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We present a survey on the existence of periodic solutions of singular differential equations. In particular, we pay our attention to
singular scalar differential equations, singular damped differential equations, singular impulsive differential equations, and singular
differential systems.

1. Introduction

During the last two decades, singular differential equations
have attracted many researchers [1–11] because such equa-
tions describe many problems in the applied sciences, such
as the Brillouin focusing system [12–14], nonlinear elasticity
[15], and gravitational forces [3]. Besides these important
applications, it has been found that a particular case of
singular equations, the Ermakov-Pinney equation, plays an
important role in studying the Lyapunov stability of periodic
solutions of Lagrangian equations [16–18].

In the literature, two different approaches have been used
to establish the existence results for singular equations. The
first one is the variational approach [3, 4, 6, 19, 20] and
the second one is topological methods [1, 10, 21–28]. In
our opinion, the first important result was proved in the
pioneering paper of Lazer and Solimini [29]. They proved
that a necessary and sufficient condition for the existence of
a positive periodic solution for

𝑥
󸀠󸀠
=

1

𝑥
𝜆
+ 𝑒 (𝑡) (1)

is that themean value of 𝑒 is negative; that is, 𝑒 < 0, here𝜆 ≥ 1,
which corresponds to a strong force condition, according to
a terminology first introduced by Gordon [30]. Moreover, if
0 < 𝜆 < 1, which corresponds to a weak force condition,
they found examples of functions 𝑒with negativemean values

and yet no periodic solutions exist. Therefore, there is an
essential difference between a strong singularity and a weak
singularity. Since the work of Lazer and Solimini, the strong
force condition became standard in related work, see, for
instance, [8, 15, 18, 27, 28]. Comparedwith the case of a strong
singularity, the study of the existence of periodic solutions
under the presence of a weak singularity is more recent, but
it has also attracted many researchers [31–39]. In [39], for the
first time in this topic, Torres et al. proved an existence result
which is valid for a weak singularity, whereas the validity of
such results under a strong force assumption remains as an
open problem, which was partially solved in [32].

The main aim of this survey is to present some recent
existence results for singular differential equations. In partic-
ular, we will consider the scalar singular equations, singular
damped equations, singular impulsive equations, and singu-
lar differential systems. We will also include some examples
to illustrate the results presented.

The rest of this paper is organized as follows. In Section 2,
we will state some important results for the second-order
scalar singular differential equations. Singular damped equa-
tions will be considered in Section 3. In Section 4, singular
impulsive differential equations will be studied. Finally in
Section 5, we will focus on the singular differential sys-
tems. Sections 2 and 3 are mainly written by the first
author. Section 4 is mainly written by the second author,
and Section 5 is mainly completed by the third author.
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All the results presented in Sections 3–5 shed some lights
on the differences between a strong singularity and a weak
singularity.

Finally in this section, we must note that besides the
results presented in this survey, many interesting and impor-
tant results on singular differential equations have been
obtained by other researchers, see, for example, [9, 40–45]
and the references cited therein.

In this paper, we denote the essential supremum and
infimum of 𝑝 by 𝑝∗ and 𝑝

∗
, respectively, for a given function

𝑝 ∈ 𝐿
1
[0, 𝑇] essentially bounded.

2. Second-Order Scalar Singular Equations

In this section, we recall some results for second-order
singular differential equations

𝑥
󸀠󸀠
+ 𝑎 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥) + 𝑒 (𝑡) , (2)

here 𝑎(𝑡), 𝑒(𝑡) are continuous, 𝑇-periodic functions. The
nonlinearity 𝑓(𝑡, 𝑥) is continuous in (𝑡, 𝑥) and 𝑇-periodic in
𝑡 and has a singularity at 𝑥 = 0.

First we need to present some preliminary results on the
linear equation

𝑥
󸀠󸀠
+ 𝑎 (𝑡) 𝑥 = 𝑝 (𝑡) (3)

with periodic boundary conditions

𝑥 (0) = 𝑥 (𝑇) , 𝑥
󸀠

(0) = 𝑥
󸀠

(𝑇) . (4)
We assume the following:

(A) the Green function 𝐺(𝑡, 𝑠), associated with (3)-(4), is
positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇], or

(B) the Green function 𝐺(𝑡, 𝑠), associated with (3)-(4), is
nonnegative for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

When 𝑎(𝑡) = 𝑘
2, condition (A) is equivalent to 0 < 𝑘

2
<

𝜆
1
= (𝜋/𝑇)

2 and condition (B) is equivalent to 0 < 𝑘
2
≤ 𝜆

1
.

In this case, we have

𝐺 (𝑡, 𝑠)=

{
{
{

{
{
{

{

sin 𝑘 (𝑡 − 𝑠) + sin 𝑘 (𝑇 − 𝑡 + 𝑠)

2𝑘 (1 − cos 𝑘𝑇)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,

sin 𝑘 (𝑠 − 𝑡) + sin 𝑘 (𝑇 − 𝑠 + 𝑡)

2𝑘 (1 − cos 𝑘𝑇)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇.

(5)

For a nonconstant function 𝑎(𝑡), there is an 𝐿
𝑝-criterion

proved in [46], which is given in Lemma 1 for the sake of
completeness. Let K(𝑞) denote the best Sobolev constant in
the following inequality:

𝐶‖𝑢‖
2

𝑞
≤ ‖𝑢

󸀠
‖

2

2
, ∀𝑢 ∈ 𝐻

1

0
(0, 𝑇) . (6)

The explicit formula for K(𝑞) is

K (𝑞) =

{
{
{
{
{

{
{
{
{
{

{

2𝜋

𝑞𝑇
1+2/𝑞

(

2

2 + 𝑞

)

1−2/𝑞

(

Γ(1/𝑞)

Γ(1/2 + 1/𝑞)

)

2

if 1 ≤ 𝑞 < ∞,

4

𝑇

if 𝑞 = ∞,

(7)

where Γ is the gamma function, see [47, 48].

Lemma 1 (see [46, Corollary 2.3]). Assume that 𝑎(𝑡) ≻ 0 and
𝑎 ∈ 𝐿

𝑝
[0, 𝑇] for some 1 ≤ 𝑝 ≤ ∞. If

‖𝑎‖
𝑝
< K (2𝑝) , (8)

then the condition (A) holds. Moreover, condition (B) holds if

‖𝑎‖
𝑝
≤ K (2𝑝) . (9)

When the hypothesis (A) is satisfied, we denote

𝑚 = min
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝑀 = max
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝜎 =

𝑚

𝑀

. (10)

Obviously,𝑀 > 𝑚 > 0 and 0 < 𝜎 < 1.
The first existence result deals with the case of a strong

singularity and the proof is based on the following nonlinear
alternative of Leray-Schauder, which can be found in [49] or
[50, pages 120–130].

Lemma 2. Assume Ω is an open subset of a convex set K in
a normed linear space 𝑋 and 𝑝 ∈ Ω. Let 𝑇 : Ω → 𝐾 be a
compact and continuous map. Then one of the following two
conclusions holds.

(I) 𝑇 has at least one fixed point inΩ.
(II) There exists 𝑥 ∈ 𝜕Ω and 0 < 𝜆 < 1 such that 𝑥 =

𝜆𝑇𝑥 + (1 − 𝜆)𝑝.

Theorem 3 (see [37,Theorem 4.1]). Suppose that 𝑎(𝑡) satisfies
(A) and 𝑓(𝑡, 𝑥) satisfies the following.

(H
1
) There exists a nonincreasing positive continuous func-
tion 𝑔

0
(𝑥) on (0,∞) and a constant 𝑅

0
> 0 such that

𝑓(𝑡, 𝑥) ≥ 𝑔
0
(𝑥) for (𝑡, 𝑥) ∈ [0, 𝑇]×(0, 𝑅

0
], where 𝑔

0
(𝑥)

satisfies

lim
𝑥→0

+

𝑔
0
(𝑥) = +∞, lim

𝑥→0
+

∫

𝑅
0

𝑥

𝑔
0
(𝑢) 𝑑𝑢 = +∞. (11)

(H
2
) There exist continuous, nonnegative functions𝑔(𝑥) and
ℎ(𝑥) such that

0 ≤ 𝑓 (𝑡, 𝑥) ≤ 𝑔 (𝑥) + ℎ (𝑥) ∀ (𝑡, 𝑥) ∈ [0, 𝑇] × (0,∞) ,

(12)

𝑔(𝑥) > 0 is nonincreasing and ℎ(𝑥)/𝑔(𝑥) is nonde-
creasing in 𝑥 ∈ (0,∞).

(H
3
) There exists a positive number 𝑟 such that 𝜎𝑟 + 𝛾

∗
> 0

and
𝑟

𝑔 (𝜎𝑟 + 𝛾
∗
) {1 + (ℎ (𝑟 + 𝛾

∗
) /𝑔 (𝑟 + 𝛾

∗
))}

> 𝜔
∗
, (13)

here

𝛾 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠, 𝜔 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠. (14)

Then for each 𝑒 ∈ C(R/𝑇Z,R), (2) has at least one positive
periodic solution𝑥with𝑥(𝑡) > 𝛾(𝑡) for all 𝑡 and 0 < ‖𝑥−𝛾‖ < 𝑟.
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Note that the study in [37, Theorem 4.1] is slightly
different from the above presentation. However, the proof
of the above theorem follows from that of [37, Theorem
4.1] with some minor necessary changes. Condition (H

1
)

corresponds to the classical strong force condition, whichwas
first introduced by Gordon in [30]. In fact, condition (H

1
)

is only used when we try to obtain a prior lower bound. In
Theorem 4, we will show that, for the case 𝛾

∗
≥ 0, we can

remove the strong force condition (H
1
) and replace it by one

weak force condition.

Theorem 4 (see [33, Theorem 3.1]). Assume that (A) and
(H

2
)-(H

3
) are satisfied. Suppose further the following condi-

tion.

(H
4
) For each constant 𝐿 > 0, there exists a continuous
function 𝜙

𝐿
≻ 0 such that 𝑓(𝑡, 𝑥) ≥ 𝜙

𝐿
(𝑡) for all

(𝑡, 𝑥) ∈ [0, 𝑇] × (0, 𝐿].

Then for each 𝑒(𝑡) with 𝛾
∗
≥ 0, (2) has at least one positive

periodic solution𝑥with𝑥(𝑡) > 𝛾(𝑡) for all 𝑡 and 0 < ‖𝑥−𝛾‖ < 𝑟.

For the superlinear case, we can establish the multiplicity
result. The proof is based on a well-known fixed point
theorem in cones, which can be found in [51]. Let 𝐾 be a
cone in 𝑋 and 𝐷 is a subset of 𝑋, we write 𝐷

𝐾
= 𝐷 ∩ 𝐾 and

𝜕
𝐾
𝐷 = (𝜕𝐷) ∩ 𝐾.

Theorem 5 (see [51]). Let 𝑋 be a Banach space and 𝐾 a cone
in 𝑋. Assume Ω

1
, Ω

2 are open bounded subsets of X with
Ω

1

𝐾
̸= 0, Ω

1

𝐾
⊂ Ω

2

𝐾
. Let

𝑇 : Ω

2

𝐾
󳨀→ 𝐾 (15)

be a completely continuous operator such that

(a) ‖𝑇𝑥‖ ≤ ‖𝑥‖ for 𝑥 ∈ 𝜕
𝐾
Ω

1,
(b) there exists 𝜐 ∈ 𝐾 \ {0} such that 𝑥 ̸= 𝑇𝑥 +

𝜆𝜐 𝑓𝑜𝑟𝑎𝑙𝑙 𝑥 ∈ 𝜕
𝐾
Ω

2 and all 𝜆 > 0.

Then 𝑇 has a fixed point in Ω

2

𝐾
\ Ω

1

𝐾
.

Theorem6 (see [33,Theorem 3.2]). Suppose that 𝑎(𝑡) satisfies
(A) and 𝑓(𝑡, 𝑥) satisfies (H

2
)-(H

3
). Furthermore, assume the

following conditions.

(H
5
) There exist continuous, nonnegative functions
𝑔
1
(𝑥), ℎ

1
(𝑥) such that

𝑓 (𝑡, 𝑥) ≥ 𝑔
1
(𝑥) + ℎ

1
(𝑥) , ∀ (𝑡, 𝑥) ∈ [0, 𝑇] × (0,∞) , (16)

𝑔
1
(𝑥) > 0 is nonincreasing and ℎ

1
(𝑥)/𝑔

1
(𝑥) is non-

decreasing in 𝑥.
(H

6
) There exists 𝑅 > 0 with 𝜎𝑅 > 𝑟 such that

𝜎𝑅

𝑔
1
(𝑅 + 𝛾

∗
) {1 + (ℎ

1
(𝜎𝑅 + 𝛾

∗
) /𝑔

1
(𝜎𝑅 + 𝛾

∗
))}

≤ 𝜔
∗
. (17)

Then (2) has one positive periodic solution 𝑥with 𝑟 < ‖𝑥−𝛾‖ ≤

𝑅.

CombinedTheorems 3 and 4 withTheorem 6, we can get
the following two multiplicity results.

Theorem 7. Suppose that 𝑎(𝑡) satisfies (A) and𝑓(𝑡, 𝑥) satisfies
(H

1
)–(H

3
) and (H

5
)-(H

6
). Then (2) has two different positive

periodic solutions 𝑥 and 𝑥 with 0 < ‖𝑥−𝛾‖ < 𝑟 < ‖𝑥−𝛾‖ ≤ 𝑅.

Theorem8. Suppose that 𝑎(𝑡) satisfies (A) and𝑓(𝑡, 𝑥) satisfies
(H

2
)–(H

6
). Then (2) has two different positive periodic solu-

tions 𝑥 and 𝑥 with 0 < ‖𝑥 − 𝛾‖ < 𝑟 < ‖𝑥 − 𝛾‖ ≤ 𝑅.

To illustrate our results, we have selected the following
singular equation:

𝑥
󸀠󸀠
+ 𝑎 (𝑡) 𝑥 = 𝑥

−𝛼
+ 𝜇𝑥

𝛽
+ 𝑒 (𝑡) , (18)

here 𝑎, 𝑒 ∈ C[0, 𝑇], 𝛼, 𝛽 > 0, and 𝜇 ∈ R is a given parameter.
The corresponding results are also valid for the general case

𝑥
󸀠󸀠
+ 𝑎 (𝑡) 𝑥 =

𝑏 (𝑡)

𝑥
𝛼

+ 𝜇𝑐 (𝑡) 𝑥
𝛽
+ 𝑒 (𝑡) , (19)

with 𝑏, 𝑐 ∈ C[0, 𝑇].

Corollary 9. Assume that 𝑎(𝑡) satisfies (A) and 𝛼 > 0, 𝛽 ≥

0, 𝜇 > 0. Then one has the following results.

(i) If 𝛼 ≥ 1, 𝛽 < 1, then for each 𝑒 ∈ C(R/𝑇Z,R), (18)
has at least one positive periodic solution for all 𝜇 > 0.

(ii) If 𝛼 ≥ 1, 𝛽 ≥ 1, then for each 𝑒 ∈ C(R/𝑇Z,R), (18)
has at least one positive periodic solution for each 0 <

𝜇 < 𝜇
1
; here 𝜇

1
is some positive constant.

(iii) If 𝛼 ≥ 1, 𝛽 > 1, then for each 𝑒 ∈ C(R/𝑇Z,R), (18)
has at least two positive periodic solutions for each 0 <

𝜇 < 𝜇
1
.

(iv) If 𝛼 > 0, 𝛽 < 1, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾
∗
≥ 0, (18) has at least one positive periodic solution

for all 𝜇 > 0.

(v) If 𝛼 > 0, 𝛽 ≥ 1, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾
∗
≥ 0, (18) has at least one positive periodic solution

for each 0 < 𝜇 < 𝜇
1
.

(vi) If 𝛼 > 0, 𝛽 > 1, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾
∗
≥ 0, (18) has at least two positive periodic solutions

for each 0 < 𝜇 < 𝜇
1
.

All the above results require that the linear equation
satisfies (A),which cannot cover the critical case.Thenext few
results deal with the case when the condition (B) is satisfied
and the proof is based on Schauder’s fixed point theorem.
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Theorem 10 (see [31, Theorem 3.1]). Assume that conditions
(B) and (H

2
) and (H

4
) are satisfied. Furthermore, suppose that

(H
7
) there exists a positive constant 𝑅 > 0 such that 𝑅 >

Φ
∗
, Φ

∗
+ 𝛾

∗
> 0 and

𝑅 ≥ 𝑔 (Φ
∗
+ 𝛾

∗
) {1 +

ℎ (𝑅 + 𝛾
∗
)

𝑔 (𝑅 + 𝛾
∗
)

}𝜔
∗
, (20)

here Φ
∗
= min

𝑡
Φ(𝑡), Φ(𝑡) = ∫

𝑇

0
𝐺(𝑡, 𝑠)𝜙

𝑅+𝛾
∗(𝑠)𝑑𝑠.

Then (2) has at least one positive 𝑇-periodic solution.

As an application of Theorem 10, we consider the case
𝛾
∗
= 0. Corollary 11 is a direct result of Theorem 10.

Corollary 11 (see [31, Corollary 3.2]). Assume that conditions
(B) and (H

2
) and (H

4
) are satisfied. Furthermore, assume that

(H
8
) there exists a positive constant 𝑅 > 0 such that 𝑅 > Φ

∗

and

𝑅 ≥ 𝑔 (Φ
∗
) {1 +

ℎ (𝑅 + 𝛾
∗
)

𝑔 (𝑅 + 𝛾
∗
)

}𝜔
∗
. (21)

If 𝛾
∗
= 0, then (2) has at least one positive 𝑇-periodic solution.

Corollary 12 (see [31, Example 3.5]). Suppose that 𝑎 satisfies
(B) and 0 < 𝛼 < 1, 𝛽 ≥ 0, then for each 𝑒(𝑡) ∈ C(R/𝑇Z,R),
with 𝛾

∗
= 0, one has the following:

(i) if 𝛼 + 𝛽 < 1 − 𝛼
2, then (18) has at least one positive

periodic solution for each 𝜇 ≥ 0,
(ii) if 𝛼 + 𝛽 ≥ 1 − 𝛼

2, then (18) has at least one positive
𝑇-periodic solution for each 0 ≤ 𝜇 < 𝜇

2
, where 𝜇

2
is

some positive constant.

The next results explore the case when 𝛾
∗
> 0.

Theorem13 (see [31,Theorem3.6]). Suppose that 𝑎(𝑡) satisfies
(B) and 𝑓(𝑡, 𝑥) satisfies condition (H

2
). Furthermore, assume

that

(H
9
) there exists 𝑅 > 𝛾

∗ such that

𝑔 (𝛾
∗
) {1 +

ℎ (𝑅 + 𝛾
∗
)

𝑔 (𝑅 + 𝛾
∗
)

}𝜔
∗
≤ 𝑅. (22)

If 𝛾
∗
> 0, then (2) has at least one positive 𝑇-periodic solution.

Corollary 14 (see [31, Example 3.8]). Suppose that 𝑎(𝑡)

satisfies (B) and 𝛼, 𝛽 ≥ 0, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾
∗
> 0, one has the following:

(i) if 𝛼 + 𝛽 < 1, then (18) has at least one positive 𝑇-
periodic solution for each 𝜇 ≥ 0,

(ii) if 𝛼 + 𝛽 ≥ 1, then (18) has at least one positive 𝑇-
periodic solution for each 0 ≤ 𝜇 < 𝜇

3
, where 𝜇

3
is some

positive constant.

3. Singular Damped Equations

In this section, we recall some results on second-order
singular damped differential equations

𝑥
󸀠󸀠
+ ℎ (𝑡) 𝑥

󸀠
+ 𝑎 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥, 𝑥

󸀠
) , (23)

where ℎ, 𝑎 ∈ C(R/𝑇Z,R) and the nonlinearity 𝑓 ∈

C((R/𝑇Z) × (0,∞) × R,R). In particular, the nonlinearity
may have a repulsive singularity at 𝑥 = 0, which means that

lim
𝑥→0

+

𝑓 (𝑡, 𝑥, 𝑦) = +∞, uniformly in (𝑡, 𝑦) ∈ R
2
. (24)

First we recall some results on the linear damped equation

𝑥
󸀠󸀠
+ ℎ (𝑡) 𝑥

󸀠
+ 𝑎 (𝑡) 𝑥 = 0, (25)

associated to periodic boundary conditions (4). As in the
last section, we say that (25)-(4) is nonresonant when its
unique𝑇-periodic solution is the trivial one.When (25)-(4) is
nonresonant, as a consequence of Fredholm’s alternative, the
nonhomogeneous equation

𝑥
󸀠󸀠
+ ℎ (𝑡) 𝑥

󸀠
+ 𝑎 (𝑡) 𝑥 = 𝑙 (𝑡) (26)

admits a unique 𝑇-periodic solution which can be written as

𝑥 (𝑡) = ∫

𝑇

0

𝐺
2
(𝑡, 𝑠) 𝑙 (𝑠) 𝑑𝑠, (27)

where 𝐺
2
(𝑡, 𝑠) is the Green’s function of problem (25)-(4).

We also assume that the following standing hypothesis is
satisfied.

(C) TheGreen’s function𝐺
2
(𝑡, 𝑠), associatedwith (25)-(4),

is positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

To guarantee that (C) is satisfied, we require the antimaxi-
mumprinciple for (25)-(4) proved byHakl and Torres in [52].
To do this, let us define the functions

𝜎 (ℎ) (𝑡) = exp(∫
𝑡

0

ℎ (𝑠) 𝑑𝑠) ,

𝜎
1
(ℎ) (𝑡) = 𝜎 (ℎ) (𝑇) ∫

𝑡

0

𝜎 (ℎ) (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

𝜎 (ℎ) (𝑠) 𝑑𝑠.

(28)

Lemma 15 (see [52, Theorem 2.2]). Assume that 𝑎 ̸≡ 0 and
the following two inequalities are satisfied:

∫

𝑇

0

𝑎 (𝑠) 𝜎 (ℎ) (𝑠) 𝜎
1
(−ℎ) (𝑠) 𝑑𝑠 ≥ 0,

sup
0≤𝑡≤𝑇

{∫

𝑡+𝑇

𝑡

𝜎 (−ℎ) (𝑠) 𝑑𝑠 ∫

𝑡+𝑇

𝑡

[𝑎 (𝑠)] + 𝜎 (ℎ) (𝑠) 𝑑𝑠} ≤ 4,

(29)

where [𝑎(𝑠)]
+
= max{𝑎(𝑠), 0}. Then (C) holds.

For the special case ∫

𝑇

0
𝑎(𝑡)𝜎(ℎ)(𝑡)𝑑𝑡 > 0 and ℎ ∈

̃C(R/𝑇Z) := {ℎ ∈ C(R/𝑇Z) : ℎ = 0}, one criterion has been
developed by Cabada and Cid in [40].
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Theorem 16 (see [40, Theorem 5.1]). Assume that ℎ ∈

̃C(R/𝑇Z) and ∫

𝑇

0
𝑎(𝑡)𝜎(ℎ)(𝑡)𝑑𝑡 > 0. Suppose further that

there exists 1 ≤ 𝑝 ≤ ∞ such that

(𝐵(𝑇))
1+1/𝑞󵄩

󵄩
󵄩
󵄩
A

+

󵄩
󵄩
󵄩
󵄩𝑝,𝑇

< M2
(2𝑞) , (30)

where

𝐵 (𝑇) = ∫

𝑇

0

𝜎 (−ℎ) (𝑡) 𝑑𝑡,

A
+
(𝑡) = 𝑎

+
(𝑡) (𝜎(ℎ)(𝑡))

2−1/𝑝
.

(31)

Then (𝐶) holds.

Theorem 17 (see [35, Theorem 3.2]). Suppose that (25)
satisfies (C) and

∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑑𝑡 > 0. (32)

Furthermore, assume that there exists a constant 𝑟 > 0 such
that

(G
1
) there exists a continuous function 𝜙

𝑟
≻ 0 such that

𝑓(𝑡, 𝑥, 𝑦) ≥ 𝜙
𝑟
(𝑡) for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑟] ×

(−∞,∞),
(G

2
) there exist continuous, nonnegative functions 𝑔(⋅), ℎ(⋅),
and 󰜚(⋅) such that

0 ≤ 𝑓 (𝑡, 𝑥, 𝑦) ≤ (𝑔 (𝑥) + ℎ (𝑥)) 󰜚 (
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
) ,

∀ (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑟] ×R,
(33)

where 𝑔(⋅) > 0 is nonincreasing, ℎ(⋅)/𝑔(⋅) is non-
decreasing in (0, 𝑟], and 󰜚(⋅) is non-decreasing in
(0,∞),

( G
3
) the following inequality holds:

𝑟

𝑔 (𝜄𝑟) {1 + (ℎ (𝑟) /𝑔 (𝑟))} 󰜚 (𝐿𝑟)

> 𝜔
∗
, (34)

where

𝜔 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠, 𝐿 =

2 ∫

𝑇

0
𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑑𝑡

min
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡)

,

𝜄 =

𝑚

𝑀

, 𝑚 = min
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝑀 = max
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) ,

(35)

then (23) has at least one positive 𝑇-periodic solution 𝑥 with
0 < ‖𝑥‖ ≤ 𝑟.

Corollary 18 (see [35, Corollary 3.3]). Let the nonlinearity in
(23) be

𝑓 (𝑡, 𝑥, 𝑦) = (1 +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛾

) (𝑥
−𝛼

+ 𝜇𝑥
𝛽
) , (36)

where 𝛼 > 0, 𝛽, 𝛾 ≥ 0, 𝜇 > 0 is a positive parameter.

(i) If 𝛽 + 𝛾 < 1, then (23) has at least one positive periodic
solution for each 𝜇 > 0.

(ii) If 𝛽 + 𝛾 ≥ 1, then (23) has at least one positive periodic
solution for each 0 < 𝜇 < 𝜇

∗

1
, where 𝜇∗

1
is some positive

constant.

Corollary 19 (see [35, Corollary 3.4]). Let the nonlinearity in
(23) be

𝑓 (𝑡, 𝑥, 𝑦) = (1 +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝛾

) (

1

𝑥
𝛼
−

𝜇

𝑥
𝛽
) , (37)

where 𝛼 > 𝛽 > 0, 𝛾 ≥ 0 with 𝛾 < 𝛼 + 1, 𝜇 > 0 is a positive
parameter. Then there exists a positive constant 𝜇∗

2
such that

(23) has at least one positive 𝑇-periodic solution for each 0 ≤

𝜇 < 𝜇
∗

2
.

Corollary 19 is interesting because the singularity on the
right-hand side combines attractive and repulsive effects.The
analysis of such differential equations with mixed singular-
ities is at this moment very incomplete, and few references
can be cited [22, 44].Therefore, the results in Corollary 19 can
be regarded as one contribution to the literature trying to fill
partially this gap in the study of singularities of mixed type.

As in the last section, if we assume that the linear equation
(25)-(4) has a nonnegative Green’s function, we can also get
some results based on Schauder’s fixed point theorem, and the
results can cover the critical case.

4. Singular Impulsive Differential Equations

In this section, we will study the existence of periodic solu-
tions for some singular differential equations with impulsive
effects by using variational methods.

Firstly, we consider the following second-order nonau-
tonomous singular problem:

𝑢
󸀠󸀠
−

𝑏 (𝑡)

𝑢
𝛼

= 𝑒 (𝑡) , a.e. 𝑡 ∈ (0, 𝑇) ,

𝑢 (0) − 𝑢 (𝑇) = 𝑢
󸀠

(0) − 𝑢
󸀠

(𝑇) = 0,

(38)

under the impulse conditions

Δ𝑢
󸀠
(𝑡

𝑗
) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑝 − 1, (39)

where 𝑡
𝑗
, 𝑗 = 1, 2, . . . , 𝑝−1 are the instants where the impulses

occur and 0 = 𝑡
0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑝−1
< 𝑡

𝑝
= 𝑇, 𝐼

𝑗
: R →

R (𝑗 = 1, 2, . . . , 𝑝 − 1) are continuous.
Our result is presented as follows.

Theorem 20 (see [19, Theorem 1.1]). Assume that 𝛼 > 1 and
the following conditions hold.

(𝑆
1
) 𝑏 ∈ C1

([0, 𝑇], (0,∞)) is 𝑇-periodic and 𝑏
󸀠
(𝑡) ≥ 0 for

all 𝑡 ∈ [0, 𝑇].
(𝑆

2
) 𝑒 ∈ 𝐿

2
([0, 𝑇],R) is 𝑇-periodic and ∫𝑇

0
𝑒(𝑡)𝑑𝑡 < 0.

(𝑆
3
) There exist two constants𝑚,𝑀 such that for any 𝑡 ∈ R,

𝑚 ≤ 𝐼
𝑗
(𝑡) ≤ 𝑀, 𝑗 = 1, 2, . . . , 𝑝 − 1, (40)

where𝑚 < 0 and 0 ≤ 𝑀 < (−1/(𝑝 − 1)) ∫

𝑇

0
𝑒(𝑡)𝑑𝑡.
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(𝑆
4
) For any 𝑡 ∈ R,

∫

𝑡

0

𝐼
𝑗
(𝑠) 𝑑𝑠 ≥ 0, 𝑗 = 1, 2, . . . , 𝑝 − 1. (41)

Then problem (38)-(39) has at least one solution.

Remark 21. In fact, it is not difficult to find some functions 𝐼
𝑗

satisfying (𝑆
3
) and (𝑆

4
). For example,

𝐼
𝑗
(𝑡) = sin 𝑡, 𝑡 ∈ R. (42)

Let

𝐻
1

𝑇
= {𝑢 : [0, 𝑇] 󳨀→ R | 𝑢 is absolutely continuous,

𝑢 (0) = 𝑢 (𝑇) and 𝑢
󸀠
∈ 𝐿

2

([0, 𝑇] ,R)} ,

(43)

with the inner product

(𝑢, 𝑣) = ∫

𝑇

0

𝑢 (𝑡) 𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑢
󸀠

(𝑡) 𝑣
󸀠

(𝑡) 𝑑𝑡, ∀𝑢, 𝑣 ∈ 𝐻
1

𝑇
.

(44)

The corresponding norm is defined by

‖𝑢‖
𝐻
1

T
= (∫

𝑇

0

|𝑢(𝑡)|
2
𝑑𝑡 + ∫

𝑇

0

|𝑢
󸀠
(𝑡)|

2

𝑑𝑡)

1/2

, ∀𝑢 ∈ 𝐻
1

𝑇
.

(45)

Then𝐻
1

𝑇
is a Banach space (in fact it is a Hilbert space).

If 𝑢 ∈ 𝐻
1

𝑇
, then 𝑢 is absolutely continuous and 𝑢

󸀠
∈

𝐿
2
([0, 𝑇],R). In this case, Δ𝑢󸀠

(𝑡) = 𝑢
󸀠
(𝑡

+
) − 𝑢

󸀠
(𝑡

−
) = 0 is not

necessarily valid for every 𝑡 ∈ (0, 𝑇) and the derivative 𝑢󸀠 may
exist some discontinuities. It may lead to impulse effects.

Following the ideas of [53], take 𝑣 ∈ 𝐻
1

𝑇
and multiply the

two sides of the equality

−𝑢
󸀠󸀠
+

𝑏 (𝑡)

𝑢
𝛼

+ 𝑒 (𝑡) = 0 (46)

by 𝑣 and integrate from 0 to 𝑇, so we have

∫

𝑇

0

[−𝑢
󸀠󸀠
+

𝑏 (𝑡)

𝑢
𝛼

+ 𝑒 (𝑡)] 𝑣𝑑𝑡 = 0. (47)

Note that since 𝑢󸀠
(0) − 𝑢

󸀠
(𝑇) = 0, one has

∫

𝑇

0

𝑢
󸀠󸀠

(𝑡) 𝑣 (𝑡) 𝑑𝑡

=

𝑝−1

∑

𝑗=0

∫

𝑡
𝑗+1

𝑡
𝑗

𝑢
󸀠󸀠

(𝑡) 𝑣 (𝑡) 𝑑𝑡

=

𝑝−1

∑

𝑗=0

(𝑢
󸀠
(𝑡

−

j+1) 𝑣 (𝑡
−

𝑗+1
) − 𝑢

󸀠
(𝑡

+

𝑗
) 𝑣 (𝑡

+

𝑗
))

−

𝑝−1

∑

𝑗=0

∫

𝑡
𝑗+1

𝑡
𝑗

𝑢
󸀠

(𝑡) 𝑣
󸀠

(𝑡) 𝑑𝑡

= 𝑢
󸀠

(𝑇) 𝑣 (𝑇) − 𝑢
󸀠

(0) 𝑣 (0) −

𝑝−1

∑

𝑗=1

Δ𝑢
󸀠
(𝑡

𝑗
) 𝑣 (𝑡

𝑗
)

− ∫

𝑇

0

𝑢
󸀠

(𝑡) 𝑣
󸀠

(𝑡) 𝑑𝑡

= −

𝑝−1

∑

𝑗=1

𝐼
𝑗
(𝑢 (𝑡

𝑗
)) 𝑣 (𝑡

𝑗
) − ∫

𝑇

0

𝑢
󸀠

(𝑡) 𝑣
󸀠

(𝑡) 𝑑𝑡.

(48)

Combining with (47), we get

∫

𝑇

0

𝑢
󸀠

(𝑡) 𝑣
󸀠

(𝑡) 𝑑𝑡 +

𝑝−1

∑

𝑗=1

𝐼
𝑗
(𝑢 (𝑡

𝑗
)) 𝑣 (𝑡

𝑗
)

+ ∫

𝑇

0

𝑏 (𝑡)

𝑢
𝛼
𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑣 (𝑡) 𝑑𝑡 = 0.

(49)

As a result, we introduce the following concept of a weak
solution for problem (38)-(39).

Definition 22. One says that a function 𝑢 ∈ 𝐻
1

𝑇
is a weak

solution of problem (38)-(39) if

∫

𝑇

0

𝑢
󸀠

(𝑡) 𝑣
󸀠

(𝑡) 𝑑𝑡 +

𝑝−1

∑

𝑗=1

𝐼
𝑗
(𝑢 (𝑡

𝑗
)) 𝑣 (𝑡

𝑗
)

+ ∫

𝑇

0

𝑏 (𝑡)

𝑢
𝛼
𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑣 (𝑡) 𝑑𝑡 = 0

(50)

holds for any 𝑣 ∈ 𝐻
1

𝑇
.

Define the functionalΦ : 𝐻
1

𝑇
→ R by

Φ (𝑢) :=

1

2

∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 +

𝑝−1

∑

𝑗=1

∫

𝑢(𝑡
𝑗
)

0

𝐼
𝑗
(𝑠) 𝑑𝑠

+ ∫

𝑇

0

𝑏 (𝑡) (∫

𝑢(𝑡)

1

1

𝑠
𝛼
𝑑𝑠)𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

(51)

for every 𝑢 ∈ 𝐻
1

𝑇
. Clearly, Φ

𝜆
is well defined on 𝐻

1

𝑇
, con-

tinuously Gáteaux differentiable functional whose Gáteaux
derivative is the functionalΦ󸀠

𝜆
(𝑢), given by

Φ
󸀠

𝜆
(𝑢) 𝑣 = ∫

𝑇

0

𝑢
󸀠

(𝑡) 𝑣
󸀠

(𝑡) 𝑑𝑡 +

𝑝−1

∑

𝑗=1

𝐼
𝑗
(𝑢 (𝑡

𝑗
)) 𝑣 (𝑡

𝑗
)

− ∫

𝑇

0

𝑏 (𝑡)

𝑢
𝛼
𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑣 (𝑡) 𝑑𝑡,

(52)

for any 𝑣 ∈ 𝐻
1

𝑇
. Moreover, it is easy to verify that Φ

𝜆
is

weakly lower semicontinuous. Indeed, if {𝑢
𝑛
} ⊂ 𝐻

1

𝑇
, 𝑢 ∈ 𝐻

1

𝑇
,

and 𝑢
𝑛
⇀ 𝑢, then {𝑢

𝑛
} converges uniformly to 𝑢 on [0, 𝑇]
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and 𝑢
𝑛

→ 𝑢 on 𝐿
2
([0, 𝑇]), and combining the fact that

lim inf
𝑛→∞

‖𝑢
𝑛
‖
𝐻
1

𝑇

≥ ‖𝑢‖
𝐻
1

𝑇

, one has

lim inf
𝑛→∞

Φ
𝜆
(𝑢

𝑛
)

= lim inf
𝑛→∞

(

1

2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2

𝐻
1

𝑇

−

1

2

∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
(𝑡)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡

+

𝑝−1

∑

𝑗=1

∫

𝑢
𝑛
(𝑡
𝑗
)

0

𝐼
𝑗
(𝑠) 𝑑𝑠

− ∫

𝑇

0

𝑏 (𝑡) (∫

𝑢
𝑛
(𝑡)

1

1

𝑠
𝛼
𝑑𝑠)𝑑𝑡

+∫

𝑇

0

𝑒 (𝑡) 𝑢
𝑛
(𝑡) 𝑑𝑡)

≥

1

2

∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 +

𝑝−1

∑

𝑗=1

∫

𝑢(𝑡
𝑗
)

0

𝐼
𝑗
(𝑠) 𝑑𝑠

− ∫

𝑇

0

𝑏 (𝑡) (∫

𝑢(𝑡)

1

1

𝑠
𝛼
𝑑𝑠)𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑢 (𝑡) 𝑑𝑡 = Φ
𝜆
(𝑢) .

(53)

By the standard discussion, the critical points of Φ
𝜆
are the

weak solutions of problem (38)-(39), see [53, 54].
The following version of the mountain pass theorem will

be used in our argument.

Theorem 23 (see [55, Theorem 4.10]). Let 𝑋 be a Banach
space and let 𝜑 ∈ 𝐶

1
(𝑋,R). Assume that there exist 𝑥

0
, 𝑥

1
∈ 𝑋

and an open neighborhoodΩ of 𝑥
0
such that 𝑥

1
∈ 𝑋 \ Ω and

max {𝜑 (𝑥
0
) , 𝜑 (𝑥

1
)} < inf

𝑥∈𝜕Ω

𝜑 (𝑥) . (54)

Let

Γ = {ℎ ∈ 𝐶 ([0, 1] , 𝑋) : ℎ (0) = 𝑥
0
, ℎ (1) = 𝑥

1
} ,

𝑐 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝜑 (ℎ (𝑠)) .

(55)

If 𝜑 satisfies the (PS)-condition, that is, a sequence {𝑢
𝑛
} in 𝑋

satisfying 𝜑(𝑢
𝑛
) is bounded and 𝜑

󸀠
(𝑢

𝑛
) → 0 as 𝑛 → ∞ has

a convergent subsequence, then 𝑐 is a critical value of 𝜑 and
𝑐 > max{𝜑(𝑥

0
), 𝜑(𝑥

1
)}.

Next we consider 𝑇-periodic solution for another impul-
sive singular problem:

𝑢
󸀠󸀠

(𝑡) −

1

𝑢
𝛼
(𝑡)

= 𝑒 (𝑡) , (56)

under impulsive conditions

Δ𝑢
󸀠
(𝑡

𝑗
) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑝 − 1, (57)

where 𝛼 ≥ 1, 𝑒 ∈ 𝐿
1
([0, 𝑇],R) is 𝑇-periodic, Δ𝑢󸀠

(𝑡
𝑗
) =

𝑢
󸀠
(𝑡

+

𝑗
)−𝑢

󸀠
(𝑡

−

𝑗
)with 𝑢󸀠

(𝑡
±

𝑗
) = lim

𝑡→ 𝑡
±

𝑗

𝑢
󸀠
(𝑡); 𝑡

𝑗
, 𝑗 = 1, 2, . . . , 𝑝−1

are the instants where the impulses occur, and 0 = 𝑡
0
< 𝑡

1
<

𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑝−1
< 𝑡

𝑝
= 𝑇, 𝑡

𝑗+𝑝
= 𝑡

𝑗
+ 𝑇; 𝐼

𝑗
: R → R(𝑗 =

1, 2, . . . , 𝑝 − 1) are continuous and 𝐼
𝑗+𝑝

≡ 𝐼
𝑗
.

In 1987, Lazer and Solimini [29] proved a famous result as
follows.

Theorem 24 (see [29]). Assume that 𝑒 ∈ 𝐿
1
([0, 𝑇],R) is 𝑇-

periodic. Then problem (56) has a positive 𝑇-periodic weak
solution if and only if ∫𝑇

0
𝑒(𝑡)𝑑𝑡 < 0.

From Theorem 24, if ∫𝑇

0
𝑒(𝑡)𝑑𝑡 ≥ 0, then problem (52)

does not have a positive 𝑇-periodic weak solution. However,
if the impulses happen, for this singular problem may exist
a positive 𝑇-periodic weak solution. Inspired by the above
facts, our aim is to reveal a new existence result on positive𝑇-
periodic solution for singular problem (56) when impulsive
effects are considered, that is, problem (56)-(57). Indeed, this
periodic solution is generated by impulses. Here, we say a
solution is generated by impulses if this solution is nontrivial
when 𝐼

𝑗
̸≡ 0 for some 1 < 𝑗 < 𝑝 − 1, but it is trivial when

𝐼
𝑗
≡ 0 for all 1 < 𝑗 < 𝑝 − 1. For example, if problem (56)-(57)

does not possess positive periodic solution when 𝐼
𝑗
≡ 0 for all

1 < 𝑗 < 𝑝 − 1, then a positive periodic solution 𝑢 of problem
(56)-(57) with 𝐼

𝑗
̸≡ 0 for some 1 < 𝑗 < 𝑝 − 1 is called a

positive periodic solution generated by impulses.
Our result is presented as follows.

Theorem 25 (see [35, Theorem 1.2]). Assume the following:

(𝑆
1
) 𝑒 ∈ 𝐿

1
([0, 𝑇],R) is 𝑇-periodic and ∫𝑇

0
𝑒(𝑡)𝑑𝑡 ≥ 0;

(𝑆
2
) there exist two constants𝑚,𝑀 such that for any 𝑠 ∈ R,

𝑚 ≤ 𝐼
𝑗
(𝑠) ≤ 𝑀, 𝑗 = 1, 2, . . . , 𝑝 − 1, (58)

where𝑚 ≤ 𝑀 < (−1/(𝑝 − 1)) ∫

𝑇

0
𝑒(𝑡)𝑑𝑡 ≤ 0.

Then problem (56)-(57) has at least a positive 𝑇-periodic
solution.

5. Singular Differential Systems

In this section, we will consider the system of Hill’s equations

𝑢
󸀠󸀠

𝑖
(𝑡) + 𝑎

𝑖
(𝑡) 𝑢

𝑖
(𝑡) = 𝐹

𝑖
(𝑡, 𝑢

1
(𝑡) , 𝑢

2
(𝑡) , . . . , 𝑢

𝑛
(𝑡)) ,

1 ≤ 𝑖 ≤ 𝑛.

(59)

Here, 𝑎
𝑖
and 𝐹

𝑖
are 𝑇-periodic in the variable 𝑡, 𝑎

𝑖
∈ 𝐿

1
[0, 𝑇],

and the nonlinearities 𝐹
𝑖
(𝑡, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
) can be singular at

𝑥
𝑗
= 0 where 𝑗 ∈ {1, 2, . . . , 𝑛}.
Throughout, let 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
). We are interested in

establishing the existence of continuous 𝑇-periodic solutions
𝑢 of the system (59), that is, 𝑢 ∈ (𝐶(R))

𝑛 and 𝑢(𝑡) = 𝑢(𝑡 + 𝑇)

for all 𝑡 ∈ R. Moreover, we are concerned with constant-sign
solutions 𝑢, by which we mean 𝜃

𝑖
𝑢
𝑖
(𝑡) ≥ 0 for all 𝑡 ∈ R and

1 ≤ 𝑖 ≤ 𝑛, where 𝜃
𝑖
∈ {1, −1} is fixed. Note that positive

solution, the usual consideration in the literature, is a special
case of constant-sign solution when 𝜃

𝑖
= 1 for 1 ≤ 𝑖 ≤ 𝑛.
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We will employ the Schauder’s fixed point theorem to
establish the existence of solutions. Indeed, in Section 5.1 we
will first tackle a particular case of (59) when

𝐹
𝑖
(𝑡, 𝑢 (𝑡)) = 𝜕

2
ℎ
𝑖
(𝑡,

1

2

|𝑢(𝑡)|
2
) 𝑢

𝑖
(𝑡) + 𝑓

𝑖
(𝑡) . (60)

Here, 𝜕
2
ℎ
𝑖
is the partial derivative of ℎ

𝑖
with respect to the

second variable, and | ⋅ | is a norm in R𝑛. The particular case
(60) occurs in the problem [36]

𝑢̈ (𝑡) + ∇
𝑢
𝑃 (𝑡, 𝑢 (𝑡)) = 𝑓 (𝑡) , (61)

where the potential

𝑃 (𝑡, 𝑢) =

1

2

𝑎 (𝑡) |𝑢|
2
− ℎ (𝑡,

1

2

|𝑢|
2
) , (62)

and ℎ presents a singularity of the repulsive type, that is,
lim

|𝑥|→0
ℎ(𝑡, 𝑥) = ∞ uniformly in 𝑡.The general problem (59)

will be investigated in Section 5.2; here the singularities are
not necessarily generated by a potential as in the case of (60).
To illustrate our results, several examples will be presented.

In [45], the authors use a nonlinear alternative of the
Leray-Schauder type and a fixed point theorem in cones to
establish the existence of two positive periodic solutions for
the system

𝑢̈ (𝑡) + 𝑎 (𝑡) 𝑢 (𝑡) = 𝐺 (𝑢 (𝑡)) , (63)

where 𝐺 can be expressed as a sum of two positive functions
satisfying certainmonotone conditions.Therefore, the results
in [45] are not applicable to (59) with 𝐹

𝑖
as in (60). In [45] it

is also shown that the system

𝑢
󸀠󸀠

1
(𝑡) + 𝑎

1
(𝑡) 𝑢

1
(𝑡) = (√𝑢

2

1
+ 𝑢

2

2
)

−𝛽

+ 𝜈(√𝑢
2

1
+ 𝑢

2

2
)

𝛾

,

𝑢
󸀠󸀠

2
(𝑡) + 𝑎

2
(𝑡) 𝑢

2
(𝑡) = (√𝑢

2

1
+ 𝑢

2

2
)

−𝛽

+ 𝜈(√𝑢
2

1
+ 𝑢

2

2
)

𝛾

(64)

has a solution when 𝛽 > 0, 𝛾 ∈ [0, 1), and 𝜈 > 0. We will
generalize the system (64) in Examples 46–48 to allow 𝜈 to
be zero or negative. The improvement is possible probably
due to the fact that we do not need to make a technical
truncation to get compactness when we employ the Schauder
fixed point theorem as compared towhen the Leray-Schauder
alternative is used. In fact, the set that we work on excludes
the singularities.The results presented in this section not only
generalize the papers [36, 39, 45] to systems and existence of
constant-sign solutions, but also improve and/or complement
the results in these earlier work as well as other research
papers [56–60]. This section is based on the work in [61].

5.1. Existence Results for (60). In this section we will consider
the system of Hill’s equations

𝑢
󸀠󸀠

𝑖
(𝑡) + 𝑎

𝑖
(𝑡) 𝑢

𝑖
(𝑡) = 𝜕

2
ℎ
𝑖
(𝑡,

1

2

|𝑢(𝑡)|
2
) 𝑢

𝑖
(𝑡) + 𝑓

𝑖
(𝑡) ,

1 ≤ 𝑖 ≤ 𝑛.

(65)

Here, 𝜕
2
ℎ
𝑖
(𝑡, 𝑠) ≡ (𝜕/𝜕𝑠)ℎ

𝑖
(𝑡, 𝑠) and | ⋅ | is a norm in R𝑛.

Moreover, 𝑎
𝑖
(𝑡), 𝜕

2
ℎ
𝑖
(𝑡, 𝑠), and 𝑓

𝑖
(𝑡) are 𝑇-periodic in 𝑡, 𝑎

𝑖
∈

𝐿
1
[0, 𝑇], 𝑓

𝑖
∈ 𝐿

1
[0, 𝑇], and 𝜕

2
ℎ
𝑖
(𝑡, 𝑠) can be singular at 𝑠 = 0.

To seek a 𝑇-periodic solution 𝑢𝑇
= (𝑢

𝑇

1
, 𝑢

𝑇

2
, . . . , 𝑢

𝑇

𝑛
) of the

system (65), we first obtain a solution 𝑢∗
= (𝑢

∗

1
, 𝑢

∗

2
, . . . , 𝑢

∗

𝑛
) of

the following system of boundary value problems:

𝑢
󸀠󸀠

𝑖
(𝑡) + 𝑎

𝑖
(𝑡) 𝑢

𝑖
(𝑡)

= 𝜕
2
ℎ
𝑖
(𝑡,

1

2

|𝑢 (𝑡)|
2
) 𝑢

𝑖
(𝑡) + 𝑓

𝑖
(𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑢
𝑖
(0) = 𝑢

𝑖
(𝑇) , 𝑢

󸀠

𝑖
(0) = 𝑢

󸀠

𝑖
(𝑇) , 1 ≤ 𝑖 ≤ 𝑛.

(66)

Then, set

𝑢
𝑇

(𝑡) = 𝑢
∗

(𝑡 − 𝑚𝑇) , 𝑡 ∈ [𝑚𝑇, (𝑚 + 1) 𝑇] , 𝑚 ∈ Z. (67)

Ourmain tool is Schauder’s fixed point theorem, which is
stated below for completeness.

Theorem 26 (see [62]). Let Ω be a convex subset of a Banach
space 𝐵 and 𝑆 : Ω → Ω a continuous and compact map.Then
𝑆 has a fixed point.

To begin, let 𝑔
𝑖
be Green’s function of the boundary value

problem

𝑥
󸀠󸀠

(𝑡) + 𝑎
𝑖
(𝑡) 𝑥 (𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 𝑥 (𝑇) , 𝑥
󸀠

(0) = 𝑥
󸀠

(𝑇) .

(68)

Throughout, we will assume that the functions 𝑎
𝑖
∈ 𝐿

1
[0, 𝑇]

are such that

(C1) the Hill’s equation 𝑥
󸀠󸀠
(𝑡) + 𝑎

𝑖
(𝑡)𝑥(𝑡) = 0 is nonreso-

nant (i.e., the unique periodic solution is the trivial
solution), and 𝑔

𝑖
(𝑡, 𝑠) ≥ 0 for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

Note that Torres [46] has a result on 𝑎
𝑖
(𝑡) that ensures that

condition (C1) is satisfied. In fact, if 𝑎
𝑖
(𝑡) = 𝑘

2, then (C1) holds
if 𝑘 ∈ (0, 𝜋/𝑇]; if 𝑎

𝑖
(𝑡) is not a constant, then (C1) is valid if the

𝐿
𝑝
norm of 𝑎

𝑖
(𝑡) is bounded above by some specific constant.

Let 𝜃
𝑖
∈ {1, −1}, 1 ≤ 𝑖 ≤ 𝑛 be fixed. Define

𝜙
𝑖
(𝑡) = ∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝜃

𝑖
𝑓
𝑖
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛. (69)

We also let

𝜙
min
𝑖

= min
𝑡∈[0,𝑇]

𝜙
𝑖
(𝑡) , 𝜙

max
𝑖

= max
𝑡∈[0,𝑇]

𝜙
𝑖
(𝑡) . (70)

We now present our main result which tackles (65) when
the norm | ⋅ | in R𝑛 is the 𝑙

𝑝
norm or the 𝑙

∞
norm.

Theorem 27. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (𝐶1),

(C2) 𝜙min
𝑖

> 0;
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(C3) let 𝐻
𝑖
(𝑡, 𝑠) = (𝜕/𝜕𝑠)ℎ

𝑖
(𝑡, 𝑠); for any numbers 𝑏, 𝑏󸀠 with

𝑏
󸀠
≥ 𝑏 > 0, the function 𝐻

𝑖
: [0,T] × [𝑏, 𝑏

󸀠
] → R is

an 𝐿
1-Carathéodory function, that is,

(i) the map 𝑠 󳨃→ 𝐻
𝑖
(𝑡, 𝑠) is continuous for almost all

𝑡 ∈ [0, 𝑇],
(ii) the map 𝑡 󳨃→ 𝐻

𝑖
(𝑡, 𝑠) is measurable for all 𝑠 ∈

[𝑏, 𝑏
󸀠
],

(iii) for any 𝑟 > 0, there exists 𝜇
𝑟,𝑖
∈ 𝐿

1
[0, 𝑇] such that

|𝑠| ≤ 𝑟(𝑠 ∈ [𝑏, 𝑏
󸀠
]) implies |𝐻

𝑖
(𝑡, 𝑠)| ≤ 𝜇

𝑟,𝑖
(𝑡) for

almost all 𝑡 ∈ [0, 𝑇];

(C4) (𝜕/𝜕𝑠)ℎ
𝑖
(𝑡, 𝑠) ≥ 0 for 𝑡 ∈ [0, 𝑇] and 𝑠 > 0;

(C5) there exist 𝑐
𝑖
> 0 and 𝛼

𝑖
> 0 such that

𝜕

𝜕𝑠

ℎ
𝑖
(𝑡, 𝑠) ≤ 𝑐

𝑖
𝑠
−𝛼
𝑖
, 𝑡 ∈ [0, 𝑇] , 𝑠 > 0; (71)

(C6) the norm | ⋅ | is the 𝑙
𝑝
norm where 1 ≤ 𝑝 ≤ ∞ is fixed,

and

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 < 𝐴

𝑝

𝑖
(𝑐

𝑖
2
𝛼
𝑖
)
−1

, 𝑡 ∈ [0, 𝑇] , (72)

where

𝐴
𝑝

𝑖
=

{
{
{
{
{

{
{
{
{
{

{

[

𝑛

∑

𝑘=1

(𝜙
min
𝑘

)

𝑝

]

2𝛼
𝑖
/𝑝

, 1 ≤ 𝑝 < ∞,

[max
1≤𝑘≤𝑛

𝜙
min
𝑘

]

2𝛼
𝑖

, 𝑝 = ∞.

(73)

Then, (65) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

𝜙
min
𝑖

≤ 𝜃
𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅

𝑖
, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (74)

where

𝑅
𝑖
≥ 𝜙

min
𝑖

, 𝑅
𝑖
≥ 𝜙

max
𝑖

[1 −

𝑐
𝑖
2
𝛼
𝑖

𝐴
𝑝

𝑖

max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠]

−1

,

1 ≤ 𝑖 ≤ 𝑛.

(75)

Theorem 27 is proved using Theorem 26; in fact we will
seek a constant-sign solution of (66) in (𝐶[0, 𝑇])

𝑛 and then
extend it to a 𝑇-periodic constant-sign solution of (65) as in
(67). Here, let Ω be the closed convex set given by

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝜙

min
𝑖

≤ 𝜃
𝑖
𝑢
𝑖
(𝑡) ≤ 𝑅

𝑖
,

𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛 | 𝜙
min
𝑖

} ,

(76)

where 𝑅
𝑖
(≥ 𝜙

min
𝑖

> 0) is chosen as in (75), and define the
operator 𝑆 : Ω → (𝐶[0, 𝑇])

𝑛 as

𝑆𝑢 (𝑡) = (𝑆
1
𝑢 (𝑡) , 𝑆

2
𝑢 (𝑡) , . . . , 𝑆

𝑛
𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] , (77)

where

𝑆
𝑖
𝑢 (𝑡) = ∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) [𝜕

2
ℎ
𝑖
(𝑠,

1

2

|𝑢(𝑠)|
2
) 𝑢

𝑖
(𝑠) + 𝑓

𝑖
(𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛.

(78)

Clearly, a fixed point of 𝑆𝑢 = 𝑢 is a solution of (66). We can
show that 𝑆(Ω) ⊆ Ω; that is, 𝑆

𝑖
(Ω) ⊆ Ω for each 1 ≤ 𝑖 ≤ 𝑛.

Further, we can prove that 𝑆 : Ω → Ω is continuous and
compact; that is, 𝑆

𝑖
𝑢 is bounded and is equicontinuous for

any 𝑢 ∈ Ω and 1 ≤ 𝑖 ≤ 𝑛. ByTheorem 26, the system (66) has
a constant-sign solution 𝑢∗

∈ Ω. Now, a𝑇-periodic constant-
sign solution 𝑢

𝑇 of (65) can be obtained as in (67).

Remark 28. The constants 𝑐
𝑖
that appear in (C5) determine

the upper bounds 𝑅
𝑖
of the solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. Noting

(75), we see that a smaller (bigger) 𝑐
𝑖
gives a smaller (bigger)

𝑅
𝑖
, and hence a smaller (bigger) setΩwhere the solution lies.

In the next result, we will relax the condition (C6). The
tradeoff is the upper bounds 𝑅

𝑖
of the solution that may

be bigger than those in (75). Also the bounds 𝑅
𝑖
do not

depend on 𝑝 (𝑝 as in 𝑙
𝑝
norm) and so the information of 𝑝

is not utilized. This result is obtained by following the main
arguments in the derivation of Theorem 27 but modify the
proof of 𝜃

𝑖
𝑆
𝑖
𝑢(𝑡) ≤ 𝑅

𝑖
, 𝑡 ∈ [0, 𝑇].

Theorem 29. Assume that (C1)–(C5) hold for each 1 ≤ 𝑖 ≤ 𝑛.
The norm | ⋅ | is the 𝑙

𝑝
norm where 1 ≤ 𝑝 ≤ ∞ is fixed. Then

(65) has a𝑇-periodic constant-sign solution 𝑢𝑇
∈ (𝐶(R))

𝑛 such
that

𝜙
min
𝑖

≤ 𝜃
𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅

𝑖
, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (79)

where, for 1 ≤ 𝑖 ≤ 𝑛 we have 𝑅
𝑖
≥ 𝜙

min
𝑖

,

𝑅
2𝛼
𝑖

𝑖
> 𝑐

𝑖
2
𝛼
𝑖 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠, if 𝛼

𝑖
∈ (0,

1

2

) , (80)

𝑅
𝑖
[1 − 𝑐

𝑖
2
𝛼
𝑖
𝑅
−2𝛼
𝑖

𝑖
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠] ≥ 𝜙

max
𝑖

,

if 𝛼
𝑖
∈ (0,

1

2

) ,

(81)

𝑅
𝑖
≥ 𝑐

𝑖
2
𝛼
𝑖
(𝜙

min
𝑖

)

1−2𝛼
𝑖 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 + 𝜙

max
𝑖

,

if 𝛼
𝑖
≥

1

2

.

(82)

Remark 30. A similar remark as Remark 28 also holds for
Theorem 29.Moreover, we note that the upper bounds𝑅

𝑖
that

fulfill (80)–(82) are independent of 𝑝, thus the information of
| ⋅ | being a particular 𝑙

𝑝
norm is not used. On the other hand,

in Theorem 27, the upper bounds 𝑅
𝑖
that satisfy (75) depend

on 𝑝. The sharpness of the bounds in both theorems cannot
be compared in general; however, we will give an example at
the end of this section to illustrate the results.
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In the next result, we will relax the condition (C2). Here,
we allow 𝜙

𝑖
(𝑡) ≤ 0 for some 𝑖 ∈ {1, 2, . . . , 𝑛} and some 𝑡 ∈

[0, 𝑇].

Theorem 31. Suppose that
(C7) there exists 𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝜙min

𝑗
> 0.

Let 𝐽 = {𝑗 ∈ {1, 2, . . . , 𝑛}|𝜙
min
𝑗

> 0} and let 𝐽󸀠 = {1, 2, . . . , 𝑛}\𝐽.
Assume that the following conditions hold for each 1 ≤ 𝑖 ≤ 𝑛 :

(C1), (C3), (C4), and

(C8) there exist 𝑐
𝑖
> 0 such that

𝜕

𝜕𝑠

ℎ
𝑖
(𝑡, 𝑠) ≤ 𝑐

𝑖
𝑠
−𝛼
𝑖
, 𝑡 ∈ [0, 𝑇] , 𝑠 > 0, (83)

where 𝛼
𝑗
> 0 for 𝑗 ∈ 𝐽 and 𝛼

𝑘
∈ (0, 1/2) for 𝑘 ∈ 𝐽

󸀠.

Further, let the following hold for each 𝑗 ∈ 𝐽 :

(C9) the norm | ⋅ | is the 𝑙
𝑝
norm where 1 ≤ 𝑝 ≤ ∞ is fixed,

and

∫

𝑇

0

𝑔
𝑗
(𝑡, 𝑠) 𝑑𝑠 < 𝐴

𝑝

𝑗
(𝑐

𝑗
2
𝛼
𝑗
)

−1

, 𝑡 ∈ [0, 𝑇] , (84)

where

𝐴

𝑝

𝑗
=

{
{
{
{
{

{
{
{
{
{

{

[∑

ℓ∈𝐽

(𝜙
min
ℓ

)

𝑝

]

2𝛼
𝑗
/𝑝

, 1 ≤ 𝑝 < ∞,

[max
ℓ∈𝐽

𝜙
min
ℓ

]

2𝛼
𝑗

, 𝑝 = ∞.

(85)

Then, (65) has a 𝑇-periodic solution 𝑢
𝑇
∈ (𝐶(R))

𝑛 such that

𝜙
min
𝑗

≤ 𝜃
𝑗
𝑢
𝑇

𝑗
(𝑡) ≤ 𝑅

𝑗
, 𝑡 ∈ R, 𝑗 ∈ 𝐽,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑇

𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑅

𝑘
, 𝑡 ∈ R, 𝑘 ∈ 𝐽

󸀠
,

(86)

where

𝑅
𝑗
≥ 𝜙

min
𝑗

,

𝑅
𝑗
≥ 𝜙

max
𝑗

[1 − 𝑐
𝑗
2
𝛼
𝑗
(𝐴

𝑝

𝑗
)

−1

max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑗
(𝑡, 𝑠) 𝑑𝑠]

−1

, 𝑗 ∈ 𝐽,

(87)

𝑅
2𝛼
𝑘

𝑘
> 𝑐

𝑘
2
𝛼
𝑘 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑑𝑠, 𝑘 ∈ 𝐽

󸀠
, (88)

𝑅
𝑘
[1 − 𝑐

𝑘
2
𝛼
𝑘
𝑅
−2𝛼
𝑘

𝑘
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑑𝑠] ≥ max

𝑡∈[0,𝑇]

󵄨
󵄨
󵄨
󵄨
𝜙
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
,

𝑘 ∈ 𝐽
󸀠
.

(89)

To derive Theorem 31, we let the closed convex setΩ∗ be

Ω
∗
= {𝑢 ∈ (𝐶 [0, 𝑇])

𝑛
| 𝜙

min
𝑗

≤ 𝜃
𝑗
𝑢
𝑗
(𝑡) ≤ 𝑅

𝑗
, 𝑡 ∈ [0, 𝑇] ,

𝑗 ∈ 𝐽;
󵄨
󵄨
󵄨
󵄨
𝑢
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝑅

𝑘
, 𝑡 ∈ [0, 𝑇] , 𝑘 ∈ 𝐽

󸀠
} ,

(90)

where 𝑅
𝑗
(≥ 𝜙

min
𝑗

> 0) and 𝑅
𝑘
are chosen as in (87)–(89).

Next, we define the operator 𝑆 : Ω
∗
→ (𝐶[0, 𝑇])

𝑛 as in (78)
and show that Theorem 26 is applicable.

Remark 32. From the conclusion of Theorem 29, we see that
the solution 𝑢𝑇 is “partially” of constant sign, in the sense that
𝜃
𝑗
𝑢
𝑇

𝑗
(𝑡) ≥ 0 for 𝑗 ∈ 𝐽, butmay not be so for 𝑗 ∈ 𝐽

󸀠. Further, the
constants 𝑐

𝑖
that appear in (C8) determine the upper bounds

𝑅
𝑖
of the solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. From (87) and (88), we see

that a smaller (bigger) 𝑐
𝑖
gives a smaller (bigger)𝑅

𝑖
, and hence

a smaller (bigger) setΩ∗ where the solution lies.

Using similar arguments as in the derivation ofTheorems
31 and 29 (in getting 𝑆

𝑗
𝑢 ∈ Ω

∗ for 𝑗 ∈ 𝐽 and 𝑢 ∈ Ω
∗), we

obtain the following result.

Theorem 33. Suppose that (C7) hold. Let 𝐽 = {𝑗 ∈

{1, 2, . . . , 𝑛}|𝜙
min
𝑗

> 0} and let 𝐽󸀠 = {1, 2, . . . , 𝑛} \ 𝐽. Assume the
following conditions hold for each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C3), (C4),
and (C8). Then, (65) has a 𝑇-periodic solution 𝑢

𝑇
∈ (𝐶(R))

𝑛

such that

𝜙
min
𝑗

≤ 𝜃
𝑗
𝑢
𝑇

𝑗
(𝑡) ≤ 𝑅

𝑗
, 𝑡 ∈ R, 𝑗 ∈ 𝐽,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑇

𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑅

𝑘
, 𝑡 ∈ R, 𝑘 ∈ 𝐽

󸀠
,

(91)

where

𝑅
𝑗
≥ 𝜙

min
𝑗

, 𝑗 ∈ 𝐽,

𝑅

2𝛼
𝑗

𝑗
> 𝑐

𝑗
2
𝛼
𝑗 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑗
(𝑡, 𝑠) 𝑑𝑠, if 𝛼

𝑗
∈ (0,

1

2

) , 𝑗 ∈ 𝐽,

𝑅
𝑗
[1 − 𝑐

𝑗
2
𝛼
𝑗
𝑅

−2𝛼
𝑗

𝑗
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑗
(𝑡, 𝑠) 𝑑𝑠] ≥ 𝜙

max
𝑗

,

if 𝛼
𝑗
∈ (0,

1

2

) , 𝑗 ∈ 𝐽,

𝑅
𝑗
≥ 𝑐

𝑗
2
𝛼
𝑗
(𝜙

min
𝑗

)

1−2𝛼
𝑗 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑗
(𝑡, 𝑠) 𝑑𝑠 + 𝜙

max
𝑗

,

if 𝛼
𝑗
≥

1

2

, 𝑗 ∈ 𝐽,

(92)

𝑅
2𝛼
𝑘

𝑘
> 𝑐

𝑘
2
𝛼
𝑘 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑑𝑠, 𝑘 ∈ 𝐽

󸀠
,

𝑅
𝑘
[1 − 𝑐

𝑘
2
𝛼
𝑘
𝑅
−2𝛼
𝑘

𝑘
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑑𝑠] ≥ max

𝑡∈[0,𝑇]

󵄨
󵄨
󵄨
󵄨
𝜙
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
,

𝑘 ∈ 𝐽
󸀠
.

(93)

Remark 34. A similar remark as Remark 32 holds for
Theorem 33. Also, we observe once again that the upper
bounds 𝑅

𝑗
that fulfill (92) are independent of 𝑝, thus the

information of | ⋅ | being a particular 𝑙
𝑝
norm is not used.

On the other hand, in Theorem 31, the upper bounds 𝑅
𝑗
that

satisfy (87) depend on 𝑝.
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We will now present an example that illustratesTheorems
27 and 29.

Example 35. Consider (65) when

𝑇 = 2𝜋, 𝑛 = 2, 𝑎
1
(𝑡) = 𝑎

2
(𝑡) =

1

4

,

𝑓
1
(𝑡) = 1, 𝑓

2
(𝑡) =

1

2

, ℎ
1
(𝑡, 𝑠) =

ln (𝑠 + 1)

|sin 𝑡| + 1

,

ℎ
2
(𝑡, 𝑠) =

ln (𝑠 + 1)

3 (|cos 𝑡| + 1)

, |⋅| = 𝑙
𝑝
norm (1 ≤ 𝑝 ≤ ∞) .

(94)

Fix 𝜃
𝑖
= 1, 1 ≤ 𝑖 ≤ 𝑛, that is, we are seeking positive

solutions.The correspondingGreen’s function has the explicit
expression [36]

𝑔
1
(𝑡, 𝑠) = 𝑔

2
(𝑡, 𝑠) =

{
{
{

{
{
{

{

cos 1
2

(𝑡 − 𝑠 − 𝜋) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 2𝜋,

cos 1
2

(𝑠 − 𝑡 − 𝜋) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 2𝜋.

(95)

Condition (C1) is satisfied. By direct computation, we get
𝜙
1
(𝑡) = 4 and 𝜙

2
(𝑡) = 2 for 𝑡 ∈ [0, 2𝜋]. Thus, (C2) is fulfilled

with

𝜙
min
1

= 𝜙
max
1

= 4, 𝜙
min
2

= 𝜙
max
2

= 2. (96)

Moreover, we have

𝜕

𝜕𝑠

ℎ
1
(𝑡, 𝑠) =

1

|sin 𝑡| + 1

1

𝑠 + 1

≤

1

𝑠 + 1

≤

1

𝑠

,

𝜕

𝜕𝑠

ℎ
2
(𝑡, 𝑠) =

1

3 (|cos 𝑡| + 1)

1

𝑠 + 1

≤

1

3 (𝑠 + 1)

≤

1

3𝑠

(97)

and so it is clear that (C4) and (C5) are satisfied with

𝛼
1
= 1, 𝑐

1
= 1, 𝛼

2
= 1, 𝑐

2
=

1

3

. (98)

Finally, we compute

𝐴
𝑝

1
= A𝑝

2
= (4

𝑝
+ 2

𝑝
)

2/𝑝

, 1 ≤ 𝑝 < ∞,

𝐴
∞

1
= 𝐴

∞

2
= 16.

(99)

Since ∫2𝜋

0
𝑔
𝑖
(𝑡, 𝑠)𝑑𝑠 = 4 for 𝑡 ∈ [0, 2𝜋] and 𝑖 = 1, 2, we check

that (C6) holds for all 1 ≤ 𝑝 ≤ ∞.
All the conditions of Theorem 27 are satisfied, thus we

conclude that the problem (65) with (94) has a positive 2𝜋-
periodic solution 𝑢 = (𝑢

1
, 𝑢

2
) such that

𝜙
min
𝑖

≤ 𝑢
𝑖
(𝑡) ≤ 𝑅

𝑖
, 𝑡 ∈ R, 𝑖 = 1, 2, (100)

where (from (75))

𝑅
𝑖
≥ 𝜙

max
𝑖

[1 −

8𝑐
𝑖

𝐴
𝑝

𝑖

]

−1

≡ 𝐿
𝑝

𝑖
, 1 ≤ 𝑝 ≤ ∞, 𝑖 = 1, 2. (101)

We can also apply Theorem 29 to conclude that the
problem (65) with (94) has a positive 2𝜋-periodic solution
𝑢 = (𝑢

1
, 𝑢

2
) satisfying (100) and (from (82))

𝑅
𝑖
≥ 8𝑐

𝑖
(𝜙

min
𝑖

)

−1

+ 𝜙
max
𝑖

≡ 𝑀
𝑖
, 𝑖 = 1, 2. (102)

As mentioned in Remark 30, in general we cannot com-
pare 𝐿𝑝

𝑖
and𝑀

𝑖
. In fact, a direct calculation gives

𝑝 = 1 :

𝐿
1

1
= 5.14 < 𝑀

1
= 6, 𝐿

1

2
= 2.16 < 𝑀

2
= 3.33,

𝑝 = 2 :

𝐿
2

1
= 6.67 > 𝑀

1
= 6, 𝐿

2

2
= 2.31 < 𝑀

2
= 3.33,

𝑝 = ∞ :

𝐿
∞

1
= 8 > 𝑀

1
= 6, 𝐿

∞

2
= 2.4 < 𝑀

2
= 3.33.

(103)

5.2. Existence Results for (59). In this section we will consider
the general system of Hill’s equations

𝑢
󸀠󸀠

𝑖
(𝑡) + 𝑎

𝑖
(𝑡) 𝑢

𝑖
(𝑡) = 𝐹

𝑖
(𝑡, 𝑢 (𝑡)) , 1 ≤ 𝑖 ≤ 𝑛. (104)

Here, 𝑎
𝑖
and 𝐹

𝑖
are 𝑇-periodic in the variable 𝑡, 𝑎

𝑖
∈ 𝐿

1
[0, 𝑇],

and the nonlinearities 𝐹
𝑖
(𝑡, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
) can be singular at

𝑥
𝑗
= 0 where 𝑗 ∈ {1, 2, . . . , 𝑛}.
Once again, to obtain a 𝑇-periodic solution 𝑢

𝑇
=

(𝑢
𝑇

1
, 𝑢

𝑇

2
, . . . , 𝑢

𝑇

𝑛
) of the system (104), we first seek a solution

𝑢
∗

= (𝑢
∗

1
, 𝑢

∗

2
, . . . , 𝑢

∗

𝑛
) of the following system of boundary

value problems:

𝑢
󸀠󸀠

𝑖
(𝑡) + 𝑎

𝑖
(𝑡) 𝑢

𝑖
(𝑡) = 𝐹

𝑖
(𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢
𝑖
(0) = 𝑢

𝑖
(𝑇) , 𝑢

󸀠

𝑖
(0) = 𝑢

󸀠

𝑖
(𝑇) , 1 ≤ 𝑖 ≤ 𝑛.

(105)

The periodic solution is then given by

𝑢
𝑇

(𝑡) = 𝑢
∗

(𝑡 − 𝑚𝑇) , 𝑡 ∈ [𝑚𝑇, (𝑚 + 1) 𝑇] , 𝑚 ∈ Z. (106)

With 𝑔
𝑖
being the Green’s function of the boundary value

problem (68), throughoutwewill assume that (C1) is satisfied.
Moreover, for fixed 𝜃

𝑖
∈ {−1, 1} and𝑇-periodic functions 𝑞

𝑖
∈

𝐿
1
[0, 𝑇], 1 ≤ 𝑖 ≤ 𝑛, we define

𝜂
𝑖
(𝑡) = ∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝜃

𝑖
𝑞
𝑖
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛 (107)

and also

𝜂
min
𝑖

= min
𝑡∈[0,𝑇]

𝜂
𝑖
(𝑡) , 𝜂

max
𝑖

= max
𝑡∈[0,𝑇]

𝜂
𝑖
(𝑡) . (108)

For 𝑏 ≥ 𝑏
󸀠
≥ 0 and 1 ≤ 𝑖 ≤ 𝑛, we denote the interval

[𝑏, 𝑏
󸀠
]
𝑖
=

{

{

{

[𝑏, 𝑏
󸀠
] , if 𝜃

𝑖
= 1,

[−𝑏
󸀠
, −𝑏] , if 𝜃

𝑖
= −1.

(109)

A similar definition is valid for (𝑏, 𝑏󸀠)
𝑖
.

Using Schauder’s fixed point theorem, we will establish
existence results for the system (104).
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Theorem 36. Assume the following conditions hold for each
1 ≤ 𝑖 ≤ 𝑛 : (C1);
(C10) for any numbers 𝑏

𝑗
, 𝑏

󸀠

𝑗
, 1 ≤ 𝑗 ≤ 𝑛 with 𝑏

󸀠

𝑗
≥ 𝑏

𝑗
> 0,

the function 𝐹
𝑖
: [0, 𝑇] × ∏

𝑛

𝑗=1
[𝑏

𝑗
, 𝑏

󸀠

𝑗
]
𝑗
→ R is a 𝐿

1-
Carathéodory function, that is,

(i) the map 𝑢 󳨃→ 𝐹
𝑖
(𝑡, 𝑢) is continuous for almost all

𝑡 ∈ [0, 𝑇],
(ii) the map 𝑡 󳨃→ 𝐹

𝑖
(𝑡, 𝑢) is measurable for all 𝑢 ∈

∏
𝑛

𝑗=1
[𝑏

𝑗
, 𝑏

󸀠

𝑗
]
𝑗
,

(iii) for any 𝑟 > 0, there exists 𝜇
𝑟,𝑖

∈ 𝐿
1
[0, 𝑇] such

that |𝑢| ≤ 𝑟(𝑢 ∈ ∏
𝑛

𝑗=1
[𝑏

𝑗
, 𝑏

󸀠

𝑗
]
𝑗
) implies |𝐹

𝑖
(𝑡, 𝑢)| ≤

𝜇
𝑟,𝑖
(𝑡) for almost all 𝑡 ∈ [0, 𝑇];

(C11) there exist 𝛽
𝑖
> 0, 𝛾

𝑖
∈ [0, 1), and 𝑇-periodic functions

𝑤
𝑖
, 𝑞

𝑖
with 𝑤

𝑖
∈ 𝐿

1
[0, 𝑇], q

𝑖
∈ 𝐿

1
[0, 𝑇] and 𝑤

𝑖
(𝑡) > 0

for a.e. 𝑡 ∈ [0, 𝑇] such that

𝜃
𝑖
𝑞
𝑖
(𝑡) |𝑢|

𝛾
𝑖
≤ 𝜃

𝑖
𝐹
𝑖
(𝑡, 𝑢) ≤ 𝜃

𝑖
𝑞
𝑖
(𝑡) |𝑢|

𝛾
𝑖
+ 𝑤

𝑖
(𝑡) |𝑢|

−𝛽
𝑖
,

𝑡 ∈ [0, 𝑇] , 𝑢 ∈

𝑛

∏

𝑘=1

(0,∞)
𝑘

(110)

(here | ⋅ | is the 𝑙
𝑝
norm where 1 ≤ 𝑝 ≤ ∞ is fixed);

(C12) 𝜂min
𝑖

> 0.

Then, (104) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

𝑟
𝑖
≤ 𝜃

𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅

𝑖
, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (111)

where, for 1 ≤ 𝑖 ≤ 𝑛 one has

0 < 𝑟
𝑖
≤ 𝑅

𝑖
, 𝑟

𝑖
≤ (𝜂

min
𝑖

)

1/(1−𝛾
𝑖
)

, (112)

𝑅
𝑖
≥ 𝜂

max
𝑖

|𝑅|
𝛾
𝑖

𝑝
+ |𝑟|

−𝛽
𝑖

𝑝
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑤

𝑖
(𝑠) 𝑑𝑠, (113)

(here |𝑅|
𝑝
is the 𝑙

𝑝
norm of (𝑅

1
, 𝑅

2
, . . . , 𝑅

𝑛
), likewise |𝑟|

𝑝
is the

𝑙
𝑝
norm of (𝑟

1
, 𝑟

2
, . . . , 𝑟

𝑛
)).

In proving Theorem 36, we actually seek a constant-sign
solution of (105) in (𝐶[0, 𝑇])

𝑛 and then extend it to a 𝑇-
periodic constant-sign solution of (104) as in (106). Let Ω be
the closed convex set given by

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟

𝑖
≤ 𝜃

𝑖
𝑢
𝑖
(𝑡) ≤ 𝑅

𝑖
, 𝑡 ∈ [0, 𝑇] ,

1 ≤ 𝑖 ≤ 𝑛} ,

(114)

where 𝑅
𝑖
≥ 𝑟

𝑖
> 0 are chosen as in (112) and (113), and define

the operator 𝑆 : Ω → (𝐶[0, 𝑇])
𝑛 as

𝑆𝑢 (𝑡) = (𝑆
1
𝑢 (𝑡) , 𝑆

2
𝑢 (𝑡) , . . . , 𝑆

𝑛
𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] , (115)

where

𝑆
𝑖
𝑢 (𝑡) = ∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝐹

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛.

(116)

Clearly, a fixed point of 𝑆𝑢 = 𝑢 is a solution of (105). The
conditions of Theorem 26 are then shown to be satisfied.

Remark 37. As seen from (112) and (113), the functions𝑤
𝑖
and

𝑞
𝑖
that appear in (C11) determine the lower and upper bounds

of the solution 𝑢
𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛.

Theorem 38. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C10), (C11), and (C12). Then, (104) has
a 𝑇-periodic constant-sign solution 𝑢𝑇

∈ (𝐶(R))
𝑛 such that

𝑟 ≤ 𝜃
𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (117)

where 0 < 𝑟 ≤ 𝑅, and for all 1 ≤ 𝑖 ≤ 𝑛,

𝑟 ≤

{
{

{
{

{

(𝜂
min
𝑖

𝑛
𝛾
𝑖
/𝑝
)

1/(1−𝛾
𝑖
)

, 1 ≤ 𝑝 < ∞,

(𝜂
min
𝑖

)

1/(1−𝛾
𝑖
)

, 𝑝 = ∞,

(118)

𝑅≥

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑅
𝛾
𝑖
𝜂
max
𝑖

𝑛
𝛾
𝑖
/𝑝

+𝑟
−𝛽
𝑖
𝑛
−𝛽
𝑖
/𝑝
[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑤

𝑖
(𝑠) 𝑑𝑠] ,

1 ≤ 𝑝 < ∞,

𝑅
𝛾
𝑖
𝜂
max
𝑖

+ 𝑟
−𝛽
𝑖
[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑤

𝑖
(𝑠) 𝑑𝑠] ,

𝑝 = ∞.

(119)

Theorem 38 is obtained by similar arguments used in the
derivation of Theorem 36, with a newΩ defined as

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟 ≤ 𝜃

𝑖
𝑢
𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ [0, 𝑇] ,

1 ≤ 𝑖 ≤ 𝑛} ,

(120)

where 𝑅 ≥ 𝑟 > 0 are chosen as in (118) and (119).

Remark 39. Remark 37 also holds for Theorem 38. Further,
comparing the bounds 𝑟

𝑖
, 𝑅

𝑖
, 1 ≤ 𝑖 ≤ 𝑛 in Theorem 36 (see

(112), (113)) with the bounds 𝑟, 𝑅 in Theorem 38 (see (118),
(119)), we note that 𝑟

𝑖
and𝑅

𝑖
are lower and upper bounds for a

particular 𝜃
𝑖
𝑢
𝑇

𝑖
, whereas 𝑟 and𝑅 are uniform lower and upper

bounds for all 𝜃
𝑖
𝑢
𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. However, the computation of

𝑅
𝑖
from (113) is more difficult than calculating 𝑅 from (119).

Our next result tackles the case when 𝜂
min
𝑖

= 0.

Theorem 40. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C10),
(C13) there exist 𝛽

𝑖
∈ (0, 1), 𝛾

𝑖
∈ [0, 1), and 𝑇-periodic func-

tions 𝑤
𝑖
, 𝑣

𝑖
, 𝑞

𝑖
with 𝑤

𝑖
∈ 𝐿

1
[0, 𝑇], 𝑣

𝑖
∈ 𝐿

1
[0, 𝑇], 𝑞

𝑖
∈

𝐿
1
[0, 𝑇], and 𝑤

𝑖
(𝑡), 𝑣

𝑖
(𝑡) > 0 for a.e. 𝑡 ∈ [0, 𝑇] such

that

𝜃
𝑖
𝑞
𝑖
(𝑡) |𝑢|

𝛾
𝑖
+ 𝑣

𝑖
(𝑡) |𝑢|

−𝛽
𝑖
≤ 𝜃

𝑖
𝐹
𝑖
(𝑡, 𝑢)

≤ 𝜃
𝑖
𝑞
𝑖
(𝑡) |𝑢|

𝛾
𝑖
+ 𝑤

𝑖
(𝑡) |𝑢|

−𝛽
𝑖
,

𝑡 ∈ [0, 𝑇] , 𝑢 ∈

𝑛

∏

𝑘=1

(0,∞)
𝑘

(121)

(here | ⋅ | is the 𝑙
𝑝
norm where 1 ≤ 𝑝 ≤ ∞ is fixed);

(C14) 𝜂min
𝑖

= 0.
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Then, (104) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

1

𝑅

≤ 𝜃
𝑖
𝑢
𝑇

𝑖
(t) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (122)

where 𝑅 ≥ 1, and for all 1 ≤ 𝑖 ≤ 𝑛,

𝑅 ≥

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝑛
𝛽
𝑖
/𝑝(1−𝛽

𝑖
)
[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠)𝑣

𝑖
(𝑠)𝑑𝑠]

−1/(1−𝛽
𝑖
)

,

1 ≤ 𝑝 < ∞,

[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑣

𝑖
(𝑠) 𝑑𝑠]

−1/(1−𝛽
𝑖
)

,

𝑝 = ∞,

𝑅≥

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑅
𝛾
𝑖
𝜂
max
𝑖

𝑛
𝛾
𝑖
/𝑝
+𝑅

𝛽
𝑖
𝑛
−𝛽
𝑖
/𝑝
[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑤

𝑖
(𝑠) 𝑑𝑠] ,

1 ≤ 𝑝 < ∞,

𝑅
𝛾
𝑖
𝜂
max
𝑖

+ 𝑅
𝛽
𝑖
[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑤

𝑖
(𝑠) 𝑑𝑠] ,

𝑝 = ∞.

(123)

The closed convex set used to get Theorem 40 is given by

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟 ≤ 𝜃

𝑖
𝑢
𝑖
(𝑡) ≤ 𝑅,

𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛} ,

(124)

where 𝑟 = 1/𝑅 and 𝑅 ≥ 1 satisfies (123).

Remark 41. As seen from (123), the functions 𝑤
𝑖
, 𝑣

𝑖
, and 𝑞

𝑖

that appear in (C13) determine the lower and upper bounds
of the solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛.

Finally, the next result tackles the case when 𝜂
max
𝑖

< 0.

Theorem 42. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C10),

(C15) there exist𝛽 ∈ (0, 1) and𝑇-periodic functions𝑤
𝑖
, 𝑣

𝑖
, 𝑞

𝑖

with 𝑤
𝑖
∈ 𝐿

1
[0, 𝑇], 𝑣

𝑖
∈ 𝐿

1
[0, 𝑇], 𝑞

𝑖
∈ 𝐿

1
[0, 𝑇], and

𝑤
𝑖
(𝑡), 𝑣

𝑖
(𝑡) > 0 for a.e. 𝑡 ∈ [0, 𝑇] such that

𝜃
𝑖
𝑞
𝑖
(𝑡) + 𝑣

𝑖
(𝑡) |𝑢|

−𝛽
≤ 𝜃

𝑖
𝐹
𝑖
(𝑡, 𝑢) ≤ 𝜃

𝑖
𝑞
𝑖
(𝑡) + 𝑤

𝑖
(𝑡) |𝑢|

−𝛽
,

𝑡 ∈ [0, 𝑇] , 𝑢 ∈

𝑛

∏

𝑘=1

(0,∞)
𝑘

(125)

(here | ⋅ | is the 𝑙
𝑝
norm where 1 ≤ 𝑝 ≤ ∞ is fixed);

(C16) 𝜂max
𝑖

< 0;

(C17) 𝜂min
𝑖

≥ 𝑛
−𝛽/(1+𝛽)𝑝

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)

1/(1−𝛽
2
)

(1 − 1/𝛽
2
)

where

𝑊 = max
1≤𝑘≤𝑛

[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑤

𝑘
(𝑠) 𝑑𝑠] ,

𝑉 = min
1≤𝑘≤𝑛

[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑣

𝑘
(𝑠) 𝑑𝑠] .

(126)

Then, (104) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

𝑟 ≤ 𝜃
𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (127)

where 0 < 𝑟 ≤ 𝑅 are given by

𝑟 =

{

{

{

𝑛
−𝛽/(1+𝛽)𝑝

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)

1/(1−𝛽
2
)

, 1 ≤ 𝑝 < ∞

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)

1/(1−𝛽
2
)

, 𝑝 = ∞,

𝑅 =

{

{

{

𝑛
−𝛽/(1+𝛽)𝑝

𝑊
1/(1−𝛽

2
)
(𝑉𝛽

2
)

−𝛽/(1−𝛽
2
)

, 1 ≤ 𝑝 < ∞

𝑊
1/(1−𝛽

2
)
(𝑉𝛽

2
)

−𝛽/(1−𝛽
2
)

, 𝑝 = ∞.

(128)

Theorem 42 is obtained by considering the closed convex
set

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟 ≤ 𝜃

𝑖
𝑢
𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ [0, 𝑇] ,

1 ≤ 𝑖 ≤ 𝑛} ,

(129)

where 𝑅 ≥ 𝑟 > 0 are determined later as those given in (128).

Remark 43. As seen from (128), the functions 𝑤
𝑖
and 𝑣

𝑖
that

appear in (C15) determine the lower and upper bounds of the
solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛.

We have so far established the results when (i) 𝜂min
𝑖

> 0,
(ii) 𝜂min

𝑖
= 0, and (iii) 𝜂max

𝑖
< 0 for all 1 ≤ 𝑖 ≤ 𝑛. However, it

could be that we only have 𝜂
𝑖
(𝑡) ≥ 0 for some 𝑖 and 𝜂

𝑗
(𝑡) < 0

for some 𝑗, which results in 𝜂
min
𝑖

≥ 0 and 𝜂
max
𝑗

< 0 for some
1 ≤ 𝑖, 𝑗 ≤ 𝑛. We present two results for such a case as follows.
Note that Theorem 44 is obtained by applyingTheorems 38–
42, while Theorem 45 is obtained by applying Theorems 36,
40, and 42.

Theorem 44. Let (C1) and (C10) hold for each 1 ≤ 𝑖 ≤ 𝑛.
Assume the following:

(C18) conditions (C11) and (C12) hold for some 𝑖 ∈ 𝐼 ⊆

{1, 2, . . . , 𝑛};
(C19) conditions (C13) and (C14) hold for some 𝑖 ∈ 𝐽 ⊆

{1, 2, . . . , 𝑛};
(C20) conditions (C15), (C16), and (C17) hold for some 𝑖 ∈

𝐾 ⊆ {1, 2, . . . , 𝑛};

where 𝐼 ∪ 𝐽 ∪ 𝐾 = {1, 2, . . . , 𝑛}. Then, (104) has a 𝑇-periodic
constant-sign solution 𝑢

𝑇
∈ (𝐶(R))

𝑛 such that

𝑟 ≤ 𝜃
𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (130)

where 0 < 𝑟 ≤ 𝑅 satisfy

(a) (118) and (119) for 𝑖 ∈ 𝐼;
(b) 𝑟 = 1/𝑅, 𝑅 ≥ 1, (123) for 𝑖 ∈ 𝐽;
(c) (128) for 𝑖 ∈ 𝐾.
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Theorem 45. Let (C1) and (C10) hold for each 1 ≤ 𝑖 ≤ 𝑛.
Assume that (C18)–(C20) hold with 𝐼 ∪ 𝐽 ∪ 𝐾 = {1, 2, . . . , 𝑛}.
Then, (104) has a 𝑇-periodic constant-sign solution 𝑢

𝑇
∈

(𝐶(R))
𝑛 such that

𝑟
𝑖
≤ 𝜃

𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅

𝑖
, 𝑡 ∈ R, 𝑖 ∈ 𝐼, (131)

where 0 < 𝑟
𝑖
≤ 𝑅

𝑖
satisfy (112) and (113) for 𝑖 ∈ 𝐼, and

𝑟 ≤ 𝜃
𝑖
𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 ∈ 𝐽 ∪ 𝐾, (132)

where 0 < 𝑟 ≤ 𝑅 satisfy conclusions (b) and (c) of Theorem 44.

We will now apply the results obtained to the following
system of Hill’s equations, a particular form of it (see (64))
that has been discussed in [45],

𝑢
󸀠󸀠

1
(𝑡) + 𝑎

1
(𝑡) 𝑢

1
(𝑡) = (√𝑢

2

1
+ 𝑢

2

2
)

−𝛽
1

+ 𝜈
1
(√𝑢

2

1
+ 𝑢

2

2
)

𝛾
1

,

𝑢
󸀠󸀠

2
(𝑡) + 𝑎

2
(𝑡) 𝑢

2
(𝑡) = (√𝑢

2

1
+ 𝑢

2

2
)

−𝛽
2

+ 𝜈
2
(√𝑢

2

1
+ 𝑢

2

2
)

𝛾
2

.

(133)

Clearly, the system (133) corresponds to (104) where 𝑛 = 2

and

𝐹
𝑖
(𝑡, 𝑢) = (√𝑢

2

1
+ 𝑢

2

2
)

−𝛽
𝑖

+ 𝜈
𝑖
(√𝑢

2

1
+ 𝑢

2

2
)

𝛾
𝑖

, 𝑖 = 1, 2.

(134)

We will assume that 𝑎
1
, 𝑎

2
∈ 𝐿

1
[0, 𝑇] satisfy (C1). Note that

condition (C10) is clearly satisfied. Further, let 𝜃
1
= 𝜃

2
= 1,

that is, we are interested in positive periodic solutions of
(133).

Example 46. Consider the system (133) with

𝜈
𝑖
> 0, 𝛽

𝑖
> 0, 𝛾

𝑖
∈ [0, 1) , 𝑖 = 1, 2. (135)

Clearly, (C11) is satisfied with 𝑝 = 2, 𝑞
𝑖
= 𝜈

𝑖
and 𝑤

𝑖
=

1, 𝑖 = 1, 2. Thus, (C12) also holds since

𝜂
min
𝑖

= min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝜃

𝑖
𝑞
𝑖
(𝑠) 𝑑𝑠

= 𝜈
𝑖
min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 > 0.

(136)

Theorem 38 (or Theorem 36) is applicable and we conclude
that the system (133) with (135) has a 𝑇-periodic positive
solution 𝑢

𝑇
∈ (𝐶(R))

2 such that

𝑟 ≤ 𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 = 1, 2, (137)

where 0 < 𝑟 ≤ 𝑅 are such that

𝑟 ≤ min
𝑖=1,2

{(𝜂
min
𝑖

2
𝛾
𝑖
/2
)

1/(1−𝛾
𝑖
)

} , (138)

𝑅 ≥ max
𝑖=1,2

{𝑅
𝛾
𝑖
𝜂
max
𝑖

2
𝛾
𝑖
/2
+ 𝑟

−𝛽
𝑖
2
−𝛽
𝑖
/2
[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠]} .

(139)

To illustrate numerically, suppose

𝑎
1
(𝑡) = 𝑎

2
(𝑡) =

1

4

, 𝑇 = 2𝜋, 𝜈
1
=

1

4

,

𝜈
2
= 1, 𝛾

1
= 𝛾

2
=

1

2

, 𝛽
1
= 𝛽

2
= 1.

(140)

Green’s function is given in (95) and

𝜂
min
𝑖

= 𝜈
𝑖
min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 = 4𝜈

𝑖
. (141)

Hence, (138) yields 𝑟 ≤ √2. Let 𝑟 = √2, then (139) reduces to

𝑅 ≥ max
𝑖=1,2

{𝑅
1/2

4𝜈
𝑖
2
1/4

+ 𝑟
−1
2
−1/2

4𝜈
𝑖
} = 𝑅

1/2
2
9/4

+ 2, (142)

which is satisfied by𝑅 ≥ 26.48. Let𝑅 = 26.48, then from (137)
we conclude that the system (133)with (140) has a 2𝜋-periodic
positive solution 𝑢 ∈ (𝐶(R))

2 such that

√2 ≤ 𝑢
𝑖
(𝑡) ≤ 26.48, 𝑡 ∈ R, 𝑖 = 1, 2. (143)

Example 47. Consider the system (133) with

𝜈
𝑖
= 0, 𝛽

𝑖
∈ (0, 1) , 𝛾

𝑖
∈ [0, 1) , 𝑖 = 1, 2. (144)

Here, (C13) is satisfied with 𝑝 = 2, 𝑞
𝑖
= 𝜈

𝑖
= 0 and 𝑤

𝑖
=

𝑣
𝑖
= 1, 𝑖 = 1, 2. Subsequently, (C14) also holds since

𝜂
min
𝑖

= min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝜃

𝑖
𝑞
𝑖
(𝑠) 𝑑𝑠

= 𝜈
𝑖
min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 = 0.

(145)

Employing Theorem 40, we conclude that the system (133)
with (144) has a 𝑇-periodic positive solution 𝑢

𝑇
∈ (𝐶(R))

2

such that
1

𝑅

≤ 𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 = 1, 2, (146)

where 𝑅 ≥ 1, and from (123), we have for 𝑖 = 1, 2,

𝑅 ≥ 2
𝛽
𝑖
/2(1−𝛽

𝑖
)
[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠]

−1/(1−𝛽
𝑖
)

,

𝑅 ≥ {2
−𝛽
𝑖
/2
[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠]}

1/(1−𝛽
𝑖
)

.

(147)

Combining the inequalities, we see that 𝑅 should satisfy

𝑅 ≥ max{1,max
𝑖=1,2

2
𝛽
𝑖
/2(1−𝛽

𝑖
)

× [min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠]

−1/(1−𝛽
𝑖
)

,

max
𝑖=1,2

{2
−𝛽
𝑖
/2
[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠)𝑑𝑠]}

1/(1−𝛽
𝑖
)

} .

(148)
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Example 48. Consider the system (133) with

𝜈
𝑖
< 0, 𝛽

𝑖
= 𝛽 ∈ (0, 1) , 𝛾

𝑖
= 0, 𝑖 = 1, 2, (149)

𝜈
𝑖
min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 ≥ 2

−𝛽/2(1+𝛽)
𝑊

−𝛽/(1−𝛽
2
)
(𝑉𝛽

2
)

1/(1−𝛽
2
)

× (1 −

1

𝛽
2
) , 𝑖 = 1, 2,

(150)

where

𝑊 = max
𝑘=1,2

[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑑𝑠] ,

𝑉 = min
𝑘=1,2

[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑘
(𝑡, 𝑠) 𝑑𝑠] .

(151)

Obviously, (C15) is satisfied with 𝑝 = 2, 𝑞
𝑖
= 𝜈

𝑖
< 0 and

𝑤
𝑖
= 𝑣

𝑖
= 1, 𝑖 = 1, 2. Then, (C16) also holds since

𝜂
max
𝑖

= max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝜃

𝑖
𝑞
𝑖
(𝑠) 𝑑𝑠

= 𝜈
𝑖
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔
𝑖
(𝑡, 𝑠) 𝑑𝑠 < 0.

(152)

Moreover, condition (C17) is simply (150). Hence, we con-
clude from Theorem 42 that the system (133) with (149) and
(150) has a 𝑇-periodic positive solution 𝑢

𝑇
∈ (𝐶(R))

2 such
that

𝑟 ≤ 𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 = 1, 2, (153)

where 0 < 𝑟 ≤ 𝑅 are given by

𝑟 = 2
−𝛽/2(1+𝛽)

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)

1/(1−𝛽
2
)

,

𝑅 = 2
−𝛽/2(1+𝛽)

𝑊
1/(1−𝛽

2
)
(𝑉𝛽

2
)

−𝛽/(1−𝛽
2
)

.

(154)

Remark 49. In [45], it is shown that (64) has a solution when
𝛽 > 0, 𝛾 ∈ [0, 1) and 𝜈 > 0. As seen from Examples 46–48,
we have generalized the system (64) to allow 𝜈 to be zero or
negative.
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ear differential systems,” Journal de Mathématiques Pures et
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