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By using the fixed point theorems and the theory of analytic semigroup, we investigate the existence of positive mild solutions to
the Cauchy problem of Caputo fractional evolution equations in Banach spaces. Some existence theorems are obtained under the
case that the analytic semigroup is compact and noncompact, respectively. As an example, we study the partial differential equation
of the parabolic type of fractional order.

1. Introduction

The differential equations involving fractional derivatives in
time have recently been studied extensively. One can see, for
instance, the monographs [1–5] and the survey [6–8]. In par-
ticular, there has been a significant development in fractional
evolution equations. Existence of solutions for fractional
evolution equations has been studied bymany authors during
recent years. Many excellent results are obtained in this field;
see [9–19] and the references therein. In [9, 10], El-Borai first
constructed the type of mild solutions to fractional evolution
equations in terms of a probability density. And then the
author investigated the existence, uniqueness, and regularity
of solutions of fractional integrodifferential equations in [11,
12]. Recently, this theorywas developed by Zhou et al. [13–16].
Particularly, they studied the existence and controllability of
mild solution of fractional delay integrodifferential equations
with a compact analytic semigroup in [16]. In [17–19], the
authors studied the existence of mild solutions of fractional
impulsive delay or impulsive evolution equations. But as far
as we know, there are no results on the existence of positive
solutions of fractional evolution equations.

In this paper, by using the fixed point theorems com-
bined with the theory of analytic semigroup, we investigate
the existence of positive mild solutions for the initial value

problem (IVP) of fractional evolution equations in Banach
space𝑋 as

𝐷
𝑞

0
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 > 0,

𝑢 (0) = 𝑢0,

(1)

where 𝐷𝑞
0
denotes the Caputo fractional derivative of order

𝑞 ∈ (0, 1) with the lower limits zero, −𝐴 : 𝐷(𝐴) ⊂ 𝑋 →

𝑋 is the infinitesimal generator of an analytic semigroup
𝑆(𝑡) (𝑡 ≥ 0) of uniformly bounded linear operators, and 𝑓
is the nonlinear term and will be specified later.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are given on the fractional power of the
generator of the analytic semigroup and the definition of
mild solutions of IVP(1). In Section 3, we study the existence
of positive mild solutions for the IVP(1). In Section 4, an
example is given to illustrate the applicability of abstract
results obtained in Section 3.

2. Preliminaries

In this section, we introduce some basic facts about the
fractional power of the generator of analytic semigroup and
the fractional calculus that are used throughout this paper.
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Let 𝑋 be a Banach space with norm ‖ ⋅ ‖. Throughout
this paper, we assume that −𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the
infinitesimal generator of an analytic semigroup 𝑆(𝑡) (𝑡 ≥ 0)
of uniformly bounded linear operator in 𝑋; that is, there
exists 𝑀 ≥ 1 such that ‖𝑆(𝑡)‖ ≤ 𝑀 for all 𝑡 ≥ 0. Without
loss of generality, let 0 ∈ 𝜌(−𝐴), where 𝜌(−𝐴) is the resolvent
set of −𝐴. Then for any 𝛼 > 0, we can define 𝐴−𝛼 by

𝐴
−𝛼
:=

1

Γ (𝛼)
∫

∞

0

𝑡
𝛼−1
𝑆 (𝑡) 𝑑𝑡. (2)

Then 𝐴𝛼 can be defined by 𝐴𝛼 := (𝐴−𝛼)−1 because 𝐴−𝛼 is one
to one. It can be shown that each 𝐴𝛼 has dense domain and
that 𝐷(𝐴𝛽) ⊂ 𝐷(𝐴

𝛼
) for 0 ≤ 𝛼 ≤ 𝛽. Moreover, 𝐴𝛼+𝛽𝑥 =

𝐴
𝛼
𝐴
𝛽
𝑥 = 𝐴

𝛽
𝐴
𝛼
𝑥 for every 𝛼, 𝛽 ∈ R and 𝑥 ∈ 𝐷(𝐴

𝜇
) with

𝜇 := max{𝛼, 𝛽, 𝛼 + 𝛽}, where 𝐴0 = 𝐼, 𝐼 is the identity in 𝑋
(for proofs of these facts we refer to the literature [20–22]).

We denote by 𝑋𝛼 the Banach space of 𝐷(𝐴𝛼) equipped
with norm ‖𝑥‖𝛼 = ‖𝐴

𝛼
𝑥‖ for 𝑥 ∈ 𝐷(𝐴𝛼), which is equivalent

to the graph norm of 𝐴𝛼. Then we have 𝑋𝛽 󳨅→ 𝑋𝛼 for 0 ≤
𝛼 ≤ 𝛽 ≤ 1 (with 𝑋0 = 𝑋), and the embedding is continuous.
Moreover, 𝐴𝛼 has the following basic properties.

Lemma 1 (see [23]). 𝐴
𝛼 has the following properties.

(i) 𝑆(𝑡) : 𝑋 → 𝑋𝛼 for each 𝑡 > 0 and 𝛼 ≥ 0.

(ii) 𝐴𝛼𝑆(𝑡)𝑥 = 𝑆(𝑡)𝐴𝛼𝑥 for each 𝑥 ∈ 𝐷(𝐴𝛼) and 𝑡 ≥ 0.

(iii) For every 𝑡 > 0,𝐴𝛼𝑆(𝑡) is bounded in𝑋 and there exists
𝑀𝛼 > 0 such that

󵄩󵄩󵄩󵄩𝐴
𝛼
𝑆 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀𝛼𝑡
−𝛼
. (3)

Let 𝐽 be a closed interval onR+ = [0,∞). In the following
we denote by 𝐶(𝐽,𝑋𝛼) the Banach space of all continuous
functions from 𝐽 into 𝑋𝛼 endowed with supnorm given by
‖𝑢‖𝐶 = sup

𝑡∈𝐽
‖𝑢(𝑡)‖𝛼 for 𝑢 ∈ 𝐶(𝐽, 𝑋𝛼). For any 𝑡 ≥ 0, denote

by 𝑆𝛼(𝑡) the restriction of 𝑆(𝑡) to 𝑋𝛼. From Lemma 1(i) and
(ii), for any 𝑥 ∈ 𝑋𝛼, we have

‖𝑆 (𝑡) 𝑥‖𝛼 =
󵄩󵄩󵄩󵄩𝐴
𝛼
⋅ 𝑆 (𝑡) 𝑥

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑆 (𝑡) ⋅ 𝐴

𝛼
𝑥
󵄩󵄩󵄩󵄩

≤ ‖𝑆 (𝑡)‖ ⋅
󵄩󵄩󵄩󵄩𝐴
𝛼
𝑥
󵄩󵄩󵄩󵄩 = ‖𝑆 (𝑡)‖ ⋅ ‖𝑥‖𝛼,

‖𝑆 (𝑡) 𝑥 − 𝑥‖𝛼 =
󵄩󵄩󵄩󵄩𝐴
𝛼
⋅ 𝑆 (𝑡) 𝑥 − 𝐴

𝛼
𝑥
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑆 (𝑡) ⋅ 𝐴

𝛼
𝑥 − 𝐴

𝛼
𝑥
󵄩󵄩󵄩󵄩 󳨀→ 0

(4)

as 𝑡 → 0. Therefore, 𝑆(𝑡) (𝑡 ≥ 0) is a strongly continuous
semigroup in𝑋𝛼, and ‖𝑆𝛼(𝑡)‖𝛼 ≤ ‖𝑆(𝑡)‖ for all 𝑡 ≥ 0. To prove
our main results, the following lemma is also needed.

Lemma 2 (see [24]). If 𝑆(𝑡) (𝑡 ≥ 0) is a compact semigroup in
𝑋, then 𝑆𝛼(𝑡) (𝑡 ≥ 0) is a compact semigroup in𝑋𝛼, and hence
it is norm continuous.

Let us recall the following known definitions in fractional
calculus. For more details, see [9, 13–16, 18, 19].

Definition 3. The fractional integral of order 𝜎 > 0 with the
lower limits zero for a function 𝑓 is defined by

𝐼
𝜎

0
𝑓 (𝑡) =

1

Γ (𝜎)
∫

𝑡

0

(𝑡 − 𝑠)
𝜎−1
𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (5)

where Γ is the gamma function.
The Riemann-Liouville fractional derivative of order 𝑛 −

1 < 𝜎 < 𝑛 with the lower limits zero for a function 𝑓 can be
written as

𝐿
𝐷
𝜎

0
𝑓 (𝑡) =

1

Γ (𝑛 − 𝜎)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝜎−1

𝑓 (𝑠) 𝑑𝑠,

𝑡 > 0, 𝑛 ∈ N.

(6)

Also the Caputo fractional derivative of order 𝑛 − 1 < 𝜎 < 𝑛
with the lower limits zero for a function 𝑓 ∈ 𝐶𝑛[0,∞) can be
written as

𝐷
𝜎

0
𝑓 (𝑡) =

1

Γ (𝑛 − 𝜎)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝜎−1

𝑓
(𝑛)
(𝑠) 𝑑𝑠,

𝑡 > 0, 𝑛 ∈ N.

(7)

Remark 4. (1)TheCaputo derivative of a constant is equal to
zero.

(2) If 𝑓 is an abstract function with values in 𝑋, then
integrals which appear in Definition 3 are taken in Bochner’s
sense.

Lemma 5 (see [14]). A measurable function ℎ : 𝐽 → 𝑋 is
Bochner integrable if ‖ℎ‖ is Lebesgue integrable.

For 𝑥 ∈ 𝑋, we define two families {𝑈(𝑡)}𝑡≥0 and {𝑉(𝑡)}𝑡≥0
of operators by

𝑈 (𝑡) 𝑥 = ∫

∞

0

𝜂𝑞 (𝜃) 𝑆 (𝑡
𝑞
𝜃) 𝑥 𝑑𝜃,

𝑉 (𝑡) 𝑥 = 𝑞∫

∞

0

𝜃𝜂𝑞 (𝜃) 𝑆 (𝑡
𝑞
𝜃) 𝑥 𝑑𝜃, 0 < 𝑞 < 1,

(8)

where

𝜂𝑞 (𝜃) =
1

𝑞
𝜃
−1−1/𝑞

𝜌𝑞 (𝜃
−1/𝑞

) ,

𝜌𝑞 (𝜃)

=
1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1
𝜃
−𝑞𝑛−1

Γ (𝑛𝑞 + 1)

𝑛!
sin (𝑛𝜋𝑞) , 𝜃 ∈ (0,∞) ,

(9)

where 𝜂𝑞 is a probability density function defined on (0,∞),
which has properties 𝜂𝑞(𝜃) ≥ 0 for all 𝜃 ∈ (0,∞) and
∫
∞

0
𝜂𝑞(𝜃)𝑑𝜃 = 1. It is not difficult to verify (see [14]) that for

𝜇 ∈ [0, 1], we have

∫

∞

0

𝜃
𝜇
𝜂𝑞 (𝜃) 𝑑𝜃 =

Γ (1 + 𝜇)

Γ (1 + 𝑞𝜇)
. (10)
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Clearly, if the semigroup 𝑆(𝑡) (𝑡 ≥ 0) is positive, then, by the
definitions, the operators 𝑈(𝑡) and 𝑉(𝑡) are also positive for
all 𝑡 ≥ 0.

The following lemma follows from the results in [14,
Lemma 2.9] and [15, Lemmas 3.2–3.5].

Lemma 6. The operators 𝑈(𝑡) and 𝑉(𝑡) have the following
properties.

(i) For any fixed 𝑡 ≥ 0 and any 𝑥 ∈ 𝑋𝛼, one has

‖𝑈(𝑡)𝑥‖𝛼 ≤ 𝑀‖𝑥‖𝛼,

‖𝑉(𝑡)𝑥‖𝛼 ≤
𝑞𝑀

Γ (1 + 𝑞)
‖𝑥‖𝛼 =

𝑀

Γ (𝑞)
‖𝑥‖𝛼.

(11)

(ii) Theoperators𝑈(𝑡) and𝑉(𝑡) are strongly continuous for
all 𝑡 ≥ 0.

(iii) If the semigroup 𝑆(𝑡) (𝑡 ≥ 0) is compact, then𝑈(𝑡) and
𝑉(𝑡) are compact operators in 𝑋 for 𝑡 > 0.

(iv) If the semigroup 𝑆𝛼(𝑡) (𝑡 ≥ 0) is norm continuous, then
the restriction of 𝑈(𝑡) to 𝑋𝛼 and the restriction of 𝑉(𝑡)
to𝑋𝛼 are uniformly continuous for 𝑡 > 0.

Definition 7 (see [25, 26]). Let 𝐵 be a bounded set of a real
Banach space 𝐸. Set 𝛽(𝐵) = inf{𝛿 > 0: 𝐵 can be expressed as
the union of a finite number of sets such that the diameter of
each set does not exceed 𝛿; that is,𝐵 = ∪𝑚

𝑖=1
𝐵𝑖 with diam(𝐵𝑖) ≤

𝛿, 𝑖 = 1, 2, . . . , 𝑚}. 𝛽(𝐵) is called the Kuratowski measure of
noncompactness of set 𝐵.

It is clear that 0 ≤ 𝛽(𝐵) < ∞. For the Kuratowski mea-
sure of noncompactness, we have the following well-known
results.

Lemma 8 (see [26]). If 𝐷 ∈ 𝐶(𝐽, 𝐸) is bounded and equi-
continuous, then

𝛽 (𝐷) = 𝛽 (𝐷 (𝐽)) = max
𝑡∈𝐽

𝛽 (𝐷 (𝑡)) , (12)

where𝐷(𝐽) = {𝑥(𝑡) : 𝑥 ∈ 𝐷, 𝑡 ∈ 𝐽}.

Lemma 9 (see [27]). Let 𝐷 be a countable set of strongly
measurable function 𝑥 : 𝐽 → 𝐸 such that there exists an
𝑀 ∈ 𝐿(𝐽,R+) such that ‖𝑥(𝑡)‖ ≤ 𝑀(𝑡) 𝑎.𝑒., 𝑡 ∈ 𝐽 for all 𝑥 ∈ 𝐷.
Then 𝛽(𝐷(𝑡)) ∈ 𝐿(𝐽,R+) and

𝛽({∫
𝐽

𝑥 (𝑡) 𝑑𝑡 : 𝑥 ∈ 𝐷}) ≤ 2∫
𝐽

𝛽 (𝐷 (𝑡)) 𝑑𝑡. (13)

Lemma 10 (see [25] Mönch fixed point theorem). Let B be
a closed and convex subset of 𝐸 and 𝑦0 ∈ 𝐵. Assume that the
continuous operator 𝐴 : 𝐵 → 𝐵 has the following property:
𝐷 ⊂ 𝐵 is countable, and 𝐷 ⊂ Co({𝑦0} ∪ 𝐴(𝐷)) → 𝐷 is
relatively compact. Then 𝐴 has a fixed point in 𝐵.

Based on an overall observation of the previous related
literature, in this paper we adopt the following definition of
mild solution of IVP(1).

Definition 11. By a mild solution of the IVP(1), one means a
function 𝑢 ∈ 𝐶(𝐽, 𝑋𝛼) satisfying

𝑢 (𝑡) = 𝑈 (𝑡) 𝑢0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 (14)

for all 𝑡 ∈ 𝐽.

3. Existence of Positive Mild Solutions

In this section, we introduce the existence theorems of pos-
itive mild solutions of the IVP(1). The discussions are based
on fractional calculus and fixed point theorems.

Let 𝜆1 be the smallest positive real eigenvalue of the linear
operator 𝐴, and let 𝑒1 ∈ 𝐷(𝐴) be the positive eigenvector
corresponding to 𝜆1. For any 𝑇 > 0 and 𝑟 > 0, we write

Ω𝑟

:= {𝑢 ∈ 𝐶 ([0, 𝑇] , 𝑋𝛼) : ‖𝑢 (𝑡)‖𝛼 ≤ 𝑟, 𝑢 (𝑡) ≥ 𝜎𝑒1, 𝑡 ∈ [0, 𝑇]} ,

(15)

where 𝜎 > 0 is a constant. Our main results are as follows.

Theorem 12. Let −𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be the infinites-
imal generator of a positive and compact analytic semigroup
𝑆(𝑡) (𝑡 ≥ 0) of uniformly bounded linear operators. Assume
that 𝑓 ∈ 𝐶(R+ × 𝑋𝛼, 𝑋) satisfies the following conditions.

(𝐻1) For any 𝑢 ∈ Ω𝑟, one has

𝑓 (𝑡, 𝑢 (𝑡)) ≥ 𝑓 (𝑡, 𝜎𝑒1) ≥ 𝜆1𝜎𝑒1, 𝑡 ∈ [0, 𝑇] . (16)

(𝐻2) 𝑓 maps bounded sets of R+ × 𝑋𝛼 into bounded sets of
𝑋.

If 𝑢0 ∈ 𝑋𝛼 with 𝑢0 ≥ 𝜎𝑒1 and 𝛼𝑞 < 1/2 for some 1/2 < 𝑞 <

1, then the IVP(1) has at least one positive mild solution 𝑢 ∈

𝐶([0, 𝑇), 𝑋𝛼). And if 𝑇 < ∞, one has lim𝑡∈𝑇−‖𝑢(𝑡)‖𝛼 = ∞.

Proof. For any 𝑡0 ≥ 0 and 𝑥0 ∈ 𝑋𝛼 with 𝑥0 ≥ 𝜎𝑒1, we
first prove that the initial value problem (IVP) of fractional
evolution equations

𝐷
𝑞

𝑡
0

𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 > 𝑡0,

𝑢 (𝑡0) = 𝑥0

(17)

has at least one positive mild solution on 𝐽 = [𝑡0, 𝑡0 + ℎ𝑡
0

],
where ℎ𝑡

0

is a positive constant and will be given later.
Let 𝑅𝑡

0

:= 2𝑀(‖𝑥0‖𝛼 + 1) + 𝜎𝑒1 > 0. Denote

Ω𝑅
𝑡

0

:= {𝑢 ∈ 𝐶 (𝐽, 𝑋𝛼) : ‖𝑢(𝑡)‖𝛼 ≤ 𝑅𝑡
0

, 𝑢 (𝑡) ≥ 𝜎𝑒1, 𝑡 ∈ 𝐽} .

(18)

Then Ω𝑅
𝑡

0

⊂ 𝐶(𝐽, 𝑋𝛼) is a nonempty bounded convex closed
set. The assumption (𝐻2) implies that there is a constant 𝐶 =
𝐶(𝑡0) > 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢)
󵄩󵄩󵄩󵄩 ≤ 𝐶 (19)

for any 𝑡 ∈ 𝐽 and 𝑢 ∈ Ω𝑅
𝑡

0

.



4 Abstract and Applied Analysis

Define an operator 𝑄 by

(𝑄𝑢) (𝑡) = 𝑈 (𝑡 − 𝑡0) 𝑥0

+ ∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽.

(20)

By the continuity of 𝑓, it is not difficult to prove that 𝑄 :

𝐶(𝐽, 𝑋𝛼) → 𝐶(𝐽, 𝑋𝛼) is continuous. By the positivity of the
semigroup 𝑆(𝑡) (𝑡 ≥ 0), the assumption (𝐻1), and (20), we
easily see that (𝑄𝑢)(𝑡) ≥ (𝑄𝜎𝑒1)(𝑡). Clearly, the positive mild
solution of the IVP(17) on 𝐽 is equivalent to the fixed point of
operator𝑄 inΩ𝑅

𝑡

0

. We will use Schauder fixed point theorem
to prove that 𝑄 has fixed points inΩ𝑅

𝑡

0

.
We first prove that 𝑄 : Ω𝑅

𝑡

0

→ Ω𝑅
𝑡

0

is continuous. Let
ℎ𝑡
0

≤ [𝑀(1−𝛼)Γ(1+𝑞(1− 𝛼))(‖𝑥0‖𝛼+1)/𝑀𝛼𝐶Γ(2−𝛼)]
1/𝑞(1−𝛼).

For any 𝑢 ∈ Ω𝑅
𝑡

0

and 𝑡 ∈ 𝐽, by Lemma 6, (10), (19), and (20),
we have

‖(𝑄𝑢) (𝑡)‖𝛼

≤
󵄩󵄩󵄩󵄩𝑈(𝑡 − 𝑡0)𝑥0

󵄩󵄩󵄩󵄩𝛼
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1
𝑉(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛼

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩𝛼
+ ∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝐴

𝛼
𝑉 (𝑡 − 𝑠)

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩𝛼
+ 𝑞𝑀𝛼𝐶∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞(1−𝛼)−1

𝑑𝑠 ⋅ ∫

∞

0

𝜃
1−𝛼
𝜂𝑞 (𝜃) 𝑑𝜃

= 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩𝛼
+

𝑀𝛼𝐶Γ (2 − 𝛼)

(1 − 𝛼) Γ (1 + 𝑞 (1 − 𝛼))
ℎ
𝑞(1−𝛼)

𝑡
0

≤ 𝑅𝑡
0

.

(21)

Let V0 ≡ 𝜎𝑒1. Then V0(𝑡) = 𝜎𝑒1 for any 𝑡 ∈ 𝐽 and

𝜙 (𝑡) ≜ 𝐷
𝑞

𝑡
0

V0 (𝑡) + 𝐴V0 (𝑡) = 𝜆1𝜎𝑒1 ≤ 𝑓 (𝑡, 𝜎𝑒1) , 𝑡 ∈ 𝐽.

(22)

By the positivity of the semigroup 𝑆(𝑡) (𝑡 ≥ 0), assumption
(𝐻1), and (20), for any 𝑡 ∈ 𝐽, we have

𝜎𝑒1 = V0 (𝑡)

= 𝑈 (𝑡 − 𝑡0) V0 (𝑡0) + ∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝜙 (𝑠) 𝑑𝑠

≤ 𝑈 (𝑡 − 𝑡0) 𝑥0 + ∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝜎𝑒1) 𝑑𝑠

= (𝑄𝜎𝑒1) (𝑡) ≤ (𝑄𝑢) (𝑡) .

(23)

Thus, 𝑄 : Ω𝑅
𝑡

0

→ Ω𝑅
𝑡

0

is continuous.
By using a similar argument as in the proof of Theorem

3.1 in [14], we can prove that 𝑄 : Ω𝑅
𝑡

0

→ Ω𝑅
𝑡

0

is a
compact operator. Hence by Schauder fixed point theorem,
the operator 𝑄 has at least one fixed point 𝑢∗ in Ω𝑅

𝑡

0

, which

satisfies 𝑢∗(𝑡) ≥ 𝜎𝑒1 > 0 for all 𝑡 ∈ 𝐽. Hence 𝑢∗ is a positive
mild solution of the IVP(1) on 𝐽.

Therefore, there exists [0, ℎ0] such that the IVP(1) has at
least one positive mild solution 𝑢∗ ∈ 𝐶([0, ℎ0], 𝑋𝛼). Now, by
the standard proof method of extension theorem of initial
value problem, 𝑢∗ can be extended to a saturated solution
𝑢 ∈ 𝐶([0, 𝑇), 𝑋𝛼) of the IVP(1), whose existence interval is
[0, 𝑇), and if 𝑇 < ∞, we have lim𝑡→𝑇−‖𝑢(𝑡)‖𝛼 = ∞.

For any 𝑇 > 0 and 𝑟 > 0, define Ω𝑟 as in (15). If 𝑓(𝑡, 𝑢) is
increasing inΩ𝑟, that is, 𝑓(𝑡, 𝑢) satisfies the condition

(𝐻1)
∗ for any 𝑢1, 𝑢2 ∈ Ω𝑟 with 𝑢1(𝑡) ≤ 𝑢2(𝑡) for all 𝑡 ∈ [0, 𝑇],
we have

𝑓 (𝑡, 𝑢1 (𝑡)) ≤ 𝑓 (𝑡, 𝑢2 (𝑡)) , 𝑡 ∈ [0, 𝑇] , (24)

then we have 𝑓(𝑡, 𝑢(𝑡)) ≥ 𝑓(𝑡, 𝜎𝑒1) for any 𝑢 ∈ Ω𝑟 and
𝑡 ∈ [0, 𝑇]. On the other hand, if 𝑓(𝑡, 𝑢) satisfies linear growth
condition, then it maps the bounded sets into the bounded
sets. Hence by Theorem 12, we have the following existence
result.

Corollary 13. Let −𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be the infinites-
imal generator of a positive and compact analytic semigroup
𝑆(𝑡) (𝑡 ≥ 0) of uniformly bounded linear operators. Assume
that 𝑓 ∈ 𝐶(R+ × 𝑋𝛼, 𝑋) satisfies condition (𝐻1)∗ and

(𝐻2)
∗ there exists a constant 𝑎𝑓 > 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝑎𝑓 (1 + ‖𝑥‖𝛼) (25)

for all 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ 𝑋𝛼.
If 𝑓(𝑡, 𝜎𝑒1) ≥ 𝜆1𝜎𝑒1 for all 𝑡 ∈ [0, 𝑇], 𝑢0 ∈ 𝑋𝛼 with 𝑢0 ≥

𝜎𝑒1 and 𝛼𝑞 < 1/2 for some 1/2 < 𝑞 < 1, then the IVP(1) has
at least one positive mild solution 𝑢 ∈ 𝐶([0, 𝑇), 𝑋𝛼). And if
𝑡 < ∞, one has lim𝑡→𝑇−‖𝑢(𝑡)‖𝛼 = ∞.

Since the analytic semigroup is norm continuous, it
follows that we can delete the compactness condition on the
analytic semigroup 𝑆(𝑡) (𝑡 ≥ 0) and obtain the following
existence result.

Theorem 14. Assume that −𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the infini-
tesimal generator of a positive analytic semigroup 𝑆(𝑡) (𝑡 ≥ 0)
of uniformly bounded linear operators, and that 𝑓 ∈ 𝐶(R+ ×

𝑋𝛼, 𝑋) satisfies the condition (𝐻1) and

(𝐻3) for any 𝑇 > 0 and 𝑟 > 0, 𝑓(𝑡, Ω𝑟) := {𝑓(𝑡, 𝑢) : 𝑢 ∈ Ω𝑟}
is relatively compact in 𝑋𝛼 for all 𝑡 ∈ [0, 𝑇], where Ω𝑟
is defined as in (15).

If 𝑢0 ∈ 𝑋𝛼 with 𝑢0 ≥ 𝜎𝑒1 and 𝛼𝑞 < 1/2 for some 1/2 < 𝑞 <

1, then the IVP(1) has at least one positive mild solution 𝑢 ∈

𝐶([0, 𝑇), 𝑋𝛼). And if 𝑡 < ∞, one has lim𝑡→𝑇−‖𝑢(𝑡)‖𝛼 = ∞.

Proof. For any 𝑡0 ≥ 0 and 𝑥0 ∈ 𝑋𝛼 with 𝑥0 ≥ 𝜎𝑒1, we first
prove that the IVP(17) has at least one positive mild solution
on 𝐽 = [𝑡0, 𝑡0 + ℎ𝑡

0

], where ℎ𝑡
0

> 0 is a constant and will
be specified later. Define an operator 𝑄 as in (20). Let 𝑅𝑡

0

=

2𝑀(‖𝑥0‖𝛼+1)+𝜎𝑒1. WriteΩ𝑅
𝑡

0

as in (18).The condition (𝐻3)
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implies that 𝑓(𝑡, Ω𝑅
𝑡

0

) is bounded for any 𝑡 ∈ 𝐽, that is, there
is a positive constant 𝐶 = 𝐶(𝑡0) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢 (𝑡))
󵄩󵄩󵄩󵄩 ≤ 𝐶, 𝑡 ∈ 𝐽, 𝑢 ∈ Ω𝑅

𝑡

0

. (26)

Let ℎ𝑡
0

≤ [𝑀(1 − 𝛼)Γ(1 + 𝑞(1 − 𝛼))(‖𝑥0‖𝛼 + 1)/𝑀𝛼𝐶Γ(2 −

𝛼)]
1/𝑞(1−𝛼). A similar argument as in the proof of Theorem 12

shows that𝑄 : Ω𝑅
𝑡

0

→ Ω𝑅
𝑡

0

is continuous and𝑄Ω𝑅
𝑡

0

is equi-
continuous.

Thus, for any 𝐷 ⊂ Ω𝑅
𝑡

0

, let 𝐷(𝑡) := {𝑢(𝑡) : 𝑢 ∈ 𝐷}, 𝑡 ∈ 𝐽.
Since 𝑄𝐷 ⊂ 𝑄Ω𝑅

𝑡

0

⊂ Ω𝑅
𝑡

0

is equicontinuous and bounded,
by Lemma 8, we have

𝛽 (𝑄𝐷) = max
𝑡∈𝐽

𝛽 ((𝑄𝐷) (𝑡)) . (27)

Now, let 𝐷 = {𝑢𝑚 : 𝑚 = 1, 2, . . .} ⊂ Ω𝑅
𝑡

0

with 𝐷 ⊂

Co({𝑦0} ∪ 𝑄𝐷) for some 𝑦0 ∈ Ω𝑅
𝑡

0

. It is obvious that

󵄩󵄩󵄩󵄩󵄩
(𝑡 − 𝑠)

𝑞−1
𝑉(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))

󵄩󵄩󵄩󵄩󵄩𝛼

≤
𝐶𝑀𝛼𝑞Γ (2 − 𝛼)

Γ (1 + 𝑞 (1 − 𝛼))
(𝑡 − 𝑠)

𝑞−1
∈ 𝐿 (𝐽,R

+
) .

(28)

Hence by Lemma 9 and (20), we have

𝛽 ((𝑄𝐷) (𝑡))

= 𝛽(𝑈 (𝑡 − 𝑡0) 𝑥0 + ∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝐷 (𝑠)) 𝑑𝑠)

= 𝛽(∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝐷 (𝑠)) 𝑑𝑠)

≤ 2∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝐴

𝛼
𝑉 (𝑡 − 𝑠)

󵄩󵄩󵄩󵄩 ⋅ 𝛽 (𝑓 (𝑠, 𝐷 (𝑠))) 𝑑𝑠

≤
2𝑀𝛼𝑞Γ (2 − 𝛼)

Γ (1 + 𝑞 (1 − 𝛼))
∫

𝑡

𝑡
0

(𝑡 − 𝑠)
𝑞(1−𝛼)−1

⋅ 𝛽 (𝑓 (𝑠, 𝐷 (𝑠))) 𝑑𝑠

= 0.

(29)

It follows that 𝛽((𝑄𝐷)(𝑡)) = 0 for all 𝑡 ∈ 𝐽. By Lemma 8 and
(27), we have 𝛽(𝑄𝐷) = max𝑡∈𝐽𝛽((𝑄𝐷)(𝑡)) = 0. Thus, we have

𝛽 (𝐷) ≤ 𝛽 (Co ({𝑦0} ∪ 𝑄𝐷))

= 𝛽 ({𝑦0} ∪ 𝑄𝐷) = 𝛽 (𝑄𝐷) = 0.

(30)

This implies that𝐷 is relatively compact.Therefore, byMönch
fixed point theorem, the operator 𝑄 has at least one fixed
point 𝑢∗ ∈ Ω𝑅

𝑡

0

, which satisfies 𝑢∗(𝑡) ≥ 𝜎𝑒1 > 0 for all 𝑡 ∈ 𝐽.
Hence 𝑢∗ is a positive mild solution of the IVP(17) on 𝐽.

Therefore, there exists [0, ℎ0] such that the IVP(1) has at
least one positivemild solution 𝑢∗ ∈ 𝐶([0, ℎ0], 𝑋𝛼). 𝑢

∗ can be
extended to a saturated solution 𝑢 ∈ 𝐶([0, 𝑇), 𝑋𝛼) of IVP(1),
whose existence interval is [0, 𝑇) and when 𝑡 ≤ ∞, we have
lim𝑡→𝑇−‖𝑢(𝑡)‖𝛼 = ∞.

4. Positive Mild Solutions of
Parabolic Equations

LetΩ ⊂ R𝑁 be a bounded domain with a sufficiently smooth
boundary 𝜕Ω. Let

𝐴 (𝑥,𝐷) 𝑢 = −

𝑁

∑

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(𝑎𝑖𝑗 (𝑥)
𝜕𝑢

𝜕𝑥𝑗

) + 𝑎0 (𝑥) 𝑢 (31)

be a uniformly elliptic differential operator of divergence
form in Ω, where the coefficients 𝑎𝑖𝑗 ∈ 𝐶

1+𝜇
(Ω) (𝑖, 𝑗 =

1, 2, . . . , 𝑁) and 𝑎0 ∈ 𝐶
𝜇
(Ω) for some 𝜇 ∈ (0, 1). We assume

that [𝑎𝑖𝑗(𝑥)]𝑁×𝑁 is a positive define symmetric matric for
every 𝑥 ∈ Ω, and there exists a constant 𝜈 > 0 such that

𝑁

∑

𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥) 𝜉𝑖𝜉𝑗 ≥ 𝜈
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2
,

∀𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑁) ∈ R
𝑁
, 𝑥 ∈ Ω.

(32)

Let 𝑎0(𝑥) ≥ 0 on Ω. We use (𝑥, 𝑡, 𝜂) to denote a generic
point of Ω × R+ × R, where R = [0, +∞) and R =

(−∞, +∞). Let 𝐹 : Ω × R+ × R → R be a continuous
function. We discuss the existence of positive mild solutions
for the parabolic initial boundary value problem (IBVP)

𝜕
𝑞

𝜕𝑡𝑞
𝑢 (𝑥, 𝑡) + 𝐴 (𝑥,𝐷) 𝑢 (𝑥, 𝑡) = 𝐹 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) in Ω ×R

+
,

𝑢|𝜕Ω = 0,

𝑢 (𝑥, 0) = 𝜑 (𝑥) in Ω,
(33)

where 0 < 𝑞 < 1 is a constant.
Let 𝜆1 be the smallest positive real eigenvalue of elliptic

operator 𝐴(𝑥,𝐷) under the Dirichlet boundary condition
𝑢|𝜕Ω = 0. It is well known (cf. Amann [22, 28]) that 𝜆1 > 0.
Let 𝑒1(𝑥) be the positive eigenvector corresponding to 𝜆1.
Assume that 𝐹 : Ω × R+ × R → R is continuous and
satisfies the following conditions.

(𝐹1) For any 𝑇 > 0 and 𝑟 > 0, there exists a constant 𝜎 > 0
such that

𝐹 (𝑥, 𝑡, 𝜂) ≥ 𝐹 (𝑥, 𝑡, 𝜎𝑒1 (𝑥)) ≥ 𝜆1𝜎𝑒1 (𝑥) , 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ Ω,

(34)

where 𝜂 ∈ R with 𝜎𝑒1(𝑥) ≤ 𝜂 ≤ 𝑟.

(𝐹2) For any 𝑇 > 0, there exists a constant 𝑎𝑓 > 0 such that

󵄨󵄨󵄨󵄨𝐹 (𝑥, 𝑡, 𝜂)
󵄨󵄨󵄨󵄨 ≤ 𝑎𝑓 (1 +

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) , 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] . (35)

Let 𝑋 = 𝐿
2
(Ω). Define an operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋

by

𝐷 (𝐴) = 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) , 𝐴𝑢 = 𝐴 (𝑥,𝐷) 𝑢. (36)
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It is well known (cf. Li [29]) that −𝐴 generates a compact
analytic semigroup 𝑆(𝑡) (𝑡 ≥ 0) and 𝐷(𝐴1/2) = 𝐻

1

0
(Ω). By

the maximum principle of the equation of the parabolic type,
it is easy to prove that 𝑆(𝑡) (𝑡 ≥ 0) is also a positive semigroup
in 𝑋. The assumptions (𝐹1) and (𝐹2) imply that the mapping
𝑓 : R+ × 𝑋1/2 → 𝑋 defined by

𝑓 (𝑡, 𝑢) (⋅) = 𝐹 (⋅, 𝑡, 𝑢 (⋅)) , 𝑡 ∈ R
+
, 𝑢 ∈ 𝐻

1

0
(Ω) , (37)

is continuous and satisfies the conditions (𝐻1) and (𝐻2).
Thus, the IBVP(33) can be rewritten into the abstract form of
IVP(1). ByTheorem 12, we have the following existence result
for the IBVP(33).

Theorem 15. Assume that 𝐹 : Ω × R+ × R → R is
continuous and satisfies conditions (𝐹1) and (𝐹2). If 𝜑 ∈ 𝐻10 (Ω)
with 𝜑(𝑥) ≥ 𝜎𝑒1(𝑥) for any 𝑥 ∈ Ω and 1/2 < 𝑞 < 1, then the
IBVP(33) has at least one positive mild solution 𝑢 that satisfies
𝑢(𝑥, 𝑡) ≥ 𝜎𝑒1(𝑥) for any 𝑥 ∈ Ω and 𝑡 ∈ [0, 𝑇]. And if 𝑇 < +∞,
one has lim𝑡→𝑇− |𝑢(𝑡)| = +∞.
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