
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 467985, 5 pages
http://dx.doi.org/10.1155/2013/467985

Research Article
Nonexistence Results of Semilinear Elliptic Equations Coupled
with the Chern-Simons Gauge Field

Hyungjin Huh

Department of Mathematics, Chung-Ang University, Seoul 156-756, Republic of Korea

Correspondence should be addressed to Hyungjin Huh; huh@cau.ac.kr

Received 1 November 2012; Accepted 15 January 2013

Academic Editor: Khalil Ezzinbi

Copyright © 2013 Hyungjin Huh.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss the nonexistence of nontrivial solutions for the Chern-Simons-Higgs and Chern-Simons-Schrödinger equations. The
Derrick-Pohozaev type identities are derived to prove it.

1. Introduction and Main Results

In this paper, we are concerned with the nonexistence of
nontrivial solutions to some elliptic equations coupled with
Chern-Simons gauge field.More precisely, let us first consider
the following system:
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which is derived from the system (5) with stationary solution
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R1+2,𝜓 : R1+2 → C is the complex scalar field,𝐴
𝜇
: R1+2 →

R is the gauge field,𝐷
𝜇
= 𝜕

𝜇
+ 𝑖𝐴

𝜇
is the covariant derivative

for 𝜇 = 0, 1, 2, and 𝑖 denotes the imaginary unit.

The Chern-Simons-Higgs system in (5) was introduced
in [1, 2] to deal with the electromagnetic phenomena in
planar domain such as fractional quantumHall effect or high
temperature superconductivity. The system in (5) has the
conservation of the total energy
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The special case with a self-dual potential𝑉(|𝜙|2) = (1/4)
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2 has received much attention and has been
studied by several authors, where one can derive the following
system of first-order equations called self-dual equations (see
[1, 2])
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We note that solutions to the self-dual equations (7) provide
solutions to (1)–(4). For the self-dual potential 𝑉(|𝜙|2) =

(1/4)|𝜙|

2
(|𝜙|

2
− 1)

2, there are two possible boundary con-
ditions to make the energy finite; either |𝜙| → 1 or
|𝜙| → 0 as |𝑥| → ∞. The former boundary condition is
called “topological” while the latter “non-topological.” A lot
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of works have been done for the existence of solutions to the
self-dual system [3–7]. Some existence results for the nonself-
dual Chern-Simons-Higgs equations with the topological
boundary condtion have been proved in [8–10]. From the
mathematical point of view, it is meaningful to study exis-
tence and nonexistence of nontrivial solutions under various
conditions on 𝑉. In this paper, we are concerned with the
nonexistence of the non-trivial solution to (1)–(4) with the
non-topological boundary condtion.The following is our first
result.
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where 0 ≤ 𝑑 ≤ 1 is a constant. Then, one has 𝜙 ≡ 0.

The proof is based on the following Derrick-Pohozaev
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which is not nonnegative for 𝑠 ≥ 0.
The following Chern-Simons gauged Schrödinger system

was proposed in [11] when the second quantized 𝑁 body
anyon problem is considered
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In the special casewith the potential𝑉(|𝜙|2) = −(1/2)|𝜙|

4,
we can derive the following self dual equations [11–13]
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Note that solutions to the self-dual system (16) provide solu-
tions to (12)–(15). The self-dual equations (16) can be trans-
formed into the Liouville equation, an integrable equation
whose solutions are explicitly known.
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However we have, for the complex solution,
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which is not nonnegative.
The paper is organized as follows. In Section 2, we

proveTheorem 1 by deriving Derrick-Pohozaev type identity.
Theorem 2 is proved in Section 3. We conclude this section
by giving a few notations.
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𝐵
𝑅

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 − ∫

𝐵
𝑅

𝑥

𝑘
𝐷

𝑗
𝜙 (𝐷

𝑘
𝐷

𝑗
𝜙 + 𝑖𝐹

𝑗𝑘
𝜙)𝑑𝑥,

(24)

where we used the notation 𝐹

𝑗𝑘
= 𝜕

𝑗
𝐴

𝑘
− 𝜕

𝑘
𝐴

𝑗
and the fol-

lowing identity:

𝐷

𝑗
𝐷

𝑘
𝜙 = 𝐷

𝑘
𝐷

𝑗
𝜙 + 𝑖𝐹

𝑗𝑘
𝜙. (25)

Taking the real parts and integrating by parts, we obtain

Re {II} = ∫

𝜕𝐵
𝑅

𝑥

𝑗
𝑥

𝑘

𝑅

𝐷

𝑗
𝜙𝐷

𝑘
𝜙 𝑑𝜎

𝑅
− ∫

𝐵
𝑅

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

− ∫

𝐵
𝑅

1

2

𝑥

𝑘
𝜕

𝑘
(

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

) 𝑑𝑥

− ∫

𝐵
𝑅

𝑥

𝑘
𝐹

𝑗𝑘
Im (𝜙𝐷

𝑗
𝜙) 𝑑𝑥

= ∫

𝜕𝐵
𝑅

𝑥

𝑗
𝑥

𝑘

𝑅

𝐷

𝑗
𝜙𝐷

𝑘
𝜙 𝑑𝜎

𝑅
− ∫

𝜕𝐵
𝑅

𝑅

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝜎

𝑅

+ ∫

𝐵
𝑅

1

2

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑥

𝑗
𝜕

𝑗
(𝐴

2

0
) 𝑑𝑥 + ∫

𝐵
𝑅

𝜔

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑥

𝑗
𝜕

𝑗
𝐴

0
𝑑𝑥,

(26)

where we used (2)–(4) in the following way:

− ∫

𝐵
𝑅

𝑥

1
𝐹

21
Im (𝜙𝐷

2
𝜙) + 𝑥

2
𝐹

12
Im (𝜙𝐷

1
𝜙) 𝑑𝑥

= ∫

𝐵
𝑅

𝑥

𝑗

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
(𝜔 + 𝐴

0
) 𝜕

𝑗
𝐴

0
𝑑𝑥.

(27)

Combining (23) and (26), we have from the identity (21)

∫

𝐵
𝑅

(𝜔 + 𝐴

0
)

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥 − ∫

𝐵
𝑅

𝑉(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝑥

= ∫

𝜕𝐵
𝑅

𝑥

𝑗
𝑥

𝑘

𝑅

Re (𝐷
𝑗
𝜙 𝐷

𝑘
𝜙) −

𝑅

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

−

𝑅

2

𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) +

𝑅

2

(𝜔 + 𝐴

0
)

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝜎

𝑅
.

(28)

Thus we have
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝐵
𝑅

(𝜔 + 𝐴

0
)

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
− 𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶∫

𝜕𝐵
𝑅

𝑅(

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ 𝜔

2󵄨
󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

𝐴

0

󵄨

󵄨

󵄨

󵄨

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
+ 𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
)) 𝑑𝜎

𝑅
,

(29)
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where 𝐶 is a positive constant. Considering the Sobolev
embedding and the condition of Theorem 1, we know that
|𝐷

𝑗
𝜙|

2, 𝜔2|𝜙|2, |𝐴
0
|

2
|𝜙|

2,𝑉(|𝜙|2) ∈ 𝐿

1
(R2). Applying the idea

in [16], we know that there exists a sequence {𝑅
𝑛
} → ∞ such

that

∫

𝜕𝐵
𝑅𝑛

𝑅

𝑛
(

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ 𝜔

2󵄨
󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
+

󵄨

󵄨

󵄨

󵄨

𝐴

0

󵄨

󵄨

󵄨

󵄨

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
+ 𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
)) 𝑑𝜎

𝑅
𝑛

󳨀→ 0,

(30)

and consequently

∫

R2
(𝜔 + 𝐴

0
)

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
− 𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝑥

= lim
𝑛→∞

∫

𝐵
𝑅𝑛

(𝜔 + 𝐴

0
)

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
− 𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝑥 = 0.

(31)

On the other hand, we know from (1) that

0 =∫

R2
𝜙 (−(𝜔 + 𝐴

0
)

2
𝜙 − 𝐷

𝑗
𝐷

𝑗
𝜙 + 𝑉

󸀠
(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝜙) 𝑑𝑥

=∫

R2
−(𝜔 + 𝐴

0
)

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ 𝑉

󸀠
(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥,

(32)

by taking care of the boundary integral terms as before. Com-
bining (31) and (32), we obtain

∫

R2
𝑑

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ (1 − 𝑑) (𝜔 + 𝐴

0
)

2
󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2

+ 𝑑𝑉

󸀠
(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
− 𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝑥 = 0,

(33)

where 0 ≤ 𝑑 ≤ 1 is a constant. We are ready to prove
Theorem 1.

(1) For 0 < 𝑑 ≤ 1, we have 𝐷
𝑗
𝜙 ≡ 0. If 𝜙(𝑥

0
) ̸= 0, then

there exists 𝛿 > 0 such that 𝜙(𝑥) ̸= 0 for 𝐵
𝑥
0

(𝛿) = {𝑥 | |𝑥 −

𝑥

0
| < 𝛿}. In the region 𝐵

𝑥
0

(𝛿), we have 𝐴
𝑗
= 𝑖(𝜕

𝑗
𝜙/𝜙). Using

(4) we have𝐴
0
(𝑥)+𝜔 = 0 in 𝐵

𝑥
0

(𝛿). On the other hand, from
(2) and (3), we deduce that 𝐴

0
(𝑥) = constant = −𝜔. By (1),

we obtain𝑉󸀠(|𝜙|2)𝜙 = 0 for all 𝑥 ∈ R2. By the condition of𝑉󸀠
and 𝜙 ∈ 𝐿

2, we conclude that 𝜙 ≡ 0.
(2) For 𝑑 = 0, we have 𝑉(|𝜙|2) = 0. By the condition of 𝑉

and 𝜙 ∈ 𝐿

2, we have 𝜙 ≡ 0.

3. Proof of Theorem 2

Repeating the similar argument to the proof of Theorem 1,
we derive Derrick-Pohozaev type identities for (12)–(15).
Suppose that (𝜙, 𝐴

0
, 𝐴

1
, 𝐴

2
) is a solution of (12)–(15). Multi-

plying (12) by 𝑥
𝑘
𝐷

𝑘
𝜙 and integrating over 𝐵

𝑅
, we obtain

∫

𝐵
𝑅

(𝜔 + 𝐴

0
) 𝜙 𝑥

𝑘
𝐷

𝑘
𝜙 𝑑𝑥 − ∫

𝐵
𝑅

𝐷

𝑗
𝐷

𝑗
𝜙 𝑥

𝑘
𝐷

𝑘
𝜙 𝑑𝑥

+ ∫

𝐵
𝑅

𝑉

󸀠
(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝜙 𝑥

𝑘
𝐷

𝑘
𝜙 𝑑𝑥 = 0.

(34)

Now we set

I = ∫

𝐵
𝑅

(𝜔 + 𝐴

0
) 𝜙 𝑥

𝑘
𝐷

𝑘
𝜙 𝑑𝑥,

II = ∫

𝐵
𝑅

𝐷

𝑗
𝐷

𝑗
𝜙 𝑥

𝑘
𝐷

𝑘
𝜙 𝑑𝑥,

III = ∫

𝐵
𝑅

𝑉

󸀠
(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝜙 𝑥

𝑘
𝐷

𝑘
𝜙 𝑑𝑥.

(35)

Then, integrating by parts and taking real parts, we have

Re {I} = ∫

𝜕𝐵
𝑅

𝑅

2

(𝜔 + 𝐴

0
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝜎

𝑥
− ∫

𝐵
𝑅

(𝜔 + 𝐴

0
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥

− ∫

𝐵
𝑅

1

2

𝑥

𝑗
𝜕

𝑗
𝐴

0

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥,

Re {II} = ∫

𝜕𝐵
𝑅

𝑥

𝑗
𝑥

𝑘

𝑅

𝐷

𝑗
𝜙𝐷

𝑘
𝜙 𝑑𝜎

𝑅
− ∫

𝜕𝐵
𝑅

𝑅

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝜎

𝑅

− ∫

𝐵
𝑅

1

2

𝑥

𝑗
𝜕

𝑗
𝐴

0

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥,

Re {III} = ∫

𝜕𝐵
𝑅

𝑅

2

𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝜎

𝑥
− ∫

𝐵
𝑅

𝑉(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝑥.

(36)

Then we have from the identity (34)

∫

𝐵
𝑅

𝑉(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) + (𝜔 + 𝐴

0
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥

= ∫

𝜕𝐵
𝑅

−

𝑥

𝑗
𝑥

𝑘

𝑅

Re (𝐷
𝑗
𝜙 𝐷

𝑘
𝜙) +

𝑅

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

+

𝑅

2

𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) +

𝑅

2

(𝜔 + 𝐴

0
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝜎

𝑅
.

(37)

Applying the same argument in Section 2, the right hand side
of the above equality vanishes. Then we conclude that

∫

R2
𝑉(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) + (𝜔 + 𝐴

0
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥 = 0. (38)

On the other hand, we know from (12)

∫

R2
(𝜔 + 𝐴

0
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ 𝑉

󸀠
(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥 = 0. (39)

Combining (38) and (39), we end up with

∫

R2

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

𝑗
𝜙

󵄨

󵄨

󵄨

󵄨

󵄨

2

+ 𝑉

󸀠
(

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
)

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
− 𝑉 (

󵄨

󵄨

󵄨

󵄨

𝜙

󵄨

󵄨

󵄨

󵄨

2
) 𝑑𝑥 = 0. (40)

Following the reasoning inTheorem 1, we deduce 𝜙 ≡ 0 from
the fact𝐷

𝑗
𝜙 ≡ 0.

For the proof of the second result in Theorem 2, we
assume 𝜙(𝑥) = 𝑢(𝑥) ∈ R. Then (13)–(15) can be rewritten
by

𝜕

1
𝐴

0
= 𝐴

2
𝑢

2
,

𝜕

2
𝐴

0
= −𝐴

1
𝑢

2
,

𝜕

1
𝐴

2
− 𝜕

2
𝐴

1
= −

1

2

𝑢

2
.

(41)
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It is easy to check the following identity:

𝜕

1
(𝐴

2
𝐴

0
) − 𝜕

2
(𝐴

1
𝐴

0
) = (𝐴

2

1
+ 𝐴

2

2
−

1

2

𝐴

0
) 𝑢

2
, (42)

from which we derive, with the condition 𝐴

0
∈ 𝐿

𝑝, 𝐴
1
, 𝐴

2
∈

𝐿

𝑞 for 1/𝑝 + 1/𝑞 = 1, 2 < 𝑞 < ∞,

∫

R2

1

2

𝐴

0
𝑢

2
𝑑𝑥 = ∫

𝑅
2

(𝐴

2

1
+ 𝐴

2

2
) 𝑢

2
𝑑𝑥. (43)

Considering |𝐷
𝑗
𝑢|

2
= |∇𝑢|

2
+(𝐴

2

1
+𝐴

2

2
)𝑢

2, we have from (38)
and (39)

∫

R2
𝑉(|𝑢|

2
) + 𝜔|𝑢|

2
+ 2 (𝐴

2

1
+ 𝐴

2

2
) 𝑢

2
𝑑𝑥 = 0,

∫

R2
|∇𝑢|

2
+ 3 (𝐴

2

1
+ 𝐴

2

2
) 𝑢

2
+ 𝜔|𝑢|

2
+ 𝑉

󸀠
(|𝑢|

2
) |𝑢|

2
𝑑𝑥 = 0.

(44)

Then we obtain, for a constant ℎ ≥ 2/3,

∫

R2
ℎ|∇𝑢|

2
+ (3ℎ − 2) (𝐴

2

1
+ 𝐴

2

2
) 𝑢

2
+ 𝜔 (ℎ − 1) |𝑢|

2

+ ℎ𝑉

󸀠
(|𝑢|

2
) |𝑢|

2
− 𝑉 (|𝑢|

2
) 𝑑𝑥 = 0,

(45)

which proves the second result inTheorem 2.
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