the sense of
Definition 13 (taking g as the identity mapping on R), but,
ifk > 1/2,itis not a generalized Meir Keeler type function in
the sense of Samet.

Indeed, we firstly prove that F is a 2-dimensional Meir-
Keeler-type mapping in the sense of Definition 13 (taking
g as the identity mapping on R). Let ¢ > 0. Consider any
r €]0,1/k — 1[ (i.e., k(1 + r) < 1) and define § = re > 0.
Consider x, y,u,v € R such that x > u and y < v verifying
e < max (d(x,u),d(y,v)) = max (|x —ul,[y—v|]) <e+d.In
particular, |x — u| < £ + 8. Then,

d(F(x,y),F (uv))

=d(kx,ku) =k|x—u| <k(e+9)

=k(e+re)=k(l+r)e<e.
(18)

It follows that F is a 2-dimensional Meir-Keeler-type mapping
in the sense of Definition 13. Next, we claim that if k > 1/2,
then F is not a generalized Meir Keeler type function in the
sense of Samet. Let ¢ > 0. If F was a generalized Meir Keeler
type function in the sense of Samet, it would be § > 0
verifying (7). Take x = ¢, u = —¢,and y = v = 0. Then,
x>u, y <vand

dxu)+d(pv) Je-(-e)l+[0-0|
2 B 2
_ % =¢€[ge+].
2

(19)

However, d(F(x, y), F(u,v)) = d(ke, k(-¢)) = kle — (-¢)| =
2ke > € since k > 1/2.

4. Main Results

In the following result, we show sufficient conditions to
ensure the existence of Y-coincidence points, where Y =
(01,05, ...,0,).

Theorem 22. Let (X, d) be a complete MS, and let < a partial
order on X. Let Y = (0,,0,,...,0,) be an n-tuple of mappings
Sfrom {1,2,...,n} into itself verifying o; € Q,pifi € A and
0, € Qpifi e BLtF:X" - Xandg: X - X
be two mappings such that F is a g-Meir-Keeler-type mapping
and has the mixed g-monotone property on X, F(X") <
9(X), and g is continuous and commuting with F. Suppose
that either F is continuous or (X,d,<) has the sequential g-
monotone property. If there exist x}, Xg, ..., X € X verifying

gxh <; F(xg(l), g(z), ce X (”))for alli, then F and g have, at

least, one Y-coincidence point.

Proof. The proofis divided in six steps. We follow the strategy
of Theorem 9 in [35].

Step 1. There exist n sequences {x.},o, {xfn}mzo, ceo
{x"},50 such that gx? = F(x%M, x5 x%®) for all

m+1
mand all i.
Step 2. gx <; gx. ., forallmandalli.
Define §,, = max,;,d(gx,,gx,,.,) = 0 for all m.

Firstly, suppose that there exists 7, € N such that§,, = 0.
Then, gxi

(x g fne s xmo) isaY- c01nc1dence point of F and g and we
have finished. Therefore, we may reduce to the case in which

d,, > 0 for all m; that is,

= gmeJrl = F(me ,xg @ xZ;S”)) for all 4, so

Vm, there exists j such that gx] + gx (20)

m+1°

Step 3. We claim that {d(gx’, gx. , )} — O for all
i (e, {max,_, d(gx!, gx! bwso — 0). Indeed, as

gxin < gxin+1 for all m and all i, then condition (MK2),
Lemma 15, and (20) imply that, for all m > 1 and all 4,

d(gx,, 9%, ) =d (F (xfn(ll),xfn(zl),...,xa (")),

F (xai(1>’xfni(z)’ o ,xa,.(m))

m m

21
<maxd(gx 1,gxa(])) @)

1<j<n

< PQﬁ’,id(g"m L 9x, ) =3,
Taking maximum on 7, we deduce that the sequence {6,,},,>;
is nonincreasing and lower bounded. Therefore, it is conver-
gent; that is, there exists A > 0 such that {6,,},,.;, — A (and
A < 6, for all m). We claim that A = 0. On the contrary,
assume that A > 0. Let § > 0 be a positive number associated
toe = A > 0 by (MK2). Since

1<i<n

{maxd(gx ,gxm+1)} ={8,},, N A, (22)

there exists m, € N such that if m > m,, then A <
max, ., d(gx,,, 9x,,,,) < A+ 8. By (MK2), it follows that,
for all i,

d (9%, 9%,p,11)

_ d(F (xZ;(l),xg"(z),...,xai(n)), (23)

0 my my

F(xg"(l) x0® o )) <A.

my+1> “mg+1° > Mmg+l

Taking maximum on 7, we deduce that

A<§ O—maxd(gx ,gxm0+1)<A. (24)

1<i<n

But this is impossible. Then, we have just proved that A = 0.
Therefore, {8,,},,5; — A =0, which means that

lim §,, = lim (maxd(gxm, gxmﬂ)) =0. (25)

m— 0o m— 0o \ 1<j<n



As 0 < d(gx,gx ) <
{d(gx. ,gx' . )} — 0foralli.
Step 4. Every sequence {gx },s0 is Cauchy. Suppose
that {gxi},00---> 195 }so  are not Cauchy and
{gx: Ym0 - - -5 19X uso are Cauchy, being {i},...,i,} =
{1,...,n}. By Lemma 8, for all r € {1,2,...,s}, there exist
g, > 0 and subsequences {gxi;i (k)}keN and {gx;';(k)}ke,\, such
that

k <m. (k) <n, (k),

d,, for all m and all 4, then

if iY

4 (95500 Fy) 2 &
(26)

i, i,
d (gxmi(k),gxni(k)_l) <g, VkeN.
Let &, = max(e;,...,¢,) and & = min(e;,...,&) > 0. Since
{9%5 ms00 - - - 192 o are Cauchy, there exists ny € N
such that if n, m > ny, then d(gx/,gx]) < & /2 for all

G € ligiseesiy) ,
Let Ky € N such that n, <  min(m(ky),

my(ky), ..., m.(ky)), and define m(1) = min(m;(k,),
m;(ko),...,m;(ko)). As m(1) = mi(ko) for some

r € {1,2,...,s), there exists (ko) such that d(gx",, ,
A0

gx'r:, * )) > g > g Thus, we can consider the numbers
r\"M0

m(1l) +1,m(1) +2,...
n(1) > m(1) verifying

until finding the first positive integer

ir
{1<1;a<)§d (gx ,gxn(l)) > g,
(27)
i i ,
d(gxm(l),gxn(l)_l> <g, Vje{l2,...s}.

Now, let k; € N such that n(1) < min(m;(kl), m;(kl)
.,m;(kl)) and define m(2) = min(m;(kl), m;(kl)
,...,m;(kl)). Since m(2) € {m;(kl),m;(kl),...,m;(kl)}, we

can consider the numbers m(2) + 1,m(2) +2, ... until finding
the first positive integer n(2) > m(2) verifying
maxd (9], 9%,) 2 &>
(28)

ij i )
d(gxrjq(z),gxrf(z)_J <g, Vje{l,2,...,s}.

Repeating this process, we can find sequences such that, for
allk > 1,

ng <m(k) <n(k) <m(k+1),

max d (gxm(k),gxn(k ) > &), (29)

1<r<s
i i .
d( g% 95001 ) <& Vi€iL2,..,5)

Since n, < m(k) < n(k) we know that d(gxiq(k),ng k))

d(gxin(k)’gxiz(k)—l)’ d(gx (k)— l’gxn(k
,i,}. Therefore, for all k,

D < 80/2 forall j €

fiopoe..

max d (gxm(k), gxn(k)) max d (gxm(k),gxn(k ) > &),

1<j<n 1<r<s

(30)

max d (9,00 9191) < &0
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Let § > 0 verifying (MK3) using &, and let k; € N such that
ifk > k,, then d(gx’
andall k > k,

mik)— 1,gxin(k)) < § for all j. Then, for all j

d (gx'rin(k)fl’ gx;il(k)—l) <d (9x1i1(k)—1’ 9x1i1(k))

+d (gxfn(k),gxfl(k)fl) <8+
(31)
Applying (MK3), it follows, for all k > k, and all , that
d (gxlm<k)’ gxlmk))
_ +(1) +(n) +(1) +(n)
= d (F (x50 1o %1 ) F (X - X001 ))
< &,
(32)

but this contradicts (30) since max e, d(gxfn ) gxi (k)) >

&,- This contradiction shows us that every sequence {gx,,},,=¢
is Cauchy.

Existence of a fixed point is derived by standard
techniques. Indeed, since (X,d) is complete, there exist
X1, X5, %, € X such that x; = lim,, _,  gx;, foralli. As g
is continuous and F commutes with g,

lim F(gx oi(1) ,gx”(z),...,gxﬁ("))

m— 00

s 0{(1) Ui(z)
mlgnoogF(xm X

m

LX) (33)

mlgnooggx =gx; Vi
Step 5. Suppose that F is continuous. In this case, since
{gxoiMy - X,(j for all, j and F is continuous,

o) 0@

= lim F(gx , gx,)

S gx ("))

Hm 99
(9

=F (xa,-(w Xoy(2)> -+ »xa,-<n>)

for alli. Then, F(x, (1), Xg.(2)> - - +» X)) = g; for alli; that is,
(X1, %y, ..,%,) isa Y-coincidence point of F and g

Step 6. Suppose that (X, d, <) has the sequential g-monotone
property. In this case, by step 2, we know that gx,, <; gxm "
for all m and all i. This means that the sequence {gx,},,50
is monotone. As x; = lim,,_ . gx , we deduce that
ggx. <; gx; for all m and all i. This condition implies that,
for all m and all j,

either [ggxf,{(i) =i 9%6,() Vi]
0 (35)
o1 .
r [gxgj(i) < 99%m Vz]
(the first case occurs when j € A and the second one
when j € B). Fix j € {1,2,...,n}, and we claim that
. o;(1) _0;(2) 0;(n)
hmm—mop(gxmj ’gxrri ""’gxﬂi ) = F(xoj(l)’xoj(Z)’
. xgj(n)). Indeed, let € > 0 arbitrary, and let § > 0 verifying
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(MK3). Since {ggxi{(i)}m = 9%,0) for all i, there exists

m, € N such that if m > m,, then d(ggxm ,gx p) <e+td
for all i. Applying (MK3) and (35),
d (F (gx:q(1 ,gxwf( ), ... ,gx‘:,f(n)) ,
F(xo.j(l), xo.j(z),...,xoj(n))) (36)
<e.
Therefore, F(xoj(l),xoj(z),...,xaj(n)) = limmHOOF(gx‘:,j'(l)’
G'j(z) Uj(") T Jj _ .
m o aeeGXm ) = lim, o ggx,,,, = gx;forall j. In

conclusion, (x;, x,, ..., x,) is a Y-coincidence point of F and
g. O

5. Uniqueness of Y-Coincidence Points

For the uniqueness of a fixed point, we need the following
notion. Consider on the product space X" the following
partial order: for (x,x,,...,%,), (V1> Var-- o> ¥,) € X",

2%0) (V1 Y02 Vn) & X%y Vi

(37)

(%1, %5, - ..

We say that two points (x;,%,,...,x,) and (¥}, V55 .--> V)
are comparable if (x,xy,...,%,) <  (V1,Vp--->¥,) OF
(X1, %55 .5 %,) 2 (V1> Vas oo o5 V)-

By following the lines of Theorem 11 in [35], we prove the
uniqueness of the coincidence point.

Theorem 23. Under the hypothesis of Theorem 22, assume that
for all Y-coincidence points (x1, Xy, ...>%,), (V1> Var-vv» V) €
X" of F and g, there exists (uj,u,,...,u,) € X" such
that (gu,, gu,, ..., gu,) is comparable, at the same time, to
(gx1, 9% - .- gx,,) and to (gy1, Gyas - - -> GYy)-

Then, F and g have a unique Y-coincidence point
(21,23, ...,2,) € X" such that gz; = z; for all i.

It is natural to say that g is injective on the set of all Y-
coincidence points of F and g when gx; = gy; for all i implies
x; = y; foralliwhen (x, %5, ..., %,), (V1> V3> -» ¥,) € X" are
two Y-coincidence points of F and g. For example, this is true
that g is injective on X.

Corollary 24. In addition to the hypotheses of Theorem 23,
suppose that g is injective on the set of all Y-coincidence points
of F and g. Then, F and g have a unique Y-coincidence point.

Proof. If (x;,%5,...,x,) and (¥}, %5...,¥,) are two Y-
coincidence points of F and g, we have proved in (A.1) that
gx; = gy; for all i. As g is injective on these points, then
x; = y; for all i. O

Corollary 25. In addition to the hypotheses of Theorem 23,
suppose that (2, (1), Zg.(2)> - - - > Zq,(m)) i comparable to (zgj(l)
Zo.j(z), cees Zaj(n))for all i, J '17len, Zl = 22 = e = zn_

In particular, there exists a unique z € X such that
F(z,z,...,z) = z, which verifies gz = z.

Proof. Let M = max,; ;,, d(2;, z;) and we are going to show
that M = 0 by contradiction. Assume that M > 0 and let
Jjooso € {1,2,...,n} such that d(z;,z,) = M. As (zgj 1y
0
zajo @)+ Zajo (n)) is Comparable to (ZO.SO(I), ZUsU @y Zaso (n)),
then either Zo, i) i 2o, () for all i or Zo,, () i 2o, ) for all i.

Since gz; = z; for all i, we know that either 9%0, () i 9%, ()

for all i or gz, ;% 9%0, () for all i. Now, we have to
S0 0
distinguish between two cases.
If 920, () = 9%0, () for all i (ie., Zo () = Zo (i) for all 7),
then

Tjo (1) )

= F(zaso(l)’zaso<z>v-~>Zaso<n)> = 9% = Zsp

Zjo = gzjo =F (zo'jo(l)) Zo-jo(z)’ ey (38)

which is impossible since d(z; ,z;,) = M > 0. Now, suppose
that max,;, d(gz% i) gzaso(,»)) > 0. In this case, item 1 of
Lemma 15 guarantees that

M = d(zjo’zso) =d (gzjo’gZSO)
d(F(ZUjo(lr 20,2+ 20,0 ()

F(zgso(l),z )

> Zo, <n>)) (39)
ax

AN

maXd<gza (i)> » gz o z)S ISn i“n d(gzl’gz)

1<i<n

max d(z Z]) M,

1<i,j<n

which also is impossible. This contradiction proves that M =
0; that is, z; = z; for all i, j. O

Remark 26. Notice that a mixed strict monotone mapping F :
X x X — X in the sense of [36, Definition 2.1] is always a
mixed monotone mapping in our sense (where n = 2 and
g is the identity mapping on X). Then, Theorems 2.1, 2.2,
2.3, and 2.4 in [36] (and, by extension, theorems by Gnana
Bhaskar and Lakshmikantham [10]) are consequence of our
main results.

Example 27. Let X = R and d(x,y) = |x — y| be usual
metric on R. Consider the mapping F(x,, x,, X3, X4, X5, Xg) =
(2x; — 3%, + x5 — x4 + X5 — Xg)/12 and g(x) = x. It is
clear that F is monotone nonincreasing in odd arguments
and F is monotone nondecreasing in even arguments. All
conditions of Theorems 22 and 23 are satisfied. It is clear that
(0,0,0,0,0,0) is the unique fixed point.

Example 28. Let X = R be provided with its usual partial
order < and its usual metric d(x, y) = |x — y|. Let n € N,
and let a,,a,,...,a, € R\ {0} real numbers such that there
exist iy, j, € {1,2,...,n}verifyingaiO <0< ajo.LetN > |a |+
la,|+---+la,l, and consider F(x,, x5,...,x,) = (a;x; +a,x,+

- +a,x,)/N and gx = x, for all x, x;, x,,...,x, € X. Then,
F is monotone nondecreasing in those arguments for which
a; > 0 and monotone nonincreasing in those arguments for



which g; < 0. Furthermore, taking k = (lg,| + lay| + -+ +
la,])/N € (0, 1), Corollary 19 shows that F is a g-Meir-Keeler-
type mapping. Actually, all conditions of Theorems 22 and 23
are satisfied. Indeed, it is clear that (0,0,...,0) is the unique
fixed point of F.

Appendix
Proof of Theorem 23

Proof. From Theorem 22, the set of Y-coincidence points of
F and g is nonempty. The proof is divided in two steps.

Step 1. We claim that if (x;,%5,...,%,), (V1> Yar- o> V) €
X"are two Y-coincidence points of F and g, then

gx; = gy; Vi (A1)
Let (x1, %55 %,), (V1> ¥2o--»¥,) € X" be two Y-
coincidence points of F and g, and let (u;,u,,...,u,) € X"

be a point such that (gu,, gu,, ..., gu,,) is comparable, at the
same time, to (gxy, gx,,. .., gx,) and to (gy1, gya> - > GVu)-
Using (u4, U, . . ., u,,) define the following sequences. Let u;, =
u; for all i. Reasoning as in Theorem 22, we can determine

1 2 n i _
sequences {U,,},,500 14, mz00 - - - » 1yt mso SUch that guy | =
Fusi®,45@ %) for all m and all i. We are going to
prove that gx; = lim,, _,, gu,, = gy; for alli, and so (A.1) will
be true.

Firstly, we reason with (gu,,gu,,...,gu,) and
(gx1> g%, . - .» gx,), and the same argument will be true for
(guy, gy, .., gu,) and  (gy1, gyzs---> 9yn)-  As  (guy,
guys...,gu,) and (gx,, gx,,...,gx,) are comparable, we

can suppose that (gu,, gu,,...,gu,) < (gx, gx,,...,9x,)
(the other case is similar); that is, gul, = gu; <; gx; for all
i. Using that F has the mixed g-monotone property and
reasoning as in Theorem 22, it is possible to prove that
gu, <; gx; for allm > 1 and all i. This condition implies that,

forall jandallm > 1,

either [guf,{(i) <i 9%0,(i) Vi]

(A2)

O'j(i) .

or [gxaj(i) <; Guky, Vz] .
Define B,, = max, ., d(gu , gx;) for all m. Reasoning as
in Theorem 22, one can observe that {f,,},,-, — 0, which
means thatlim,,, _, . f,, = lim,, _, ,(max,,., d(gu,,, gx;)) =
0.As 0 < d(gu,,, gx;) < f3,, for all m and all i, we deduce that
{d(guin, 9X)}lms1 — 0 for all §; that is,

Jim guin =gx; Vi (A.3)

If we had supposed that (gx;,gx,,...,gx,) < (gu;,

gy, ..., gu,), we would have obtained the same property
(A.3). And as (gu;,gu,,...,gu,) also is comparable to
(9Y1>9Y2>- - > gYu)» We can reason in the same way to prove

that gy; = lim,, _ ,gu,, = gx; for all i.
Let (xy, x,,...,x,) € X" be a Y-coincidence point of F
and g, and define z; = gx; for all i. As (zy,25,...,2,) =

Abstract and Applied Analysis

(gx1> g%, - .., gx,), Remark 6 assures us that (z,,z,,...,2,)
also is a Y-coincidence point of F and g.

Step 2. We claim that (z,,z,,...,2,) is the unique ®-
coincidence point of F and g such that gz; = z; for all i. It
is similar to Step 2 in Theorem 11 in [35]. O
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