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We consider the low-rank approximation problem arising in the generalized Karhunen-Loeve transform. A sufficient condition for
the existence of a solution is derived, and the analytical expression of the solution is given. A numerical algorithm is proposed to
compute the solution. The new algorithm is illustrated by numerical experiments.

1. Introduction

Throughout this paper, we use 𝑅𝑚×𝑛 to denote the set of𝑚×𝑛

real matrices. We use 𝐴𝑇 and 𝐴
+ to denote the transpose

and Moore-Penrose generalized inverse of the matrix 𝐴,
respectively. The symbol 𝑂𝑛×𝑛 stands for the set of all 𝑛 × 𝑛
orthogonal matrices. The symbols rank(𝐴) and ‖𝐴‖

𝐹
stand

for the rank and the Frobenius norm of the matrix 𝐴,
respectively. For 𝑎 = (𝑎

𝑖
) ∈ 𝑅

𝑛, the symbol ‖𝑎‖ stands for
the 𝑙
2
-norm of the vector 𝑎, that is, ‖𝑎‖

2
= (∑
𝑛

𝑖=1
𝑎
2

𝑖
)
1/2. The

symbol 𝐴1/2 stands for the square root of the matrix 𝐴, that
is, (𝐴1/2)2 = 𝐴. For the random vector 𝑥 = (𝑥

𝑖
) ∈ 𝑅
𝑛, we use

𝐸{𝑥
𝑖
} to stand for the expected value of the 𝑖th entry 𝑥

𝑖
, and

we use𝐸{𝑥𝑥𝑇} = (𝑒
𝑖𝑗
)
𝑛×𝑛

to stand for the covariancematrix of
the random vector 𝑥, where 𝑒

𝑖𝑗
= 𝐸[(𝑥

𝑖
−𝐸{𝑥

𝑖
})(𝑥
𝑗
−𝐸{𝑥

𝑗
})],

𝑖, 𝑗 = 1, 2, . . . , 𝑛.
The generalized Karhunen-Loeve transform is a well-

known signal processing technique for data compression and
filtering (see [1–4] for more details). A simple description
of the generalized Karhunen-Loeve transform is as follows.
Given two random vectors 𝑥 ∈ 𝑅

𝑛, 𝑠 ∈ 𝑅
𝑚 and an integer

𝑑 (1 ≤ 𝑑 < min{𝑚, 𝑛}), the generalized Karhunen-Loeve
transform is presented by a matrix 𝑇∗, which is a solution of
the following minimization problem (see [1, 4]):

min
𝑇∈𝑅
𝑚×𝑛
, rank(𝑇)=𝑑

𝐸 {‖𝑠 − 𝑇𝑥‖
2

} . (1)

Here the vector 𝑠 depends on some prior knowledge about the
data 𝑥.

Without the rank constraint on 𝑇, the solution of the
minimization problem (1) is

𝑇
0
= 𝑅
𝑠𝑥
𝑅
+

𝑥
, (2)

where 𝑅
𝑠𝑥

= 𝐸{𝑠𝑥
𝑇

}, 𝑅
𝑥

= 𝐸{𝑥𝑥
𝑇

}. The minimization
problem with this case is associated with the well-known
concept of Wiener filtering (see [3]).

With the rank constraint on 𝑇, that is, rank(𝑇) = 𝑑, we
first consider the cost function of the minimization problem
(1). By using the fact 𝑅

𝑠𝑥
𝑅
𝑥
𝑅
+

𝑥
= 𝑅
𝑠𝑥

and the four Moore-
Penrose equations of 𝑅+

𝑥
, it is easy to verify that (see also [1])

𝐸 {‖𝑠 − 𝑇𝑥‖
2

}= tr {(𝑇 − 𝑇
0
) 𝑅
𝑥
(𝑇 − 𝑇

0
)
𝑇

} + 𝐸 {
󵄩󵄩󵄩󵄩𝑠 − 𝑇0𝑥

󵄩󵄩󵄩󵄩

2

} .

(3)

Noting that the covariance matrix 𝑅
𝑥
is symmetric nonnega-

tive definite, then it can be factorized as

𝑅
𝑥
= 𝑅
1/2

𝑥
(𝑅
1/2

𝑥
)
𝑇

. (4)
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Substituting (4) into (3) gives rise to

𝐸 {‖𝑠 − 𝑇𝑥‖
2

}

= tr {(𝑇 − 𝑇
0
) 𝑅
1/2

𝑥
(𝑅
1/2

𝑥
)
𝑇

(𝑇 − 𝑇
0
)
𝑇

}

+ 𝐸 {
󵄩󵄩󵄩󵄩𝑠 − 𝑇0𝑥

󵄩󵄩󵄩󵄩

2

}

= tr {[(𝑇 − 𝑇
0
) 𝑅
1/2

𝑥
] [(𝑇 − 𝑇

0
) 𝑅
1/2

𝑥
]
𝑇

}

+ 𝐸 {
󵄩󵄩󵄩󵄩𝑠 − 𝑇0𝑥

󵄩󵄩󵄩󵄩

2

}

=
󵄩󵄩󵄩󵄩󵄩
(𝑇 − 𝑇

0
) 𝑅
1/2

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ 𝐸 {
󵄩󵄩󵄩󵄩𝑠 − 𝑇0𝑥

󵄩󵄩󵄩󵄩

2

}

=
󵄩󵄩󵄩󵄩󵄩
𝑇𝑅
1/2

𝑥
− 𝑇
0
𝑅
1/2

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ 𝐸 {
󵄩󵄩󵄩󵄩𝑠 − 𝑇0𝑥

󵄩󵄩󵄩󵄩

2

}

=
󵄩󵄩󵄩󵄩󵄩
𝑇
0
𝑅
1/2

𝑥
− 𝑇𝑅
1/2

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ 𝐸 {
󵄩󵄩󵄩󵄩𝑠 − 𝑇0𝑥

󵄩󵄩󵄩󵄩

2

} ,

(5)

since 𝐸{‖ 𝑠 − 𝑇
0
𝑥‖
2

} is a constant, then

min
𝑇∈𝑅
𝑚×𝑛
, rank(𝑇)=𝑑

𝐸 {‖𝑠 − 𝑇𝑥‖
2

}

= min
𝑇∈𝑅
𝑚×𝑛
, rank(𝑇)=𝑑

󵄩󵄩󵄩󵄩󵄩
𝑇
0
𝑅
1/2

𝑥
− 𝑇𝑅
1/2

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ 𝐸 {
󵄩󵄩󵄩󵄩𝑠 − 𝑇0𝑥

󵄩󵄩󵄩󵄩

2

} ,

(6)

that is to say, minimizing 𝐸{‖𝑠 − 𝑇𝑥‖
2

} is equivalent to
minimizing ‖𝑇

0
𝑅
1/2

𝑥
− 𝑇𝑅
1/2

𝑥
‖
2

𝐹
. Therefore, we can find the

solution 𝑇∗ of (1) by solving the minimization problem

min
𝑇∈𝑅
𝑚×𝑛
, rank(𝑇)=𝑑

󵄩󵄩󵄩󵄩󵄩
𝑇
0
𝑅
1/2

𝑥
− 𝑇𝑅
1/2

𝑥

󵄩󵄩󵄩󵄩󵄩𝐹
, (7)

which can be summarized as the following low rank approx-
imation problem:

Problem 1. Given two matrices 𝐴 ∈ 𝑅
𝑚×𝑛, 𝐵 ∈ 𝑅

𝑝×𝑛 and an
integer 𝑑, 1 ≤ 𝑑 < 𝑚, 𝑝, find a matrix 𝑋 ∈ 𝑅

𝑚×𝑝 of rank 𝑑
such that

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝑋𝐵

󵄩󵄩󵄩󵄩󵄩𝐹
= min
𝑋∈𝑅
𝑚×𝑝
, rank(𝑋)=𝑑

‖𝐴 − 𝑋𝐵‖
𝐹
. (8)

In the last few years there has been a constantly increasing
interest in developing the theory and numerical approaches
for the low rank approximations of a matrix, due to their
wide applications. A well-known method for the low rank
approximation is the singular value decomposition (SVD)
[5, 6]. When the desired rank is relatively low and the matrix
is large and sparse, a complete SVD becomes too expensive.
Some less expensive alternatives for numerical computation,
for example, Lanczos bidiagonalization process [7], and the
Monte Carlo algorithm [8] are available. To speed up the
computation of SVD, random sampling has been employed
in [9]. Recently, Ye [10] proposed the generalized low rank
approximations of matrices (GLRAM) method. This method
is proved to have less computational time than the traditional
singular value decomposition-based methods in practical

applications. Later, GLRAM method has been revisited and
extended by Liu et al. [11] and Liang and Shi [12]. In some
applications, we need to emphasize important parts and
deemphasize unimportant parts of the data matrix, so the
weighted low rank approximations were considered by many
authors. Some numerical methods, such as Newton-like
algorithm [13], left versus right representations method [14],
and unconstrained optimization method [15], are proposed.
Recently, by using the hierarchical identification principle
[16] which regards the knownmatrix as the system parameter
matrix to be identified, Ding et al. and Xie et al. present the
gradient-based iterative algorithms [16–21] and least-squares-
based iterative algorithm [22, 23] for solving matrix equa-
tions. The methods are innovational and computationally
efficient numerical algorithms.

The common and practical method to tackle the low rank
approximation Problem 1 is the singular value decomposition
(SVD) (e.g. [1]). We briefly review SVDmethod as following.
Minimizing (8) by a rank-𝑑matrix𝑋𝐵 is known [5, Page 69]
to satisfy

𝑋𝐵 = 𝐴
𝑑
=

𝑑

∑

𝑖=1

𝜎
𝑖
𝑢
𝑖
V
𝑇

𝑖
, (9)

where 𝐴
𝑑
denotes rank-𝑑 singular value decomposition

truncation, that is, if the following SVD holds

𝐴 =

rank(𝐴)
∑

𝑖=1

𝜎
𝑖
𝑢
𝑖
V
𝑇

𝑖
, (10)

then 𝐴
𝑑

= ∑
𝑑

𝑖=1
𝜎
𝑖
𝑢
𝑖
V𝑇
𝑖
. If the matrix 𝐵 is square and

nonsingular, then by (9) we obtain that the solution of
Problem 1 is

𝑋 = 𝐴
𝑑
𝐵
−1

= (

𝑑

∑

𝑖=1

𝜎
𝑖
𝑢
𝑖
V
𝑇

𝑖
)𝐵
−1

. (11)

The SVD method has two disadvantages as following: (1) it
requires the matrix 𝐵 to be square and nonsingular; (2) in
order to derive the solution (11), wemust compute the inverse
matrix of 𝐵, whose computation cost is very expensive.

In this paper, we develop a new method to solve the
low rank approximation Problem 1, which can avoid the
disadvantages of SVD method. We first transform Problem
1 into the fixed rank solution of a matrix equation and then
use the generalized singular value decomposition (GSVD) to
solve it. Based on these, we derive a sufficient condition for
the existence of a solution of Problem 1, and the analytical
expression of the solution is given. A numerical algorithm is
proposed to compute the solution. Numerical examples are
used to illustrate the numerical algorithm. The first one is
artificial to show that the new algorithm is feasible to solve
Problem 1, and the second is simulation, which shows that the
new algorithm can be used to realize the image compression.

2. Main Results

In this section, we give a sufficient condition and an analytical
expression for the solution of Problem 1 by transforming
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Problem 1 into the fixed rank solution of a matrix equation.
Finally, we establish an algorithm for solving Problem 1.

Lemma 2. Amatrix𝑋 ∈ 𝑅
𝑚×𝑛 is a solution of Problem 1 if and

only if it is a solution of the following matrix equation:

𝑋𝐵𝐵
𝑇

= 𝐴𝐵
𝑇

, rank (𝑋) = 𝑑. (12)

Proof. It is easy to verify that a matrix𝑋 ∈ 𝑅
𝑚×𝑛 is a solution

of Problem 1 if and only if 𝑋 satisfies the following two
equalities simultaneously:

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝑋𝐵

󵄩󵄩󵄩󵄩󵄩𝐹
= min
𝑋∈𝑅
𝑚×𝑝

‖𝐴 − 𝑋𝐵‖
𝐹
, (13)

rank (𝑋) = 𝑑. (14)

Since the normal equation of the least squares problem
(13) is

𝑋𝐵𝐵
𝑇

= 𝐴𝐵
𝑇 (15)

and noting that the least squares problem (13) and its normal
equation (15) have the same solution sets, then (13) and (14)
can be equivalently written as

𝑋𝐵𝐵
𝑇

= 𝐴𝐵
𝑇

, rank (𝑋) = 𝑑 (16)

which also imply that Problem 1 is equivalent to (12).

Remark 3. From Lemma 2 it follows that Problem 1 is
equivalent to (12), hence we can solve Problem 1 by finding
a fixed rank solution of the matrix equation𝑋𝐵𝐵𝑇 = 𝐴𝐵𝑇.

Now we will use generalized singular value decomposi-
tion (GSVD) to solve (12). Set

𝐶 = 𝐵𝐵
𝑇

∈ 𝑅
𝑝×𝑝

, 𝐷 = 𝐴𝐵
𝑇

∈ 𝑅
𝑚×𝑝

. (17)

The GSVD of the matrix pair (𝐶,𝐷) is given by (see [24])

𝐶 = 𝑈Σ
1
𝑊, 𝐷 = 𝑉Σ

2
𝑊, (18)

where 𝑈 ∈ 𝑂
𝑝×𝑝, 𝑉 ∈ 𝑂

𝑚×𝑚, 𝑊 ∈ 𝑅
𝑝×𝑝 is a nonsingular

matrix, 𝑘 = rank([𝐶𝑇, 𝐷𝑇]), 𝑟 = rank(𝐶), 𝑡 = rank(𝐶) +
rank(𝐷) − rank([𝐶𝑇, 𝐷𝑇]), and

Σ
1
=
(

𝐼
𝐶

0

0

𝑟 − 𝑡

0

𝑆
𝐶

0

𝑡

0

0

𝑂
𝐶

𝑘 − 𝑟

0

0

0

)

𝑝 − 𝑘

𝑟 − 𝑡

𝑡

𝑝 − 𝑟,

Σ
2
=
(

𝑂
𝐷

0

0

𝑟 − 𝑡

0

𝑆
𝐷

0

𝑡

0

0

𝐼
𝐷

𝑘 − 𝑟

0

0

0

)

𝑝 − 𝑘

𝑚 − 𝑘 − 𝑡 + 𝑟

𝑡

𝑘 − 𝑟

(19)

are block matrices, with 𝐼
𝐶
and 𝐼
𝐷
are identity matrices, 𝑂

𝐶

and 𝑂
𝐷
are zero matrices:

𝑆
𝐶
= diag (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑡
) , 1 > 𝛼

1
≥ 𝛼
2
≥ ⋅ ⋅ ⋅ ≥ 𝛼

𝑡
> 0,

𝑆
𝐷
= diag (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑡
) , 0 < 𝛽

1
≤ 𝛽
2
≤ ⋅ ⋅ ⋅ ≤ 𝛽

𝑡
< 1,

𝛼
2

𝑖
+ 𝛽
2

𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑡.

(20)

By (17) and (18), we have

𝑋𝐵𝐵
𝑇

= 𝐴𝐵
𝑇

⇐⇒ 𝑋𝐶 = 𝐷 ⇐⇒ 𝑋𝑈Σ
1
𝑊 = 𝑉Σ

2
𝑊

⇐⇒ 𝑋𝑈Σ
1
𝑊−𝑉Σ

2
𝑊 = 0

⇐⇒ 𝑉(𝑉
𝑇

𝑋𝑈Σ
1
− Σ
2
)𝑊 = 0.

(21)

Set

𝑌 = 𝑉
𝑇

𝑋𝑈, (22)

and 𝑌 is partitioned as follows:

𝑌 =
(

𝑌
11

𝑌
21

𝑌
31

𝑟 − 𝑡

𝑌
12

𝑌
22

𝑌
32

𝑡

𝑌
13

𝑌
23

𝑌
33

)

𝑝 − 𝑟

𝑚 − 𝑘 − 𝑡 + 𝑟

𝑡

𝑘 − 𝑟,

(23)

then

𝑉
𝑇

𝑋𝑈Σ
1
− Σ
2

= 𝑌Σ
1
− Σ
2

= (

𝑌
11

𝑌
12

𝑌
13

𝑌
21

𝑌
22

𝑌
23

𝑌
31

𝑌
32

𝑌
33

)(

𝐼
𝐶

0 0 0

0 𝑆
𝐶

0 0

0 0 𝑂
𝐶
0

)

− (

𝑂
𝐷

0 0 0

0 𝑆
𝐷

0 0

0 0 𝐼
𝐷
0

)

=
(

𝑌
11

𝑌
21

𝑌
31

𝑟 − 𝑡

𝑌
12
𝑆
𝐶

𝑌
22
𝑆
𝐶
− 𝑆
𝐷

𝑌
32
𝑆
𝐶

𝑡

0

0

−𝐼
𝐷

𝑘 − 𝑟

0

0

0

)

𝑝 − 𝑘

𝑚 − 𝑘 − 𝑡 + 𝑟

𝑡

𝑘 − 𝑟.

(24)

Therefore, by (21) and (24), we have

𝑋𝐵𝐵
𝑇

= 𝐴𝐵
𝑇

⇐⇒ 𝑉(

𝑌
11

𝑌
12
𝑆
𝐶

0 0

𝑌
21

𝑌
22
𝑆
𝐶
− 𝑆
𝐷

0 0

𝑌
31

𝑌
32
𝑆
𝐶

−𝐼
𝐷
0

)𝑊 = 0

⇐⇒ rank[

[

𝑉(

𝑌
11

𝑌
12
𝑆
𝐶

0 0

𝑌
21

𝑌
22
𝑆
𝐶
− 𝑆
𝐷

0 0

𝑌
31

𝑌
32
𝑆
𝐶

−𝐼
𝐷
0

)𝑊]

]

= 0

⇐⇒ rank[

[

(

𝑌
11

𝑌
12
𝑆
𝐶

0 0

𝑌
21

𝑌
22
𝑆
𝐶
− 𝑆
𝐷

0 0

𝑌
31

𝑌
32
𝑆
𝐶

−𝐼
𝐷
0

)]

]

= 0

⇐⇒ 𝑘 − 𝑟 = 0, 𝑌
11
= 𝑌
21
= 𝑌
31
= 𝑌
12

= 𝑌
32
= 0, 𝑌

22
= 𝑆
𝐷
𝑆
−1

𝐶
,

(25)

that is to say, thematrix equation𝑋𝐵𝐵𝑇 = 𝐴𝐵𝑇 has a solution
if and only if

𝑘 − 𝑟 = rank ([𝐶𝑇, 𝐷𝑇]) − rank (𝐶)

= rank ([𝐵𝐵𝑇, 𝐵𝐴𝑇]) − rank (𝐵𝐵𝑇) = 0,
(26)
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and according to (22), we know that the expression of the
solution is

𝑋 = 𝑉𝑌𝑈
𝑇

, (27)

where

𝑌 =
(
0

0

𝑟 − 𝑡

0

𝑆
𝐷
𝑆
−1

𝐶

𝑡

𝑌
13

𝑌
23

)

𝑝 − 𝑟

𝑚 − 𝑡

𝑡,

𝑌
13
∈ 𝑅
(𝑚−𝑡)×(𝑝−𝑟)

, 𝑌
23
∈ 𝑅
𝑡×(𝑝−𝑟)

.

(28)

By (26)–(28) and noting that 𝑌
13

and 𝑌
23

are arbitrary
matrices, we have

min
𝑋∈𝑅
𝑚×𝑝

rank (𝑋) = min
𝑋∈𝑅
𝑚×𝑝

rank (𝑉𝑌𝑈𝑇)

= min
𝑌
13
∈𝑅
(𝑚−𝑡)×(𝑝−𝑟)

,𝑌
23
∈𝑅
𝑡×(𝑝−𝑟)

rank (𝑌)

= 𝑡

= rank (𝐷)

= rank (𝐴𝐵𝑇) ,

max
𝑋∈𝑅
𝑚×𝑝

rank (𝑋) = max
𝑌∈𝑅
𝑚×𝑝

rank (𝑉𝑌𝑈𝑇)

= max
𝑌
13
∈𝑅
(𝑚−𝑡)×(𝑝−𝑟)

, 𝑌
23
∈𝑅
𝑡×(𝑝−𝑟)

rank (𝑌)

= 𝑡 +min {𝑝 − 𝑟,𝑚 − 𝑡}

= min {𝑚, 𝑝 + 𝑡 − 𝑟}

= min {𝑚, 𝑝 + rank (𝐶) + rank (𝐷)

− rank ([𝐶𝑇, 𝐷𝑇]) − rank (𝐶)}

= min {𝑚, 𝑝 + rank (𝐷) − rank ([𝐶𝑇, 𝐷𝑇])}

= min {𝑚, 𝑝 + rank (𝐷) − rank (𝐶)}

= min {𝑚, 𝑝 + rank (𝐴𝐵𝑇) − rank (𝐵𝐵𝑇)} .
(29)

Hence, if

rank ([𝐵𝐵𝑇, 𝐵𝐴𝑇]) − rank (𝐵𝐵𝑇) = 𝑘 − 𝑟 = 0, (30)

rank (𝐴𝐵𝑇) ≤ 𝑑 ≤ min {𝑚, 𝑝 + rank (𝐴𝐵𝑇) − rank (𝐵𝐵𝑇)} ,
(31)

then (12) has a solution, and the expressions of the solution
are given by (26)–(28), that is,

𝑋 = 𝑉𝑌𝑈
𝑇

= 𝑉(
0 0 𝑌

13

0 𝑆
𝐷
𝑆
−1

𝐶
𝑌
23

)𝑈
𝑇

, (32)

where 𝑌
23

∈ 𝑅
𝑡×(𝑝−𝑟) is an arbitrary matrix and 𝑌

13
∈

𝑅
(𝑚−𝑡)×(𝑝−𝑟) is chosen such that

rank (𝑌
13
) = 𝑑 − 𝑡 = 𝑑 − rank (𝐷) = 𝑑 − rank (𝐴𝐵𝑇) .

(33)

And noting that the low rank approximation Problem 1
is equivalent to (12) (i.e. Lemma 2), then we obtain the
following.

Theorem 4. If

rank ([𝐵𝐵𝑇, 𝐵𝐴𝑇]) − rank (𝐵𝐵𝑇) = 𝑘 − 𝑟 = 0,

rank (𝐴𝐵𝑇) ≤ 𝑑 ≤ min {𝑚, 𝑝 + rank (𝐴𝐵𝑇) − rank (𝐵𝐵𝑇)} ,
(34)

then Problem 1 has a solution, and the expressions of the
solution are given by

𝑋 = 𝑉𝑌𝑈
𝑇

= 𝑉(
0 0 𝑌

13

0 𝑆
𝐷
𝑆
−1

𝐶
𝑌
23

)𝑈
𝑇

, (35)

where 𝑌
23

∈ 𝑅
𝑡×(𝑝−𝑟) is an arbitrary matrix and 𝑌

13
∈

𝑅
(𝑚−𝑡)×(𝑝−𝑟) is chosen such that

rank (𝑌
13
) = 𝑑 − 𝑡 = 𝑑 − rank (𝐷) = 𝑑 − rank (𝐴𝐵𝑇) .

(36)

Remark 5. In contrast with (11), the solution expression (35)
does not require the matrix 𝐵 to be square and nonsingular
and does not need to compute the inverse of 𝐵.

Based on Theorem 4, we can establish an algorithm for
finding the solution of Problem 1.

Algorithm 6. (1) Input the matrices 𝐴, 𝐵 and the integer 𝑑;

(2) make the GSVD of the matrix pair (𝐶,𝐷) according
to (18);

(3) choose 𝑌
23
∈ 𝑅
𝑡×(𝑝−𝑟) and𝑌

13
∈ 𝑅
(𝑚−𝑡)×(𝑝−𝑟), such that

rank(𝑌
13
) = 𝑑 − rank(𝐴𝐵𝑇);

(4) compute the solution𝑋 according to (35).

3. Numerical Experiments

In this section, we first use a simple artificial example to
illustrate that Algorithm 6 is feasible to solve Problem 1, then
we use a simulation to show that Algorithm 6 can be used to
realize the image compression. The experiments were done
with MATLAB 7.6 on a 64-bit Intel Pentium Xeon 2.66GHz
with 𝑒mach ≈ 2.0 × 10

−16.
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(a) (b)

Figure 1: (a) Original image; (b) noisy image.

Table 1: Execution time for deriving Figures 2(a)–3(c).

Figure 2(a) Figure 3(a) Figure 2(b) Figure 3(b) Figure 2(c) Figure 3(c)
3.5835 (s) 3.9216 (s) 2.8627 (s) 3.0721 (s) 2.0591 (s) 2.1433 (s)

Example 7. Consider Problem 1 with

𝐴 =(

0.6884 0.5873 0.4236 0.4243 0.8483 1.0400 0.9778 0.1541

1.0869 0.8243 0.5998 0.5993 1.0695 1.3080 1.5460 0.3538

0.5709 0.3925 0.1344 0.3478 0.4318 0.5389 0.4866 0.1035

1.1466 0.8938 0.9278 0.5209 1.3410 1.5086 1.4849 0.2599

0.7752 0.5851 0.4972 0.3909 0.8055 0.9389 0.9832 0.1978

) ,

𝐵 =(

(

0.0554 0.6308 0.8468 0.9419 0.6891 0.2808 0.4558 0.7709

0.1655 0.4783 0.3702 0.7526 1.0548 0.4358 0.7835 0.3309

0.1150 0.3808 0.3316 0.5940 0.7677 0.3168 0.5645 0.2978

0.1693 0.5032 0.4001 0.7903 1.0890 0.4499 0.8073 0.3580

0.0869 0.4247 0.4608 0.6495 0.6779 0.2786 0.4829 0.4170

0.1142 0.5772 0.6351 0.8815 0.9040 0.3715 0.6421 0.5951

)

)

.

(37)

We make GSVD of the matrix pair (𝐶,𝐷) = (𝐵𝐵
𝑇

, 𝐴𝐵
𝑇

) as
follows:

𝐶 = 𝑈Σ
1
𝑊, 𝐷 = 𝑉Σ

2
𝑊, (38)

where

𝑈 =(

(

−0.7574 0.4215 −0.0590 0.0130 −0.2832 −0.4060

−0.1509 −0.5893 −0.3965 −0.6437 −0.1562 −0.1845

−0.1775 −0.3461 0.8997 −0.1454 −0.0810 −0.1071

−0.1752 −0.5847 −0.1667 0.7506 −0.1161 −0.1510

−0.3397 −0.0817 −0.0302 −0.0251 0.9311 −0.0970

−0.4754 −0.0814 −0.0331 −0.0218 −0.0915 0.8703

)

)

, (39)

𝑉 =(

−0.2818 0.4322 0.0937 0.7418 −0.4180

−0.1814 −0.6971 −0.4417 0.0795 −0.5503

0.9419 −0.0182 −0.0330 0.2445 −0.2272

0.0166 0.5179 −0.2279 −0.5906 −0.5751

−0.0160 −0.2424 0.8753 −0.1863 −0.3743

) , (40)
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𝑊 =(

(

−6.2034 −5.7059 −4.4070 −5.9640 −4.5789 −6.1909

−7.5279 −8.6034 −6.4574 −8.9389 −6.2317 −8.3756

0.4175 −0.1314 0.2453 0.4166 −0.1876 −0.7345

0.1928 0.6688 0.2243 −0.6061 −0.2199 −0.2228

−0.0101 0.2451 −0.4669 −0.0248 0.7439 −0.4097

0.1926 0.3245 −0.7213 0.2930 −0.4910 0.1022

)

)

, (41)

Σ
1
=(

(

0.9985 0 0 0 0

0 0.4192 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

)

)

, Σ
2
=(

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0541 0 0 0 0

0 0.9079 0 0 0

). (42)

It is easy to verify that

rank ([𝐵𝐵𝑇, 𝐵𝐴𝑇]) − rank (𝐵𝐵𝑇) = 0,

rank (𝐴𝐵𝑇) = 2,

min {𝑚, 𝑝 + rank (𝐴𝐵𝑇) − rank (𝐵𝐵𝑇)} = 5,

(43)

that is, if 2 ≤ 𝑑 ≤ 5, then the conditions of Theorem 4 are
satisfied. Setting 𝑑 = 2 ∈ [2, 5], according to (35), we obtain
that the solution of Problem 1 is

𝑋 = 𝑉(

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.0541

0.9985
0 0 0 0 0

0
0.9079

0.4192
0 0 0 0

) , (44)

𝑈
𝑇

= (

−0.4121 0.5275 0.3062 0.5223 0.0603 0.0546

−0.5057 0.7017 0.4117 0.6961 0.0959 0.0949

−0.2175 0.2880 0.1680 0.2855 0.0357 0.0338

−0.5008 0.7389 0.4367 0.7339 0.1126 0.1166

−0.3341 0.4793 0.2823 0.4758 0.0696 0.0708

) .

(45)

Setting 𝑑 = 4 ∈ [2, 5], according to (35), we obtain that the
solution of Problem 1 is

𝑋 = 𝑉(

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0.0541

0.9985
0 0 0 0 0

0
0.9079

0.4192
0 0 0 0

) ,

𝑈
𝑇

= (

−0.3898 0.3610 −0.0102 0.8937 0.0579 0.0549

−0.5040 1.2224 0.3498 0.2032 0.1188 0.1155

−0.2733 −0.0736 1.0181 0.1148 0.0077 0.0030

−0.4950 0.3989 0.3764 1.1198 0.0991 0.1052

−0.3363 0.6416 0.3032 0.2965 0.0762 0.0764

) .

(46)

Example 7 shows that Algorithm 6 is feasible to solve
Problem 1. However, the SVD method in [1] cannot be used
to solve Example 7, because 𝐵 is not a square matrix.

Example 8. We will use the generalized Karhunen-Loeve
transform, based on Algorithm 6 and SVD method in [1],
respectively, to realize the image compression. Figure 1(a)
(see page 3) is the test image which has 256 × 256 pixels and
256 levels on each pixel. We separate it into 32 × 32 blocks
such that each block has 8 × 8 pixels. Let 𝑓(𝑘,𝑙)

𝑖,𝑗
and 𝑛

(𝑘,𝑙)

𝑖,𝑗

(𝑖, 𝑗 = 0, 1, 2, . . . , 7; 𝑘, 𝑙 = 0, 1, 2, . . . , 31) be the values of the
image and a Gaussian noise (generated by Matlab function
𝑖𝑚𝑛𝑜𝑖𝑠𝑒) at the (𝑖, 𝑗)th pixel in the (𝑘, 𝑙)th block, respectively.
For convenience, let 𝑎 = 𝑖 + 8𝑗, 𝑝 = 𝑘 + 32𝑙, and the (𝑖, 𝑗)th
pixel in the (𝑘, 𝑙)th block be expressed as the 𝑎th pixel in the
𝑝th block (𝑎 = 0, 1, 2, . . . , 63; 𝑝 = 0, 1, . . . , 1023). We can also
express 𝑓(𝑘,𝑙)

𝑖,𝑗
and 𝑛(𝑘,𝑙)
𝑖,𝑗

as 𝑓(𝑝)
𝑎

and 𝑛(𝑝)
𝑎
, respectively.

The test image is processed on each block. Therefore, we
can assume that the blocked image space is 64-𝐷 real vector
space 𝑅64. The 𝑝th block of the original image is expressed by
the 𝑝th vector:

𝑠
𝑝

= (𝑠
𝑝

0
, 𝑠
𝑝

1
, . . . , 𝑠

𝑝

63
)
𝑇

. (47)

Hence the original image is expressed by 1024 64-𝐷 vectors
{𝑠
𝑝

}
1023

𝑝=0
. The noise is similarly expressed by {𝑛𝑝}1023

𝑝=0
, where

𝑛
𝑝

= (𝑛
𝑝

0
, 𝑛
𝑝

1
, . . . , 𝑛

𝑝

63
)
𝑇

. (48)

Figure 1(b) is the noisy image {𝑥𝑝}1023
𝑝=0

, where

𝑥
𝑝

= 𝑠
𝑝

+ 𝑛
𝑝

, 𝑝 = 0, 1, . . . , 1023. (49)

By (47), (49), (2), (4) and the definition of covariance matrix,
we get 𝑇

0
and 𝑅1/2

𝑥
of (7). Then we use Algorithm 6 and SVD

method in [1] to realize the image compression respectively,
and the experiment results are in pages 4 and 5.

Figure 2 illustrates that Algorithm 6 can be used to
realize image compression. Although it is difficult to see the
difference between Figures 2 and 3, which are compressed by
SVDmethod in [1], fromTable 1 we can see that the execution
time of Algorithm 6 is less than that of SVD method at the
same rank. This shows that our algorithm outperforms the
SVD method in execution time.
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(a) (b) (c)

Figure 2: Image compression by Algorithm 6 with different rank 𝑑: (a) 𝑑 = 40; (b) 𝑑 = 30; and (c) 𝑑 = 20.

(a) (b) (c)

Figure 3: Image compression by SVD method with different rank 𝑑: (a) 𝑑 = 40; (b) 𝑑 = 30; and (c) 𝑑 = 20.

4. Conclusion

The low rank approximation Problem 1 arising in the gen-
eralized Karhunen-Loeve transform is studied in this paper.
We first transform Problem 1 into the fixed rank solution of a
matrix equation and then use the generalized singular value
decomposition (GSVD) to solve it. Based on these, we derive
a sufficient condition for the existence of a solution, and the
analytical expression of the solution is also given. Finally, we
use numerical experiments to show that new algorithm is
feasible and effective.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China (11101100; 11226323; 11261014; and
11171205), the Natural Science Foundation of Guangxi
Province (2012GXNSFBA053006; 2013GXNSFBA019009;
and 2011GXNSFA018138), the Key Project of Scientific
Research Innovation Foundation of Shanghai Municipal
Education Commission (13ZZ080), the Natural Science

Foundation of Shanghai (11ZR1412500), the Ph.D.
Programs Foundation of Ministry of Education of China
(20093108110001), theDiscipline Project at the corresponding
level of Shanghai (A. 13-0101-12-005), and Shanghai Leading
Academic Discipline Project (J50101).

References

[1] Y. Hua and W. Q. Liu, “Generalized Karhunen-Loeve trans-
form,” IEEE Signal Processing Letters, vol. 5, pp. 141–142, 1998.

[2] S. Kraut, R. H. Anderson, and J. L. Krolik, “A generalized
Karhunen-Loeve basis for efficient estimation of tropospheric
refractivity using radar clutter,” IEEE Transactions on Signal
Processing, vol. 52, no. 1, pp. 48–60, 2004.

[3] H. Ogawa and E. Oja, “Projection filter, Wiener filter, and
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